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ABSTRACT

Deep generative models have been enjoying success in modeling continuous data.
However it remains challenging to capture the representations for discrete struc-
tures with formal grammars and semantics, e.g., computer programs and molec-
ular structures. How to generate both syntactically and semantically correct data
still remains largely an open problem. Inspired by the theory of compiler where
the syntax and semantics check is done via syntax-directed translation (SDT), we
propose a novel syntax-directed variational autoencoder (SD-VAE) by introduc-
ing stochastic lazy attributes. This approach converts the offline SDT check into
on-the-fly generated guidance for constraining the decoder. Comparing to the
state-of-the-art methods, our approach enforces constraints on the output space so
that the output will be not only syntactically valid, but also semantically reason-
able. We evaluate the proposed model with applications in programming language
and molecules, including reconstruction and program/molecule optimization. The
results demonstrate the effectiveness in incorporating syntactic and semantic con-
straints in discrete generative models, which is significantly better than current
state-of-the-art approaches.

1 INTRODUCTION

Recent advances in deep representation learning have resulted in powerful probabilistic generative
models which have demonstrated their ability on modeling continuous data, e.g., time series sig-
nals (Oord et al., 2016; Dai et al., 2017) and images (Radford et al., 2015; Karras et al., 2017).
Despite the success in these domains, it is still challenging to correctly generate discrete structured
data, such as graphs, molecules and computer programs. Since many of the structures have syntax
and semantic formalisms, the generative models without explicit constraints often produces invalid
ones.

Conceptually an approach in generative model for structured data can be divided in two parts, one
being the formalization of the structure generation and the other one being a (usually deep) gen-
erative model producing parameters for stochastic process in that formalization. Often the hope is
that with the help of training samples and capacity of deep models, the loss function will prefer the
valid patterns and encourage the mass of the distribution of the generative model towards the desired
region automatically.

Arguably the simplest structured data are sequences, whose generation with deep model has been
well studied under the seq2seq (Sutskever et al., 2014) framework that models the generation of
sequence as a series of token choices parameterized by recurrent neural networks (RNNs). Its
widespread success has encourage several pioneer works that consider the conversion of more
complex structure data into sequences and apply sequence models to the represented sequences.
Gómez-Bombarelli et al. (2016) (CVAE) is a representative work of such paradigm for the chemical
molecule generation, using the SMILES line notation (Weininger, 1988) for representing molecules.

*Both authors contributed equally to the paper.
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Figure 1: Illustration on left shows the hierarchy of the structured data decoding space w.r.t different
works and theoretical classification of corresponding strings from formal language theory. SD-VAE,
our proposed model with attribute grammar reshapes the output space tighter to the meaningful target
space than existing works. On the right we show a case where CFG is unable to capture the semantic
constraints, since it successfully parses an invalid program.

However, because of the lack of formalization of syntax and semantics serving as the restriction of
the particular structured data, underfitted general-purpose string generative models will often lead
to invalid outputs. Therefore, to obtain a reasonable model via such training procedure, we need to
prepare large amount of valid combinations of the structures, which is time consuming or even not
practical in domains like drug discovery.

To tackle such a challenge, one approach is to incorporate the structure restrictions explicitly into
the generative model. For the considerations of computational cost and model generality, context-
free grammars (CFG) have been taken into account in the decoder parametrization. For instance, in
molecule generation tasks, Kusner et al. (2017) proposes a grammar variational autoencoder (GVAE)
in which the CFG of SMILES notation is incorporated into the decoder. The model generates the
parse trees directly in a top-down direction, by repeatedly expanding any nonterminal with its pro-
duction rules. Although the CFG provides a mechanism for generating syntactic valid objects, it is
still incapable to regularize the model for generating semantic valid objects (Kusner et al., 2017).
For example, in molecule generation, the semantic of the SMILES languages requires that the rings
generated must be closed; in program generation, the referenced variable should be defined in ad-
vance and each variable can only be defined exactly once in each local context (illustrated in Fig 1b).
All the examples require cross-serial like dependencies which are not enforceable by CFG, implying
that more constraints beyond CFG are needed to achieve semantic valid production in VAE.

In the theory of compiler, attribute grammars, or syntax-directed definition has been proposed for
attaching semantics to a parse tree generated by context-free grammar. Thus one straightforward but
not practical application of attribute grammars is, after generating a syntactic valid molecule candi-
date, to conduct offline semantic checking. This process needs to be repeated until a semantically
valid one is discovered, which is at best computationally inefficient and at worst infeasible, due to
extremely low rate of passing checking. As a remedy, we propose the syntax-direct variational au-
toencoder (SD-VAE), in which a semantic restriction component is advanced to the stage of syntax
tree generator. This allows the generator with both syntactic and semantic validation. The proposed
syntax-direct generative mechanism in the decoder further constraints the output space to ensure the
semantic correctness in the tree generation process. The relationships between our proposed model
and previous models can be characterized in Figure 1a.

Our method brings theory of formal language into stochastic generative model. The contribution of
our paper can be summarized as follows:

• Syntax and semantics enforcement: We propose a new formalization of semantics that systemati-
cally converts the offline semantic check into online guidance for stochastic generation using the
proposed stochastic lazy attribute. This allows us effectively address both syntax and semantic
constraints.

• Efficient learning and inference: Our approach has computational costO(n) where n is the length
of structured data. This is the same as existing methods like CVAE and GVAE which do not
enforce semantics in generation. During inference, the SD-VAE runs with semantic guiding on-
the-fly, while the existing alternatives generate many candidates for semantic checking.
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• Strong empirical performance: We demonstrate the effectiveness of the SD-VAE through ap-
plications in two domains, namely (1) the subset of Python programs and (2) molecules. Our
approach consistently and significantly improves the results in evaluations including generation,
reconstruction and optimization.

2 BACKGROUND

Before introducing our model and the learning algorithm, we first provide some background knowl-
edge which is important for understanding the proposed method.

