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ABSTRACT

In recent years Convolutional Neural Networks (CNN) have been used extensively
for Superresolution (SR). In this paper, we use inverse problem and sparse repre-
sentation solutions to form a mathematical basis for CNN operations. We show
how a single neuron is able to provide the optimum solution for inverse problem,
given a low resolution image dictionary as an operator. Introducing a new concept
called Representation Dictionary Duality, we show that CNN elements (filters)
are trained to be representation vectors and then, during reconstruction, used as
dictionaries. In the light of theoretical work, we propose a new algorithm which
uses two networks with different structures that are separately trained with low
and high coherency image patches and show that it performs faster compared to
the state-of-the-art algorithms while not sacrificing from performance.

1 INTRODUCTION

Recent years have witnessed an increased demand for superresolution (SR) algorithms. Increased
number of video devices boosted the need for displaying high quality videos online with lower band-
width. In addition, the social media required the storage of videos and images with lowest possible
size for server optimization. Other areas include 4K video displaying from Full HD broadcasts,
increasing the output size for systems that have limited sized sensors, such as medical imaging,
thermal cameras and surveillance systems.

SR algorithms aim to generate high-resolution (HR) image from single or ensemble of low-
resolution (LR) images. The observation model of a real imaging system relating a high resolution
image to the low resolution observation frame can be given as

g = SHf + n (1)

where H models the blurring effects, S models the downsampling operation, and n models the sys-
tem noise. The solution to this problem seeks a minimal energy of an energy functional comprised
of the fidelity of the estimated image f̂ to the observational image f .

State-of-the art algorithms that are addressing SR problem can be collected under Dictionary learn-
ing based methods (DLB) and Deep learning based methods (DLM) categories. Although SR prob-
lem is an inverse problem by nature, performance of other methods such as Bayesian and Example
based methods have been surpassed which is the reason why they are not included in this work.
Also the SR problem has never been directly dealt with inverse problem solutions as in Combettes
& Wajs (2005) Daubechies et al. (2004) DLB are generally solving optimization problems with
sparsity constraints such as Yang et al. (2008) Yang et al. (2010) and L2 norm regularization as
in Timofte et al. (2013). The main concern of DLB is creation of a compact dictionary for recon-
struction of high resolution (HR) image. Although useful, DLB methods become heavy and slow
algorithms as reconstruction performance increases. Recent advances on GPUs have fueled the
usage of convolutional neural networks (CNNs) for SR problem. CNN based algorithms such as
Dong et al. (2014) and Kim et al. (2016) have used multi-layered networks which have successfully
surpassed DLB methods in terms of run speed and performance. State-of-the art algorithms also
use Perceptual Loss (PL) to generate new textures from LR images Leibe et al. (2016). By uniting
PL and generative networks, photo realistic images can be generated Ledig et al. (2017). PL mini-
mization based algorithms are visually superior to MSE minimization based ones. Stability of such
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algorithms have been improved since they have been first proposed Goodfellow (2017). Although,
stability issue is not yet completely addressed for generative networks

In Bengio et al. (2013) authors have described representation learning as a manifold learning for
which a higher dimensional data is represented compactly in a lower dimensional manifold. They
have discussed that the variations in the input space is captured by the representations, for which we
are explaining the mechanism at work.

Though CNNs are successful for SR problem experimentally, their mathematical validation is still
lacking. We summarized the contributions of this work.

• We show that neurons solve an Iterative Shrinkage Thresholding (IST) equation during
training for which the operator is dictionary matrix constructed from LR training data. The
solution yields a representation vector as the neuron filters. Contrary to the discussion in lit-
erature for which an encoder-decoder structure is needed to obtain and use representations,
we claim that the filters themselves become the representations.

• We describe a new concept namely Representation Dictionary Duality (RDD) and show
that neuron filters act as representation vectors during training phase. Then in the testing
phase, filters start acting as dictionaries upon which the HR reconstruction is made layer
by layer. This is a concept which helps us analyze CNNs with sparse representation and
inverse problem mathematics.

• After analyzing a neuron with inverse problem and DLB solutions and discussing how the
entire network operates during training, we propose a new network structure which is able
to recover certain details better, faster without sacrificing overall performance.

Rest of the paper organized as follows: in section 2 we refer to related literature for different areas
of research. Section 3 ties previous work into our analysis of CNNs. In section 4 we propose a new
network for SR problem. In section 5 we give experimentation results.

