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Abstract

We propose an unsupervised method using self-clustering convolutional adversarial
autoencoders to classify prostate tissue as tumor or non-tumor without any labeled
training data. The clustering method is integrated into the training of the autoen-
coder and requires only little post-processing. Our network trains on hematoxylin
and eosin (H&E) input patches and we tested two different reconstruction targets,
H&E and immunohistochemistry (IHC). We show that antibody-driven feature
learning using IHC helps the network to learn relevant features for the clustering
task. Our network achieves a F1 score of 0.62 using only a small set of validation
labels to assign classes to clusters.

1 Introduction

The most important prognostic marker for prostate cancer (PCa), the Gleason score [1], is determined
by pathologists on H&E stained specimens and is based on the architectural pattern of epithelial tissue.
However, it suffers from high inter- and intra- observer variability. Although supervised deep learning
methods are the de facto standard in many medical imaging tasks, unsupervised methods have great
potential due to their ability to perform hypothesis-free learning. An unsupervised approach to
detecting PCa can potentially find relevant morphological features in the data without relying on a
human-engineered grading system such as the Gleason score.
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Figure 1: Overview of the clustering adversarial autoencoder (CAAE). By reconstructing an IHC patch from a
H&E patch through a style vector, z, and a cluster vector, y, the network learns to cluster prostate tissue. This
antibody-driven feature learning forces the network to learn more relevant encodings.
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We propose a new unsupervised method based on adversarial autoencoders [2] to cluster tissue in
tumor and non-tumor that does not rely on labels during training: a clustering adversarial autoencoder
(CAAE). As opposed to normal autoencoders, our CAAE clusters tissue as part of the training process
and does not require post-processing in terms of kMeans, t-SNE or other clustering methods.

2 Methods

Data description. We trained our CAAE on patches extracted from 94 registered whole slide
image (WSI) pairs, divided into training (54) and test (40), from patients that underwent a radical
prostatectomy at the Radboud University Medical Center. Each pair consists of a H&E slide, and a
slide that was processed using IHC with an epithelial (CK8/18) and basal cell (P63) marker. In the
IHC, prostate cancer can be identified as areas where the epithelial marker is present, but the basal
cell marker is absent. We randomly sampled 108,000 patches with a size of (128× 128) pixels at 5x
magnification, sampling more from regions with epithelial tissue (using [3]). We did not explicitly
sample from tumor regions.

Antibody-driven feature learning. The H&E patches were used as training input. We tested two
reconstruction targets: using the input patch as the target (H&E to H&E) and using the IHC version
of the same patch (H&E to IHC). By using a IHC patch as reconstruction target we force the network
to learn which features in H&E correspond to features in the IHC; we hypothesized that this antibody-
driven feature learning results in more relevant encodings as better information for tumor/non-tumor
separation is present in the IHC. As an initial experiment, we trained a regular adversarial autoencoder
on the H&E to IHC mapping and performed t-SNE to see whether the data is separable (Figure 4).

Figure 2: Example patches (first row H&E, second IHC). Column 1-4 show stroma, 5-8 benign epithelium,
9-12 various stages of PCa. Differences between benign tissue and PCa are subtle, especially in H&E.

Network architecture. Our CAAE consists of four subnetworks (Figure 1) and two latent vectors as
the embedding. The first latent vector, y (size 50), represents the cluster vector and is regularized by
a discriminator to follow a one-hot encoding. The second latent vector, z (size 20), represents the
style of the input patch following a Gaussian distribution. Training the CAAE forces the network
to describe high level information in the cluster vector using one of the 50 classes, and low-level
reconstruction information in the style vector. The ratio between the length of the two vectors is
critical, a too large z and the network will encode all information using the more easy to encode style
vector and disregard the cluster vector.

The CAAE is trained in three stages on each minibatch. First, the autoencoder itself is updated to
minimize the reconstruction loss. Second, both discriminators are updated to regularize y and z using
data from the encoder and the target distribution. Last, the adversarial part is trained by connecting
the encoder to the two discriminators separately and maximizing the individual discriminator loss,
updating only the encoder’s weights. This forces the latent spaces to follow the target distribution.

Validation. We sampled patches from the test slides from three areas: 1) 1000 stroma (connective
tissue) or patches without epithelium; 2) 1000 benign epithelium (healthy tissue); and 3) 2000 PCa
(tumor tissue) patches. The tumor patches are not perfect representatives of their class; e.g. a tumor
patch can also contain benign epithelium due to the coarseness of the reference annotations. All
patches are passed through the encoder to retrieve their embeddings. We took 200 patches of each
class to map clusters to class labels, all other patches in the test set are assigned using this mapping.
We also computed the scores using all patches to optimize the mapping.

3 Results & Discussion

Our CAAE, trained to reconstruct IHC from H&E, achieves a F1 score of 0.62 in discriminating
tumor versus non-tumor (Table 1). We also observe that the clusters represent distinct features of
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Figure 3: Encoder applied as a sliding window to a larger area. Overlay shows the relative frequency that each
pixel was assigned a certain class.

Figure 4: t-SNE of normal adversar-
ial autoencoder (latent space = 100)
trained and applied to the test set show-
ing that the data is separable.

Figure 5: Patches that maximize certain clusters (rows).
Some clusters capture a class perfectly, e.g. stroma in row
1 and 2 and tumor in row 5. Some clusters look similar but
contain both benign epithelium and tumor (row 6).

Table 1: Classification performance of the networks for tumor vs non-tumor and individual classes.

Tumor, non-tumor Stroma, benign, tumor
Accuracy Precision Recall F1 Accuracy

H&E to H&E 59% 0.622 0.448 0.520 52%
H&E to H&E (using all labels) 63% 0.588 0.873 0.703 60%
H&E to IHC 68% 0.739 0.544 0.621 63%
H&E to IHC (using all labels) 75% 0.715 0.833 0.769 72%

the input data (Figure 3). In comparison, the H&E to H&E network performs far worse with a F1
in tumor versus non-tumor of 0.52, showing that, although the reconstruction task is more difficult,
there is added benefit in learning the cross-domain mapping. To show the maximum performance of
our network we computed the F1 score using all available labels, resulting in a score of 0.77.

While these results leave enough room for improvement, our network achieves these scores without
using any labeled training data on a very heterogeneous and noisy dataset. Pathologists grade PCa on
multiple levels and use larger field of views than the patches in our dataset. A logical next step would
be to increase the field of view of the autoencoder.
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