2.1 VARIATIONAL AUTOENCODER

The variational autoencoder (Kingma & Welling, 2013; Rezende et al., 2014) provides a framework
for learning the probabilistic generative model as well as its posterior, respectively known as decoder
and encoder. We denote the observation as x, which is the structured data in our case, and the latent
variable as z. The decoder is modeling the probabilistic generative processes of x given the con-
tinuous representation z through the likelihood pθ(x|z) and the prior over the latent variables p(z),
where θ denotes the parameters. The encoder approximates the posterior pθ(z|x) ∝ pθ(x|z)p(z)
with a model qψ(z|x) parametrized by ψ. The decoder and encoder are learned simultaneously by
maximizing the evidence lower bound (ELBO) of the marginal likelihood, i.e.,

L (X; θ, ψ) :=
∑
x∈X

Eq(z|x) [log pθ(x|z)p(z)− log qψ(z|x)] ≤
∑
x∈X

log

∫
pθ(x|z)p(z)dz, (1)

where X denotes the training datasets containing the observations.

2.2 CONTEXT FREE GRAMMAR AND ATTRIBUTE GRAMMAR

Context free grammar A context free grammar (CFG) is defined as G = 〈V,Σ,R, s〉, where
symbols are divided into V , the set of non-terminal symbols, Σ, the set of terminal symbols and
s ∈ V , the start symbol. Here R is the set of production rules. Each production rule r ∈ R is
denoted as r = α → β for α ∈ V is a nonterminal symbol, and β = u1u2 . . . u|β| ∈ (V

⋃
Σ)
∗ is a

sequence of terminal and/or nonterminal symbols.

Attribute grammar To enrich the CFG with “semantic meaning”, Knuth (1968) formalizes at-
tribute grammar that introduces attributes and rules to CFG. An attribute is an attachment to the
corresponding nonterminal symbol in CFG, written in the format 〈v〉.a for v ∈ V . There can be
two types of attributes assigned to non-terminals in G: the inherited attributes and the synthesized
attributes. An inherited attribute depends on the attributes from its parent and siblings, while a syn-
thesized attribute is computed based on the attributes of its children. Formally, for a production
u0 → u1u2 . . . u|β|, we denote I(ui) and S(ui) be the sets of inherited and synthesized attributes of
ui for i ∈ {0, . . . , |β|}, respectively.

2.2.1 A MOTIVATIONAL EXAMPLE

We here exemplify how the above defined attribute grammar enriches CFG with non-context-free
semantics. We use the following toy grammar, a subset of SMILES that generates either a chain or
a cycle with three carbons:

Production Semantic Rule

〈s〉 → 〈atom〉1 ‘C’ 〈atom〉2 〈s〉.matched← 〈atom〉1.set
⋂
〈atom〉2.set,

〈s〉.ok← 〈atom〉1.set = 〈s〉.matched = 〈atom〉2.set
〈atom〉 → ‘C’ | ‘C’ 〈bond〉 〈digit〉 〈atom〉.set← ∅ | concat(〈bond〉.val, 〈digit〉.val)
〈bond〉 → ‘-’ | ‘=’ | ‘#’ 〈bond〉.val← ‘-’ | ‘=’ | ‘#’

〈digit〉 → ‘1’ | ‘2’ | ... | ‘9’ 〈digit〉.val← ‘1’ | ‘2’ ... | ‘9’

where we show the production rules in CFG with → on the left, and the calculation of attributes
in attribute grammar with ← on the left. Here we leverage the attribute grammar to check (with
attribute matched) whether the ringbonds come in pairs: a ringbond generated at 〈atom〉1 should
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Figure 2: Bottom-up syntax and semantics check in compilers.

match the bond type and bond index that generated at 〈atom〉2, also the semantic constraint expressed
by 〈s〉.ok requires that there is no difference between the set attribute of 〈atom〉1 and 〈atom〉2.
Such constraint in SMILES is known as cross-serial dependencies (CSD) (Bresnan et al., 1982)
which is non-context-free (Shieber, 1985). See Appendix A.3 for more explanations. Figure 2
illustrates the process of performing syntax and semantics check in compilers. Here all the attributes
are synthetic, i.e., calculated in a bottom-up direction.

So generally, in the semantic correctness checking procedure, one need to perform bottom-up pro-
cedures for calculating the attributes after the parse tree is generated. However, in the top-down
structure generating process, the parse tree is not ready for semantic checking, since the synthesized
attributes of each node require information from its children nodes, which are not generated yet. Due
to such dilemma, it is nontrivial to use the attribute grammar to guide the top-down generation of the
tree-structured data. One straightforward way is using acceptance-rejection sampling scheme, i.e.,
using the decoder of CVAE or GVAE as a proposal and the semantic checking as the threshold. It
is obvious that since the decoder does not include semantic guidance, the proposal distribution may
raise semantically invalid candidate frequently, therefore, wasting the computational cost in vain.

3 SYNTAX-DIRECTED VARIATIONAL AUTOENCODER

As described in Section 2.2.1, directly using attribute grammar in an offline fashion (i.e., after the
generation process finishes) is not efficient to address both syntax and semantics constraints. In
this section we describe how to bring forward the attribute grammar online and incorporate it into
VAE, such that our VAE addresses both syntactic and semantic constraints. We name our proposed
method Syntax-Directed Variational Autoencoder (SD-VAE).

3.1 STOCHASTIC SYNTAX-DIRECTED DECODER

By scrutinizing the tree generation, the major difficulty in incorporating the attributes grammar into
the processes is the appearance of the synthesized attributes. For instance, when expanding the
start symbol 〈s〉, none of its children is generated yet. Thus their attributes are also absent at this
time, making the 〈s〉.matched unable to be computed. To enable the on-the-fly computation of
the synthesized attributes for semantic validation during tree generation, besides the two types of
attributes, we introduce the stochastic lazy attributes to enlarge the existing attribute grammar. Such
stochasticity transforms the corresponding synthesized attribute into inherited constraints in gener-
ative procedure; and lazy linking mechanism sets the actual value of the attribute, once all the other
dependent attributes are ready. We demonstrate how the decoder with stochastic lazy attributes will
generate semantic valid output through the same pedagogical example as in Section 2.2.1. Figure 3
visually demonstrates this process.