2 RELATED WORK

2.1 ANALYTIC APPROACHES

Solution to eq. 1 is inherently ill-conditioned since a multiplicity of solutions exist for any given LR
pixel. Thus proper prior regularization for the high resolution image is crucial. The regularization
of the inversion is provided with a function, reg, which promotes the priori information from the
desired output, reg takes different forms ranging from L0 norm, Tikhonov regularization to orthog-
onal decomposition of the estimate. Denoting the SH matrix in eq. 2 by K, the regularized solution
is given by

f̂ = argmin
f

1

2
||Kf − g||22 + reg(f) (2)

In Daubechies et al. (2004) authors have used sparsity promoting regularization and Combettes &
Wajs (2005) have inspected various proximity mapping functions for solutions of inverse problems
with projection onto convex sets. The application of convex analysis results (Combettes & Wajs
(2005)) to the linear inverse problem, involves iterations which result in so called Iterative Shrink-
age/Thresholding (IST). So, the solution to the inversion of eq. 2 with an L1 norm regularization
function can be obtained by the help of Moreau proximity operator as

fn = proxb||.||(f
n−1 + b.KT (g −Kfn−1)) (3)

Where a class of proximity operators are defined, the special function for the case of L1 regulariza-
tion is soft thresholding function also known as shrinkage operator.

proxb||.||f =

{
(1− 1

||f || )f if ||f || ≥ b
0 otherwise

}
= sign(f).max(|f | − b, 0)

.
= softb(f) (4)
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Notice that KT (g −Kfn−1) is the negative gradient of data fidelity term in the original formula-
tion. Therefore the solution for the inverse problem using IST iterations is obtained in a gradient
descent type method thresholded by Moreau proximity mapping which is also named as Proximal
Landweber Iterations. Daubechies et al. (2004) have proposed the usage of non-quadratic regular-
ization constraints that promote sparsity by the help of an orthonormal (or overcomplete) basis ϕl
of a Hilbert space. For the problem defined in eq. 2 it is proposed to use a functional φb,p as

Φb,p(f) = ||Kf − g||2 +
∑
∀l

bl|〈f, ϕl〉|p (5)

For the case when p = 1, a straightforward variational equation can be obtained in an iterative way.

〈fn, ϕl〉 = softb(〈fn−1, ϕl〉+ 〈KT (g −Kfn−1), ϕl〉) (6)

Iterations over the set of basis functions can be carried out in one formula

fn = Zb(f
n−1 +KT (g −Kfn−1)) (7)

where
Zb(x)

.
=
∑
l∈Γ

(〈x, ϕl〉)ϕl (8)

which can be seen as a method to file the elements of x in the direction of ϕl. Daubechies et. al.
have proven that the solution obtained by iterating f is the global minimum of the solution space.
The solution will reach to an optimum point if K is a bounded operator satisfying ||Kf || ≤ C||f ||
for any vector f and some constant C.

We will use this result in proving that neurons in a CNN architecture are able to reach to the optimum
solution for SR problem by solving for the exact same eq. 7. A similar work is conducted by Gregor
& LeCun (2010). They have proposed a Learned IST algorithm which can be seen as a time unfolded
recurrent neural network. Later Bronstein et al. (2012) have discussed that LISTA and their own
algorithms that extend LISTA are not mere approximations for an iterative algorithm but themselves
are full featured sparse coders.

Our work diverges from theirs in showing how a convolutional neural network is able to learn image
representation and reconstruction for SR problem inside network parameters. We will unite inverse
problem approaches, DLM and DLB methods in a representation-dictionary duality concept.

2.2 DATA DRIVEN APPROACHES

2.2.1 DICTIONARY LEARNING BASED SUPERRESOLUTION

Instead of approaching the superresolution problem to directly invert an observation model, DLB
learn mappings from LR to HR training images based on a dictionary. The algorithms jointly solve
for a compact dictionary and a representation vector. Sparse representation has been applied to
the dictionary learning based SR problem. An LR image is sparsely represented by an LR dictio-
nary. The representation vector is either directly or by some changes applied to an HR library for
reconstruction of HR image. DLB algorithms both solve for creating dictionary and solve for a
representation vector for any input.