The tree generation procedure is indeed sampling from the decoder pθ(x|z), which can be decom-
posed into several steps that elaborated below:
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Figure 3: On-the-fly generative process of SD-VAE in order from (a) to (g). Steps: (a) stochastic
generation of attribute; (b)(f)(g) constrained sampling with inherited attributes; (c) unconstrained
sampling; (d) synthesized attribute calculation on generated subtree. (e) lazy evaluation of the at-
tribute at root node.

Algorithm 1 Decoding with Stochastic Syntax-Directed Decoder
1: Global variables: CFG: G = (V,Σ,R, s), decoder network parameters θ
2: procedure GENTREE(node, T )
3: Sample stochastic lazy attribute node.sa ∼ Bθ(sa|node, T ) . when introduced on node
4: Sample production rule r = (α→ β) ∈ R ∼ pθ(r|ctx, node, T ). . The conditioned

variables encodes the semantic constraints in tree generation.
5: ctx← RNN(ctx, r) . update context vector
6: for i = 1, . . . , |β| do
7: vi ← Node(ui, node, {vj}i−1j=1) . node creation with parent and siblings’ attributes
8: GenTree(vi, T ) . recursive generation of children nodes
9: Update synthetic and stochastic attributes of node with vi . Lazy linking

10: end for
11: end procedure

i) stochastic predetermination: in Figure 3(a), we start from the node 〈s〉 with the synthe-
sized attributes 〈s〉.matched determining the index and bond type of the ringbond that will be
matched at node 〈s〉. Since we know nothing about the children nodes right now, the only thing
we can do is to ‘guess’ a value. That is to say, we associate a stochastic attribute 〈s〉.sa ∈
{0, 1}Ca ∼

∏Ca

i=1 B(sai|z) as a predetermination for the sake of the absence of synthesized at-
tribute 〈s〉.matched, where B(·) is the Bernoulli distribution. Here Ca is the maximum cardinality
possible 1 for the corresponding attribute a. In above example, the 0 indicates no ringbond and 1
indicates one ringbond at both 〈atom〉1 and 〈atom〉2, respectively.

ii) constraints as inherited attributes: we pass the 〈s〉.sa as inherited constraints to the children
of node 〈s〉, i.e., 〈atom〉1 and 〈atom〉2 to ensure the semantic validation in the tree generation. For
example, Figure 3(b) ‘sa=1’ is passed down to 〈atom〉1.

iii) sampling under constraints: without loss of generality, we assume 〈atom〉1 is generated before
〈atom〉2. We then sample the rules from pθ(r|〈atom〉1, 〈s〉, z) for expanding 〈atom〉1, and so on
and so forth to generate the subtree recursively. Since we carefully designed sampling distribution
that is conditioning on the stochastic property, the inherited constraints will be eventually satisfied.
In the example, due to the 〈s〉.sa = ‘1’, when expanding 〈atom〉1, the sampling distribution
pθ(r|〈atom〉1, 〈s〉, z) only has positive mass on rule 〈atom〉 → ‘C’ 〈bond〉 〈digit〉.
iv) lazy linking: once we complete the generation of the subtree rooted at 〈atom〉1, the synthesized
attribute 〈atom〉1.set is now available. According to the semantic rule for 〈s〉.matched, we can

1Note that setting threshold for Ca assumes a mildly context sensitive grammar (e.g., limited CSD).
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instantiate 〈s〉.matched = 〈atom〉1.set = {‘-1’}. This linking is shown in Figure 3(d)(e).
When expanding 〈atom〉2, the 〈s〉.matched will be passed down as inherited attribute to regulate
the generation of 〈atom〉2, as is demonstrated in Figure 3(f)(g).

In summary, the general syntax tree T ∈ L(G) can be constructed step by step, within the languages
L(G) covered by grammarG. In the beginning, T (0) = root, where root.symbol = swhich contains
only the start symbol s. At step t, we will choose an nonterminal node in the frontier2 of partially
generated tree T (t) to expand. The generative process in each step t = 0, 1, . . . can be described as:

1. Pick node v(t) ∈ Fr(T (t)) where its attributes needed are either satisfied, or are stochastic
attributes that should be sampled first according to Bernoulli distribution B(·|v(t), T (t));

2. Sample rule r(t) = α(t) → β(t) ∈ R according to distribution pθ(r(t)|v(t), T (t)), where
v(t).symbol = α(t), and β(t) = u

(t)
1 u

(t)
2 . . . u

(t)

|β(t)|, i.e., expand the nonterminal with pro-
duction rules defined in CFG.

3. T (t+1) = T (t)
⋃
{(v(t), u(t)i )}|β

(t)|
i=1 , i.e., grow the tree by attaching β(t) to v(t). Now the

node v(t) has children represented by symbols in β(t).
The above process continues until all the nodes in the frontier of T (T ) are all terminals after T steps.
Then, we obtain the algorithm 1 for sampling both syntactic and semantic valid structures.

In fact, in the model training phase, we need to compute the likelihood pθ(x|z) given x and z. The
probability computation procedure is similar to the sampling procedure in the sense that both of
them requires tree generation. The only difference is that in the likelihood computation procedure,
the tree structure, i.e., the computing path, is fixed since x is given; While in the sampling procedure,
it is sampled following the learned model. Specifically, the generative likelihood can be written as:

pθ(x|z) =

T∏
t=0

pθ(rt|ctx(t), node(t), T (t))Bθ(sat|node(t), T (t)) (2)

where ctx(0) = z and ctx(t) = RNN(rt, ctx
(t−1)). Here RNN can be commonly used LSTM, etc..

3.2 STRUCTURE-BASED ENCODER

As we introduced in section 2, the encoder, qψ(z|x) approximates the posterior of the latent variable
through the model with some parametrized function with parameters ψ. Since the structure in the
observation x plays an important role, the encoder parametrization should take care of such infor-
mation. The recently developed deep learning models (Duvenaud et al., 2015; Dai et al., 2016; Lei
et al., 2017) provide powerful candidates as encoder. However, to demonstrate the benefits of the
proposed syntax-directed decoder in incorporating the attribute grammar for semantic restrictions,
we will exploit the same encoder in Kusner et al. (2017) for a fair comparison later.

We provide a brief introduction to the particular encoder model used in Kusner et al. (2017) for a
self-contained purpose. Given a program or a SMILES sequence, we obtain the corresponding parse
tree using CFG and decompose it into a sequence of productions through a pre-order traversal on the
tree. Then, we convert these productions into one-hot indicator vectors, in which each dimension
corresponds to one production in the grammar. We will use a deep convolutional neural networks
which maps this sequence of one-hot vectors to a continuous vector as the encoder.

3.3 MODEL LEARNING

Our learning goal is to maximize the evidence lower bound in Eq 1. Given the encoder, we can then
map the structure input into latent space z. The variational posterior q(z|x) is parameterized with
Gaussian distribution, where the mean and variance are the output of corresponding neural networks.
The prior of latent variable p(z) = N (0, I). Since both the prior and posterior are Gaussian, we use
the closed form of KL-divergence that was proposed in Kingma & Welling (2013). In the decoding
stage, our goal is to maximize pθ(x|z). Using the Equation (2), we can compute the corresponding
conditional likelihood. During training, the syntax and semantics constraints required in Algorithm 1

2Here frontier is the set of all nonterminal leaves in current tree.
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can be precomputed. In practice, we observe no significant time penalty measured in wall clock time
compared to previous works.

4 RELATED WORK

Generative models with discrete structured data have raised increasing interests among researchers
in different domains. The classical sequence to sequence model (Sutskever et al., 2014) and its varia-
tions have also been applied to molecules (Gómez-Bombarelli et al., 2016). Since the model is quite
flexible, it is hard to generate valid structures with limited data, though Dave Janz (2018) shows
that an extra validator model could be helpful to some degree. Techniques including data augmen-
tation (Bjerrum, 2017), active learning (Janz et al., 2017) and reinforcement learning (Guimaraes
et al., 2017) also been proposed to tackle this issue. However, according to the empirical evaluations
from Benhenda (2017), the validity is still not satisfactory. Even when the validity is enforced, the
models tend to overfit to simple structures while neglect the diversity.

Since the structured data often comes with formal grammars, it is very helpful to generate its
parse tree derived from CFG, instead of generating sequence of tokens directly. The Grammar
VAE(Kusner et al., 2017) introduced the CFG constrained decoder for simple math expression
and SMILES string generation. The rules are used to mask out invalid syntax such that the gen-
erated sequence is always from the language defined by its CFG. Parisotto et al. (2016) uses a
RecursiveReverse-Recursive Neural Network (R3NN) to capture global context information while
expanding with CFG production rules. Although these works follow the syntax via CFG, the context
sensitive information can only be captured using variants of sequence/tree RNNs (Alvarez-Melis &
Jaakkola, 2016; Dong & Lapata, 2016; Zhang et al., 2015), which may not be time and sample
efficient.

In our work, we capture the semantics with proposed stochastic lazy attributes when generating
structured outputs. By addressing the most common semantics to harness the deep networks, it can
greatly reshape the output domain of decoder (Hu et al., 2016). As a result, we can also get a better
generative model for discrete structures.

5 EXPERIMENTS

Code is available at https://github.com/Hanjun-Dai/sdvae.

We show the effectiveness of our proposed SD-VAE with applications in two domains, namely
programs and molecules. We compare our method with CVAE (Gómez-Bombarelli et al., 2016) and
GVAE (Kusner et al., 2017). CVAE only takes character sequence information, while GVAE utilizes
the context-free grammar. To make a fair comparison, we closely follow the experimental protocols
that were set up in Kusner et al. (2017). The training details are included in Appendix B.

Our method gets significantly better results than previous works. It yields better reconstruction
accuracy and prior validity by large margins, while also having comparative diversity of generated
structures. More importantly, the SD-VAE finds better solution in program and molecule regression
and optimization tasks. This demonstrates that the continuous latent space obtained by SD-VAE is
also smoother and more discriminative.

5.1 SETTINGS

Here we first describe our datasets in detail. The programs are represented as a list of statements.
Each statement is an atomic arithmetic operation on variables (labeled as v0, v1, · · · , v9) and/or
immediate numbers (1, 2, . . . , 9). Some examples are listed below:

v3=sin(v0);v8=exp(2);v9=v3-v8;v5=v0*v9;return:v5
v2=exp(v0);v7=v2*v0;v9=cos(v7);v8=cos(v9);return:v8

Here v0 is always the input, and the variable specified by return (respectively v5 and v8 in the
examples) is the output, therefore it actually represent univariate functions f : R → R. Note that a
correct program should, besides the context-free grammar specified in Appendix A.1, also respect
the semantic constraints. For example, a variable should be defined before being referenced. We
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randomly generate 130, 000 programs, where each consisting of 1 to 5 valid statements. Here the
maximum number of decoding steps T = 80. We hold 2000 programs out for testing and the rest
for training and validation.

For molecule experiments, we use the same dataset as in Kusner et al. (2017). It contains 250, 000
SMILES strings, which are extracted from the ZINC database (Gómez-Bombarelli et al., 2016). We
use the same split as Kusner et al. (2017), where 5000 SMILES strings are held out for testing.
Regarding the syntax constraints, we use the grammar specified in Appendix A.2, which is also the
same as Kusner et al. (2017). Here the maximum number of decoding steps T = 278.