The K-SVD algorithm Aharon et al. (2006) is one of the keystones of dictionary learning for the
purpose of sparse representation. Aharon et. al. have proposed the usage of a compact dictionary D,
from which a set of atoms (columns or dictionary elements) are to be selected via a vector f and the
combination of these atoms is constrained to be similar to a patch (or image) g via ||g−Df ||p ≤ ε.
If the dimension of g is less than that of matrix D and if D is full-rank matrix then there are infinitely
many solutions to the problem therefore a sparsity constraint is introduced.

min
f
||f ||0 s.t. ||g −Df ||2 ≤ ε (9)

The L0 norm gives the number of entries in f that are non-zero. The usage of compact dictionaries
for SR problem is introduced in Yang et al. (2008). The authors have used the approach of K-SVD.
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The optimization of L0 norm regularized equation is hard and a closed form solution might not be
available. For the case when f is sufficiently sparse, eq. 1 can be approximated by L1 norm. The
solution of such an equation can be obtained by Lagrange multipliers.

min
f
λ||f ||1 +

1

2
||Df − g||22 (10)

During learning phase the library D is initialized by random gaussian noise and an iterative algorithm
between a batch representation matrix Z and dictionary D refines the dictionary while maintaining
sparsity for representation vectors of training set. Yang et al. (2008) uses two dictionaries, one for
LR representation, one for HR reconstruction as described in the beginning of this chapter.

Timofte et al. (2013) have proposed the usage of L2 norm instead of L1 norm for even faster compu-
tations. Although usage of L2 norm eliminated the sparsity constraint from the equation it will play
a role in understanding how CNNs work in later chapters.

2.2.2 CONVOLUTIONAL NEURAL NETWORKS

The mapping between the high and low resoultion images can also be found by convolutional net-
works (Dong et al. (2014), Kim et al. (2016)).

The activation function plays an important role in neural network training. In many state-of-the-art
algorithms major functions such as tanh and softmax have been replaced by rectified linear units
Maas et al. (2013) that are linear approximations of mathematically complex and computationally
heavy functions. Glorot et al. (2011) has empirically shown that by using rectified activations the
network can learn sparse representations easier. For a given input, only a subset of hidden neurons
are activated, leading to better gradient backpropagation for learning and better representations dur-
ing forward pass. Especially sparse representation has been shown Glorot et al. (2011) to be useful.
Sparsity constraint provides information disentagling which allows the representation vectors to be
robust against small changes in input data.

Romano et al. (2017) uses gradient information to separate image pixels during interpolation. Sep-
aration is done according to three properties namely, strength, coherence and angle. A low strength
and coherence signifies as lack of content inside the patch. A high strength but low coherence sig-
nifies corner or multi directional edge information. High strength and high coherence signifies a
strong edge. Especially the coherence information will play an important role in section 3.

Dong et al. (2014) have provided the earliest relation of CNNs to Sparse Representation. In their
view outputs of the first layer constitute a representation vector for a patch around each pixel in LR
image, second layer maps LR representations to HR representation vectors and the last layer recon-
structs HR image using 5x5 sized filters (or atoms if we have used the jargon of sparse representa-
tions). Although this idea qualitatively maps CNNs as a solution method for sparse representation
problem, we will now show a more complete understanding with mathematical background. Figure
5 in Appendix shows how SRCNN algorithm works.

3 RELATION OF INVERSE PROBLEM, SPARSE REPRESENTATION AND CNNS

Even though CNNs yield very good estimates of superesolved images, the connection between in-
version of observation model and activation of neurons in CNNs is missing. In this section, we will
show the relation between the inverse problem solutions and sparse representation to CNNs. Figure
1 summarize how we are connecting all previous work to CNNs. Considering single neuron we are
going to generalize the solution.

For the training phase of CNNs, LR images are fed into the network for forward pass. The resulting
image from the network is compared against a ground truth HR image and the error is backpropa-
gated. Since the input image is convolved by the neuron filter, its size should be larger than the size
of the output to prevent boundary conditions. This will not be a problem in our case, as stated by
Kim et al. (2016), the results from a deep residual network are not spoiled even at the edges of the
images. The convolution operation can be carried out in an algebraic manner. Let us assume that
we are operating on a patch of LR image, that is named as superpatch. The superpatch is divided
into chunks, that are named as subpatches, which have the same support as the filter. Filter and each
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Figure 1: Connecting the Dots

subpatch is vectorized in column stack method. Vectorized subpatches are concatenated to form a
matrix. Figure 6 in Appendix visualizes this procedure.

During training CNN solves the mapping of LR input to HR image in training set. The product of
the network is going to be a mapping, fL, from LR superpatch, that is collected under DL, to HR
patch, gL. Therefore the vector fL will be the neuron filter, i.e. the only variable for the training
phase, DL will be concatenated subpatch matrix, each subpatch in vectorized form will be named
as ϕl. The vector gL will be a patch from HR image as in Figure 6. We will show that the CNN
operations solve for the same equation as in eq. 7. Since the DL matrix satisfies the boundedness
constraint on the operator of the equation, the solution will be optimum.

We now modify gradient descent type learning process. Convolution of subpatches with the filter
can be algebraically written as DLfL. Then,

neuron output = Softb(DLfL)
output error = gL − Softb(DLfL)
output MSE = ||gL − Softb(DLfL)||2

Taking the gradient of MSE with respect to fL is tricky. When an element ofDLfL vector lies below
the bias, the result will be zero causing the gradient to be zero. We modify the equation by changing
the bias vector to b′ to enable us to use MSE gradient formulation in Softb′(DT

L(gL−DLfL)). This
is a valid insertion since the addition of gL and multiplication of DTL are linear operators that can be
used to scale elements of original bias vector b. Then,

filter update = fL + Softb′(D
T
L(gL −DLfL))

(change bias) = Softb′′(fL +DT
L(gL −DLfL))

(introduce ϕl) = Softb′′′〈(fL +DT
L(gL −DLfL)), ϕl〉

Then the summation of thresholded decompositions is given as Zb(fL+DT
L(gL−DLfL)) which is

the same as eq. 7 where Zb is defined in eq. 8. Therefore gradient descent type learning of a single
neuron is guarantied to reach an optimal solution using eq. 3.

For the testing phase, a new representation - dictionary duality (RDD) concept is proposed. RDD
concept states that the representation vectors learned during the training phase can be used as atoms
of a dictionary for the testing phase. The cost function that is minimized by CNN training (learning)
yields a representation vector as the neuron filter, for which the dictionary is matrix DL and the
target is HR image patch. During testing (scoring, reconstruction) phase, resulting representation
vectors (filters) from a layer of neurons turn into a dictionary (later named as DR) upon which the

5



Under review as a conference paper at ICLR 2018

reconstruction of HR image is carried out. A similar idea is proposed by Papyan et al. (2016) and
Papyan et al. (2017) stating that each layer output which is a representation for inputs of previous
layer, can also be seen as an input to be represented by the next layer. The authors have argued
that each layer output will contain a structure which can be represented by a convolutional sparse
coding (CDC) layer. A CDC layer is essentially a CNN layer. The difference of our RDD is that
we use the idea that dictionaries and representations swap roles during training and testing (forward
pass). Also during training, inputs to each layer is perceived as a dictionary for the next layer,
contrary to previously proposed perception of Papyan et al. (2016). Following the idea of RDD, the
neuron filter, previously named as fL, can be viewed as an atom of a dictionary consisting of many
other neuron filters. During testing period, the filters are vectorized and concatenated to form the
dictionary matrix DR, the vector gR will be the input image this time and the fR vector will be the
neuron outputs, which will be the representation vector of input image in terms of the dictionary
atoms, i.e. the neuron filters. The mathematical insight for this is again given in eq. 3. Considering
the initial condition for the equation, during testing phase, f0R can be assumed as zero and the f1R is
going to be the representation vector provided with

f1
R = proxb||.||(f

0
R + b.DRf

0
R||) = proxb||.||(D

T
RgR)

= softb(D
T
RgR) = max(DT

RgR − b, 0)
(11)

Again we reach to the conclusion that the ReLU operators provide the representation vector, fR,
for the input image, gR, given the trained filter values collected under DR. We have demonstrated
this feature in experimentation chapter. To provide a visually meaningful example we have used
a training set that contain highly coherent edges with a narrow orientation range. RDD is visually
apparent only for the first layer and for training sets with similar information content. Deeper layers
feed from previous layer’s outputs therefore it is hard to demonstrate for all layers. Also while
training with a more general training set, an observer will not see any patterns in learned filters.
Seeing apparent features would mean memorization which is a degrading property for a neural
network.

To extend the understanding of single neuron to the entire network Theorem 1 will be used from
Papyan et al. (2016).

Theorem 1 Suppose g = y + n where n is noise whose the power of noise is bounded by ε0 and y
is a noiseless signal. Considering a convolutional sparse coding structure where Dl is the dictionary
for lth layer
y = D1f1

f1 = D2f2

.