For our SD-VAE, we address some of the most common semantics:

Program semantics We address the following: a) variables should be defined before use, b) pro-
gram must return a variable, c) number of statements should be less than 10.

Molecule semantics The SMILES semantics we addressed includes: a) ringbonds should satisfy
cross-serial dependencies, b) explicit valence of atoms should not go beyond permitted. For more
details about the semantics of SMILES language, please refer to Appendix A.3.

5.2 RECONSTRUCTION ACCURACY AND PRIOR VALIDITY

Program Zinc SMILES
Methods Reconstruction %* Valid Prior % Reconstruction % Valid Prior %
SD-VAE 96.46 (99.90,99.12,90.37) 100.00 76.2 43.5
GVAE 71.83 (96.30, 77.28, 41.90) 2.96 53.7 7.2
CVAE 13.79 (40.46, 0.87, 0.02) 0.02 44.6 0.7

Table 1: Reconstructing Accuracy and Prior Validity estimated using Monte Carlo method. Our
proposed method (SD-VAE) performance significantly better than existing works.
* We also report the reconstruction % grouped by number of statements (3, 4, 5) in parentheses.

We use the held-out dataset to measure the reconstruction accuracy of VAEs. For prior validity, we
first sample the latent representations from prior distribution, and then evaluate how often the model
can decode into a valid structure. Since both encoding and decoding are stochastic in VAEs, we
follow the Monte Carlo method used in Kusner et al. (2017) to do estimation:

a) reconstruction: for each of the structured data in the held-out dataset, we encode it 10 times and
decoded (for each encoded latent space representation) 25 times, and report the portion of decoded
structures that are the same as the input ones; b) validity of prior: we sample 1000 latent represen-
tations z ∼ N (O, I). For each of them we decode 100 times, and calculate the portion of 100,000
decoded results that corresponds to valid Program or SMILES sequences.

Program We show in the left part of Table 1 that our model has near perfect reconstruction rate,
and most importantly, a perfect valid decoding program from prior. This huge improvement is due
to our model that utilizes the full semantics that previous work ignores, thus in theory guarantees
perfect valid prior and in practice enables high reconstruction success rate. For a fair comparison,
we run and tune the baselines in 10% of training data and report the best result. In the same place
we also report the reconstruction successful rate grouped by number of statements. It is shown that
our model keeps high rate even with the size of program growing.

SMILES Since the settings are exactly the same, we include CVAE and GVAE results directly
from Kusner et al. (2017). We show in the right part of Table 1 that our model produces a much
higher rate of successful reconstruction and ratio of valid prior. Figure 8 in Appendix C.2 also
demonstrates some decoded molecules from our method. Note that the results we reported have not
included the semantics specific to aromaticity into account. If we use an alternative kekulized form
of SMILES to train the model, then the valid portion of prior can go up to 97.3%.

5.3 BAYESIAN OPTIMIZATION

One important application of VAEs is to enable the optimization (e.g., find new structures with better
properties) of discrete structures in continuous latent space, and then use decoder to obtain the actual
structures. Following the protocol used in Kusner et al. (2017), we use Bayesian Optimization (BO)
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to search the programs and molecules with desired properties in latent space. Details about BO
settings and parameters can be found in Appendix C.1.

Ground Truth

SD-VAE

GVAE

CVAE

-4 -2 2 4

-3

-2

-1

1

2

3
Method Program Score

v7=5+v0;v5=cos(v7);return:v5 0.1742
CVAE v2=1-v0;v9=cos(v2);return:v9 0.2889

v5=4+v0;v3=cos(v5);return:v3 0.3043

v3=1/5;v9=-1;v1=v0*v3;return:v3 0.5454
GVAE v2=1/5;v9=-1;v7=v2+v2;return:v7 0.5497

v2=1/5;v5=-v2;v9=v5*v5;return:v9 0.5749

v6=sin(v0);v5=exp(3);v4=v0*v6;return:v6 0.1206
SD-VAE v5=6+v0;v6=sin(v5);return:v6 0.1436

v6=sin(v0);v4=sin(v6);v5=cos(v4);v9=2/v4;return:v4 0.1456

Ground Truth v1=sin(v0);v2=exp(v1);v3=v2-1;return:v3 —

Figure 4: On the left are best programs found by each method using Bayesian Optimization. On
the right are top 3 closest programs found by each method along with the distance to ground truth
(lower distance is better). Both our SD-VAE and CVAE can find similar curves, but our method
aligns better with the ground truth. In contrast the GVAE fails this task by reporting trivial programs
representing linear functions.
Finding program In this application the models are asked to find the program which is most
similar to the ground truth program. Here the distance is measured by log(1 + MSE), where the
MSE (Mean Square Error) calculates the discrepancy of program outputs, given the 1000 different
inputs v0 sampled evenly in [−5, 5]. In Figure 4 we show that our method finds the best program to
the ground truth one compared to CVAE and GVAE.

Molecules Here we optimize the drug properties of molecules. In this problem, we ask the model
to optimize for octanol-water partition coefficients (a.k.a log P), an important measurement of drug-
likeness of a given molecule. As Gómez-Bombarelli et al. (2016) suggests, for drug-likeness assess-
ment log P is penalized by other properties including synthetic accessibility score (Ertl & Schuf-
fenhauer, 2009). In Figure 5 we show the the top-3 best molecules found by each method, where
our method found molecules with better scores than previous works. Also one can see the molecule
structures found by SD-VAE are richer than baselines, where the latter ones mostly consist of chain
structure.

CVAE GVAE SDVAE

1st 2nd 3rd 1st 2nd 3rd 1st 2nd 3rd

1.98 1.42 1.19 2.94 2.89 2.80 4.04 3.50 2.96

Figure 5: Best top-3 molecules and the corresponding scores found by each method using Bayesian
Optimization.

5.4 PREDICTIVE PERFORMANCE OF LATENT REPRESENTATION

Program Zinc
Method LL RMSE LL RMSE
CVAE -4.943 ± 0.058 3.757 ± 0.026 -1.812 ± 0.004 1.504 ± 0.006
GVAE -4.140 ± 0.038 3.378 ± 0.020 -1.739 ± 0.004 1.404 ± 0.006

SD-VAE -3.754 ± 0.045 3.185 ± 0.025 -1.697 ± 0.015 1.366 ± 0.023

Table 2: Predictive performance using encoded mean latent vector. Test LL and RMSE are reported.

The VAEs also provide a way to do unsupervised feature representation learning Gómez-Bombarelli
et al. (2016). In this section, we seek to to know how well our latent space predicts the properties of
programs and molecules. After the training of VAEs, we dump the latent vectors of each structured
data, and train the sparse Gaussian Process with the target value (namely the error for programs and
the drug-likeness for molecules) for regression. We test the performance in the held-out test dataset.
In Table 2, we report the result in Log Likelihood (LL) and Regression Mean Square Error (RMSE),
which show that our SD-VAE always produces latent space that are more discriminative than both
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CVAE and GVAE baselines. This also shows that, with a properly designed decoder, the quality of
encoder will also be improved via end-to-end training.

5.5 DIVERSITY OF GENERATED MOLECULES

Similarity Metric MorganFp MACCS PairFp TopologicalFp

GVAE 0.92 ± 0.10 0.83 ± 0.15 0.94 ± 0.10 0.71 ± 0.14
SD-VAE 0.92 ± 0.09 0.83 ± 0.13 0.95 ± 0.08 0.75 ± 0.14

Table 3: Diversity as statistics from pair-wise distances measured as 1 − s, where s is one of the
similarity metrics. So higher values indicate better diversity. We show mean±stddev of

(
100
2

)
pairs

among 100 molecules. Note that we report results from GVAE and our SD-VAE, because CVAE
has very low valid priors, thus completely only failing this evaluation protocol.

Inspired by Benhenda (2017), here we measure the diversity of generated molecules as an assess-
ment of the methods. The intuition is that a good generative model should be able to generate diverse
data and avoid mode collapse in the learned space. We conduct this experiment in the SMILES
dataset. We first sample 100 points from the prior distribution. For each point, we associate it
with a molecule, which is the most frequent occurring valid SMILES decoded (we use 50 decoding
attempts since the decoding is stochastic). We then, with one of the several molecular similarity
metrics, compute the pairwise similarity and report the mean and standard deviation in Table 3. We
see both methods do not have the mode collapse problem, while producing similar diversity scores.
It indicates that although our method has more restricted decoding space than baselines, the diver-
sity is not sacrificed. This is because we never rule-out the valid molecules. And a more compact
decoding space leads to much higher probability in obtaining valid molecules.

5.6 VISUALIZING THE LATENT SPACE

We seek to visualize the latent space as an assessment of how well our generative model is able to
produces a coherent and smooth space of program and molecules.

Program Following Bowman et al. (2016), we visualize the latent space of program by interpola-
tion between two programs. More specifically, given two programs which are encoded to pa and pb
respectively in the latent space, we pick 9 evenly interpolated points between them. For each point,
we pick the corresponding most decoded structure. In Table 4 we compare our results with previ-
ous works. Our SD-VAE can pass though points in the latent space that can be decoded into valid
programs without error and with visually more smooth interpolation than previous works. Mean-
while, CVAE makes both syntactic and semantic errors, and GVAE produces only semantic errors
(reference of undefined variables), but still in a considerable amount.

CVAE GVAE SD-VAE
v6=cos(7);v8=exp(9);v2=v8*v0;v9=v2/v6;return:v9 v6=cos(7);v8=exp(9);v2=v8*v0;v9=v2/v6;return:v9 v6=cos(7);v8=exp(9);v2=v8*v0;v9=v2/v6;return:v9
v8=cos(3);v7=exp(7);v5=v7*v0;v9=v9/v6;return:v9 v3=cos(8);v6=exp(9);v6=v8*v0;v9=v2/v6;return:v9 v6=cos(7);v8=exp(9);v2=v8*v0;v9=v2/v6;return:v9
v4=cos(3);v8=exp(3);v2=v2*v0;v9=v8/v6;return:v9 v3=cos(8);v6=2/8;v6=v5*v9;v5=v8v5;return:v5 v6=cos(7);v8=exp(9);v3=v8*v0;v9=v3/v8;return:v9
v6=cos(3);v8=sin(3);v5=v4*1;v5=v3/v4;return:v9 v3=cos(6);v6=2/9;v6=v5+v5;v5=v1+v6;return:v5 v6=cos(7);v8=v6/9;v1=7*v0;v7=v6/v1;return:v7
v9=cos(1);v7=sin(1);v3=v1*5;v9=v9+v4;return:v9 v5=cos(6);v1=2/9;v6=v3+v2;v2=v5-v6;return:v2 v6=cos(7);v8=v6/9;v1=7*v6;v7=v6+v1;return:v7
v6=cos(1);v3=sin(10;;v9=8*v8;v7=v2/v2;return:v9 v5=sin(5);v3=v1/9;v6=v3-v3;v2=v7-v6;return:v2 v6=cos(7);v8=v6/9;v1=7*v8;v7=v6+v8;return:v7
v5=exp(v0;v4=sin(v0);v3=8*v1;v7=v3/v2;return:v9 v1=sin(1);v5=v5/2;v6=v2-v5;v2=v0-v6;return:v2 v6=exp(v0);v8=v6/2;v9=6*v8;v7=v9+v9;return:v7
v5=exp(v0);v1=sin(1);v5=2*v3;v7=v3+v8;return:v7 v1=sin(1);v7=v8/2;v8=v7/v9;v4=v4-v8;return:v4 v6=exp(v0);v8=v6-4;v9=6*v8;v7=v9+v8;return:v7
v4=exp(v0);v1=v7-8;v9=8*v3;v7=v3+v8;return:v7 v8=sin(1);v2=v8/2;v8=v0/v9;v4=v4-v8;return:v4 v6=exp(v0);v8=v6-4;v9=6*v6;v7=v9+v8;return:v7
v4=exp(v0);v9=v6-8;v6=2*v5;v7=v3+v8;return:v7 v6=exp(v0);v2=v6-4;v8=v0*v1;v7=v4+v8;return:v7 v6=exp(v0);v8=v6-4;v4=4*v6;v7=v4+v8;return:v7
v6=exp(v0);v8=v6-4;v4=4*v8;v7=v4+v8;return:v7 v6=exp(v0);v8=v6-4;v4=4*v8;v7=v4+v8;return:v7 v6=exp(v0);v8=v6-4;v4=4*v8;v7=v4+v8;return:v7