.
fN−1 = DNfN
Let f̂i be a set of solutions obtained by running a convolutional neural network, or layered soft
thresholding algorithm with biases bi as f̂i = softi{DT

i f̂i−1}wheref̂0 = g. Denote |fmax| and
|fmin| as absolute maximum and minimum entries of representation vectors. Then assuming for
∀1 ≤ i ≤ N
||fi||0 < 1

2 (1 + 1
µ(Di)

)− 1

µ(Di)
εi−1
|fmax|

where µ(Di) is the mutual coherence of the dictionary then

1. The support of the solution f̂i is equal to the support of fi

2. ||fi − f̂i||2 ≤ εi
where εi =

√
||fi||0(εi−1 + µ(Di))(||fi||0 − 1)|fmax|+ bi

The theorem shows that a network consisting of layered neurons could yield the same result as a
layered sparse coding algorithm. Therefore a network of neurons, whose optimality for inverse
problem solutions has been proven individually, is now proven to reach to a solution for sparse
coding. Let us now recall the Landweber equation applied for CNN fL = (DT

LDL + µI)−1DT
LgL

In order to be able to use insights from this equation assume that all neurons in the network are
activated for the inputs. For that un-realistic case, the network filters can be convolved among
themselves to produce an end point filter, fL. This is feasible because when all neurons are activated,
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their linear unit outputs are going to be the convolution results minus a bias that can be added up
at the end, simply enabling the convolution of all filters to be applied in a single instant. A similar
work is done by Mallat (2016) to analyze linearization, projection and separability properties of
sparse representations for deep neural networks.

The vector fL is going to be a normalized projection of gL onto LR image domain. Considering the
rows of DTL matrix, each row is a vectorized subpatch, thus each multiplication result from DTLg is
going to be 〈subpatch, gL〉meaning the projection of HR patch onto an LR subpatch. DTLDL matrix
have elements of inner products of subpatches such as 〈subpatchi, subpatchj〉. The diagonals of
DTLDL matrix, therefore, are normed square of each subpatch. The inverted matrix is going to be
mostly composed of diagonals that are inverted normed square values of subpatches. This means that
the entire equation calculates the projection of HR patch, gL, onto the LR image domain. In other
words, the result, fL, consists of scores which measure how similar gL vector is to each subpatch
from the entire superpatch. If the HR image has content that cannot be recovered by using certain
region of LR image, the reconstructed image is going to be inferior. This is due to the violation of
overcompleteness assumption. Selection of a larger area for the reconstruction of certain HR patches
proves useful because of increased information included into the system that brings the subpatches,
or bases, closer to being overcomplete.

This insight provides a method for determining how deep a network should be for certain features.
For example when the superpatch and corresponding HR region contains only texture, which can be
modeled as gaussian noise, the DL matrix becomes linearly independent, meaning easily invertible.
Consequently when the training set consists solely of textured images, shallow networks should
do as good as deep networks. Then for the testing phase, same filters are used to construct the DL
matrix and the result of the network is obtained by the same equation without normalization (without
the inverse term) this time (since it is already normalized) as in eq. 11, i.e. projecting LR image
onto filters’ domain. Notice that the error is generally not completely orthogonal to the LR images
because of iterative nature of equations. Therefore this is not going to be a meaningless operation.
The representations that are learned during training can only be called complete if the data can be
completely recovered Ranzato et al. (2006). Since the method by which the network recovers HR
details is through inner products, the assertion of RDD seems complete.

In general the training set contains various features with different variances. Therefore the general-
ization of the new concepts that are introduced here are difficult. Training with different structures
enables the constant evolution of neuron filters during training. However to have an activating branch
for each feature either the network should have increased number of filters or the network will not
converge which can be explained by the manifold hypothesis, as representations not covering the
high dimensional input space Bengio et al. (2013).

This is the point where we tie theoretical work into a practical network.

4 PROPOSED NETWORK

The discussions from section 3 revealed that using a single training set for a single network is
complicating the training process. Because we expect the neuron filters to learn predominant patterns
and information from the training set, training a single network either leads to a heavy network with
lots of memory requirement or leads to insufficiently learned filters. We are proposing usage of a
double network SR (DNSR) for two different data. The data separation is done according to gradient
information, dividing data set into low and high coherence sets. For low coherence data which is
mainly texture, we have trained a shallower network as in Figure 8. We have used network depth of
10 layers, as tests with shallower or deeper networks slightly turned out to be in favor of 10 layers.
High coherence data contains edge and corner information. We trained a deeper network of 20 layers
to reconstruct edge information. This is, to the best of our knowledge, the first time proposition of
separation of neural network for the purpose of recovering different contents for SR.