Table 4: Interpolation between two valid programs (the top and bottom ones in brown) where each
program occupies a row. Programs in red are with syntax errors. Statements in blue are with se-
mantic errors such as referring to unknown variables. Rows without coloring are correct programs.
Observe that when a model passes points in its latent space, our proposed SD-VAE enforces both
syntactic and semantic constraints while making visually more smooth interpolation. In contrast,
CVAE makes both kinds of mistakes, GVAE avoids syntactic errors but still produces semantic
errors, and both methods produce subjectively less smooth interpolations.

SMILES For molecules, we visualize the latent space in 2 dimensions. We first embed a random
molecule from the dataset into latent space. Then we randomly generate 2 orthogonal unit vectors
A. To get the latent representation of neighborhood, we interpolate the 2-D grid and project back
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to latent space with pseudo inverse of A. Finally we show decoded molecules. In Figure 6, we
present two of such grid visualizations. Subjectively compared with figures in Kusner et al. (2017),
our visualization is characterized by having smooth differences between neighboring molecules, and
more complicated decoded structures.
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Figure 6: Latent Space visualization. We start from the center molecule and decode the neighbor-
hood latent vectors (neighborhood in projected 2D space).

6 CONCLUSION

In this paper we propose a new method to tackle the challenge of addressing both syntax and seman-
tic constraints in generative model for structured data. The newly proposed stochastic lazy attribute
presents a the systematical conversion from offline syntax and semantic check to online guidance
for stochastic generation, and empirically shows consistent and significant improvement over previ-
ous models, while requiring similar computational cost as previous model. In the future work, we
would like to explore the refinement of formalization on a more theoretical ground, and investigate
the application of such formalization on a more diverse set of data modality.
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Appendix
A GRAMMAR

A.1 GRAMMAR FOR PROGRAM SYNTAX

The syntax grammar for program is a generative contest free grammar starting with 〈program〉.

〈program〉 → 〈stat list〉
〈stat list〉 → 〈stat〉 ‘;’ 〈stat list〉 | 〈stat〉
〈stat〉 → 〈assign〉 | 〈return〉
〈assign〉 → 〈lhs〉 ‘=’ 〈rhs〉
〈return〉 → ‘return:’ 〈lhs〉
〈lhs〉 → 〈var〉
〈var〉 → ‘v’ 〈var id〉
〈digit〉 → ‘1’ | ‘2’ | ‘3’ | ‘4’ | ‘5’ | ‘6’ | ‘7’ | ‘8’ | ‘9’

〈rhs〉 → 〈expr〉
〈expr〉 → 〈unary expr〉 | 〈binary expr〉
〈unary expr〉 → 〈unary op〉 〈operand〉 | 〈unary func〉 ‘(’ 〈operand〉 ‘)’

〈binary expr〉 → 〈operand〉 〈binary op〉 〈operand〉
〈unary op〉 → ‘+’ | ‘-’

〈unary func〉 → ‘sin’ | ‘cos’ | ‘exp’

〈binary op〉 → ‘+’ | ‘-’ | ‘*’ | ‘/’

〈operand〉 → 〈var〉 | 〈immediate number〉
〈immediate number〉 → 〈digit〉 ‘.’ 〈digit〉
〈digit〉 → ‘0’ | ‘1’ | ‘2’ | ‘3’ | ‘4’ | ‘5’ | ‘6’ | ‘7’ | ‘8’ | ‘9’

A.2 GRAMMAR FOR MOLECULE SYNTAX

Our syntax grammar for molecule is based on OpenSMILES standard, a context free grammar start-
ing with 〈s〉.

〈s〉 → 〈atom〉
〈smiles〉 → 〈chain〉
〈atom〉 → 〈bracket atom〉 | 〈aliphatic organic〉 | 〈aromatic organic〉
〈aliphatic organic〉 → ‘B’ | ‘C’ | ‘N’ | ‘O’ | ‘S’ | ‘P’ | ‘F’ | ‘I’ | ‘Cl’ | ‘Br’

〈aromatic organic〉 → ’c’ | ’n’ | ’o’ | ’s’

〈bracket atom〉 → ‘[’ 〈bracket atom (isotope)〉 ‘]’

〈bracket atom (isotope)〉 → 〈isotope〉 〈symbol〉 〈bracket atom (chiral)〉
| 〈symbol〉 〈bracket atom (chiral)〉
| 〈isotope〉 〈symbol〉 | 〈symbol〉

〈bracket atom (chiral)〉 → 〈chiral〉 〈bracket atom (h count)〉
| 〈bracket atom (h count)〉
| 〈chiral〉

〈bracket atom (h count)〉 → 〈h count〉 〈bracket atom (charge)〉
| 〈bracket atom (charge)〉
| 〈h count〉

〈bracket atom (charge)〉 → 〈charge〉
〈symbol〉 → 〈aliphatic organic〉 | 〈aromatic organic〉
〈isotope〉 → 〈digit〉 | 〈digit〉 〈digit〉 | 〈digit〉 〈digit〉 〈digit〉
〈digit〉 → ’1’ | ’2’ | ’3’ | ’4’ | ’5’ | ’6’ | ’7’ | ’8’
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COc1ccc(N2CCn3c2nn(CC(N)=O)c(=O)c3=O)cc1

Ringbond	matching	crossed	with	each	other

Figure 7: Example of cross-serial dependencies (CSD) that exhibits in SMILES language.