In order to satisfy the assumption made in Theorem 1, which concerns the coherence of dictionary
elements, we have used skip connections between layers to correlate the outcomes. This is only
done in low coherence network due to inherent lack of correlation of dictionary elements which
are input LR images, as our RDD explains. Since output of each layer of neurons is an input
to next layer, acting as a new dictionary, skip layers qualitatively provide the required increase
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in coherence. Usage of skip layers have also been proposed by Mao et al. (2016). The authors
have used skip layers in a very deep network (30 layers) to prevent gradient vanishing problem and
propagating information between two different structures (conv and de-conv layers). In this work
we are using skip layers in a network which is required to be as shallow as practically possible to
increase coherence of layer outputs. We also used cross entropy loss besides the MSE loss for low
coherence network similar to GAN based algorithms Goodfellow (2017).

We have used bicubically upsampled inputs to the network which is the only pre-processing before
neural networks. The aggregation of two separate network are done in a post-processing block
because the training operation uses separate validation data for error gradient calculations. We have
backprojected the results to upsampled input images and then simply added two outputs by giving
more weight to high coherence network.

Figure 2: DNSR Structure

5 EXPERIMENTAL RESULTS

5.1 EXPERIMENTAL SETUP

We have used an Intel i7-4770K CPU Nvidia GeForce GTX 760 GPU computer to run the train-
ing and testing operations. Since we do not readily have a GPU implementation, we have given
individual run times for each image while comparing speed. Training is completed in 16 hours for
high coherence network and 8 hours for low coherence network which is significantly less then the
requirement of state of the art algorithms. The run times are as fast as twice the speed of reference
model Kim et al. (2016) as reported in Table 1

We have used the same 291 image training set from Kim et al. (2016). In similar fashion we have
rotated and scaled the images to create an augmented set. Then we have separated patches into
two subsets according to their coherence values obtained from upsampled LR images. Our tests are
carried out in scaling factor of 3x.

5.2 REPRESENTATION-DICTIONARY DUALITY

We have conducted experiments to test out the RDD proposition which states that the learned filters
for neurons resemble to the highlighted features from training data. We have created two separate
training set which contained high coherence data with edges of orientation 0-20 degrees and 40-60
degrees. The results were showing that the learned filters for the first layer resemble the predominant
features of the training set as in Figure 3 and Figure 4

5.3 SEPARATE NETWORKS

The advantage of separate network training is to be able to recover details that otherwise might be
dropped out during training due to stronger data. Barbara image details can be clearly seen in Figure
7 in appendix, low coherence network output. The PSNR and SSIM value of Barbara image shows
the validity of this example.
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Figure 3: Trained network filters 40-60 degrees oriented data set

Figure 4: Trained network filters 0-20 degrees oriented data set

Not only coherence but also strength and angle information can be used to divide the training
data. Initial experiments with increased number of parallel networks showed that networks with
low strength data, which are almost flat patches, did not converge to a useful state after training.
Also aggregation of networks trained with different orientation edges became cumbersome and such
a network was not feasible for a real time application. We have decided on using two networks
whose data are divided according to coherence which was the only option that we could theoreti-
cally support.

5.4 RESULTS

Numerical comparisons are done only with the referenced algorithm Kim et al. (2016) in Table 1. A
comparison with previous DLB and DLM can be found in the reference paper Kim et al. (2016).

The proposed network is faster compared to Kim et al. (2016) due to lighter networks. Since we have
split the training set depending on its information content (i.e. textures and edges) both networks
require less number of elements to represent the data which yields a faster algorithm.

6 CONCLUSIONS

We have proven that a neuron is able to solve an inverse problem optimally. By introducing RDD
we have shown that CNN layers act as sparse representation solvers. We have proposed a method
that addresses the texture recovery better. Experiments have shown that RDD is valid and proposed
network recovers some texture components better and faster than state of the art algorithms while not
sacrificing performance and speed. In the future we plan to investigate a content-aware aggregation
method which might perform better than simple averaging. We will investigate ways of jointly
training or optimizing two networks and including aggregation step inside a unified network. In
parallel we are investigating a better network structure for texture recovery. Also we are going to
incorporate the initial upsampling step into the network by allowing the network to learn its own
interpolation kernels.
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Table 1: Results
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A VISUAL RESULTS

Figure 5: SRCNN Structure

Figure 6: Visualizing Neuron Filter Training Procedure

Figure 7: Recovery of texture from Barbara image VDSR(left) DNSR(middle) GT(right)
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Detailed visual results are given for different network outputs.

Figure 8: Comparison of different network outputs. From left to right: High and Low Coherence,
Aggregation Result and Ground Truth
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