〈chiral〉 → ‘@’ | ‘@@’

〈h count〉 → ‘H’ | ‘H’ 〈digit〉
〈charge〉 → ’-’ | ’-’ 〈digit〉 | ’+’ | ’+’ 〈digit〉
〈bond〉 → ‘-’ | ‘=’ | ‘#’ | ‘/’ | ‘\’

〈ringbond〉 → 〈digit〉
〈branched atom〉 → 〈atom〉 | 〈atom〉 〈branches〉 | 〈atom〉 〈ringbonds〉

| 〈atom〉 〈ringbonds〉 〈branches〉
〈ringbonds〉 → 〈ringbonds〉 〈ringbond〉 | 〈ringbond〉
〈branches〉 → 〈branches〉 〈branch〉 | 〈branch〉
〈branch〉 → ’(’ 〈chain〉 ’)’ | ’(’ 〈bond〉 〈chain〉 ’)’

〈chain〉 → 〈branched atom〉 | 〈chain〉 〈branched atom〉
| 〈chain〉 〈bond〉 〈branched atom〉

A.3 EXAMPLES OF SMILES SEMANTICS

Here we provide more explanations of the semantics constraints that contained in SMILES language
for molecules.

Specifically, the semantics we addressed here are:

1. Ringbond matching: The ringbonds should come in pairs. Each pair of ringbonds has an
index and a bond-type associated. What the SMILES semantics requires is exactly the same
as the well-known cross-serial dependencies (CSD) in formal language. CSD also appears
in some natural languages, such as Dutch and Swiss-German. Another example of CSD
is a sequence of multiple different types of parentheses where each separately balanced
disregarding the others. See Figure 7 for an illustration.

2. Explicit valence control: Intuitively, the semantics requires that each atom cannot have
too many bonds associated with it. For example, a normal carbon atom has maximum
valence of 4, which means associating a Carbon atom with two triple-bonds will violate the
semantics.

A.4 DEPENDENCY GRAPH INTRODUCED BY ATTRIBUTE GRAMMAR

Suppose there is a production r = u0 → u1u2 . . . u|β| ∈ R and an attribute ui.a we denote
the dependency set Dr(ui.a) = {uj .b|uj .b is required for calculating ui.a}. The union of all de-
pendency sets D(att)

T =
⋃
r∈T ,ui∈rD

r(ui.a) induces a dependency graph, where nodes are the
attributes and directed edges represents the dependency relationships between those attributes com-
putation. Here T is an (partial or full) instantiation of the generated syntax tree of grammar G.
Let Dr(ui) = {uj |∃a, b : uj .b ∈ Dr(ui.a)} and DT =

⋃
r∈T ,ui∈rD

r(ui), that is, DT is con-

structed from D(att)
T by merging nodes with the same symbol but different attributes, we call D(att)

T
is noncircular if the corresponding DT is noncircular.

In our paper, we assume the noncircular property of the dependency graph. Such property will be
exploited for top-down generation in our decoder.
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B TRAINING DETAILS

Since our proposed SD-VAE differentiate itself from previous works (CVAE, GVAE) on the for-
malization of syntax and semantics, we therefore use the same deep neural network model architec-
ture for a fair comparison. In encoder, we use 3-layer one-dimension convolution neural networks
(CNNs) followed by a full connected layer, whose output would be fed into two separate affine lay-
ers for producing µ and σ respectively as in reparameterization trick; and in decoder we use 3-layer
RNNs followed by a affine layer activated by softmax that gives probability for each production rule.
In detail, we use 56 dimensions the latent space and the dimension of layers as the same number as
in Kusner et al. (2017). As for implementation, we use Kusner et al. (2017)’s open sourced code for
baselines, and implement our model in PyTorch framework 3.

In a 10% validation set we tune the following hyper parameters and report the test result from setting
with best valid loss. For a fair comparison, all tunings are also conducted in the baselines.

We use ReconstructLoss + αKLDivergence as the loss function for training. A natural setting
is α = 1, but Kusner et al. (2017) suggested in their open-sourced implementation4 that using
α = 1/LatentDimension would leads to better results. We explore both settings.
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Figure 8: Visualization of reconstruction. The first column in each figure presents the target
molecules. We first encode the target molecules, then sample the reconstructed molecules from
their encoded posterior.

C.1 BAYESIAN OPTIMIZATION

The Bayesian optimization is used for searching latent vectors with desired target property. For
example, in symbolic program regression, we are interested in finding programs that can fit the
given input-output pairs; in drug discovery, we are aiming at finding molecules with maximum drug
likeness. To get a fair comparison with baseline algorithms, we follow the settings used in Kusner
et al. (2017).

3http://pytorch.org/
4https://github.com/mkusner/grammarVAE/issues/2
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Specifically, we first train the variational autoencoder in an unsupervised way. After obtaining the
generative model, we encode all the structures into latent space. Then these vectors and correspond-
ing property values (i.e., estimated errors for program, or drug likeness for molecule) are used to
train a sparse Gaussian process with 500 inducing points. This is used later for predicting properties
in latent space. Next, 5 iterations of batch Bayesian optimization with the expected improvement
(EI) heuristic is used for proposing new latent vectors. In each iteration, 50 latent vectors are pro-
posed. After the proposal, the newly found programs/molecules are then added to the batch for next
round of iteration.

During the proposal of latent vectors in each iteration, we perform 100 rounds of decoding and pick
the most frequent decoded structures. This helps regulates the decoding due to randomness, as well
as increasing the chance for baselines algorithms to propose valid ones.

C.2 RECONTRUCTION

We visualize some reconstruction results of SMILES in Figure 8. It can be observed that, in most
cases the decoder successfully recover the exact origin input. Due to the stochasticity of decoder, it
may have some small variations.
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