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ABSTRACT

Disentangling factors of variation has always been a challenging problem in rep-
resentation learning. Existing algorithms suffer from many limitations, such as
unpredictable disentangling factors, bad quality of generated images from encod-
ings, lack of identity information, etc. In this paper, we proposed a supervised
algorithm called DNA-GAN trying to disentangle different attributes of images.
The latent representations of images are DNA-like, in which each individual piece
represents an independent factor of variation. By annihilating the recessive piece
and swapping a certain piece of two latent representations, we obtain another two
different representations which could be decoded into images. In order to obtain
realistic images and also disentangled representations, we introduced the discrim-
inator for adversarial training. Experiments on Multi-PIE and CelebA datasets
demonstrate the effectiveness of our method and the advantage of overcoming
limitations existing in other methods.

1 INTRODUCTION

The success of machine learning algorithms depends on data representation, because different rep-
resentations can entangle different explanatory factors of variation behind the data. Although prior
knowledge can help us design representations, the vast demand of AI algorithms in various domains
cannot be met, since feature engineering is labor-intensive and needs domain expert knowledge.
Therefore, algorithms that can automatically learn good representations of data will definitely make
it easier for people to extract useful information when building classifiers or predictors.

Of all criteria of learning good representations as discussed in Bengio et al. (2013), disentangling
factors of variation is an important one that helps separate various explanatory factors. For example,
given a human-face image, we can obtain various information about the person, including gender,
hair style, facial expression, with/without eyeglasses and so on. All of these information are entan-
gled in a single image, which renders the difficulty of training a single classifier to handle different
facial attributes. If we could obtain a disentangled representation of the face image, we may build
up only one classifier for multiple attributes.

In this paper, we propose a supervised method called DNA-GAN to obtain disentangled representa-
tions of images. The idea of DNA-GAN is motivated by the DNA double helix structure, in which
different kinds of traits are encoded in different DNA pieces. We make a similar assumption that
different visual attributes in an image are controlled by different pieces of encodings in its latent
representations. In DNA-GAN, an encoder is used to encode an image to the attribute-relevant part
and the attribute-irrelevant part, where different pieces in the attribute-relevant part encode informa-
tion of different attributes, and the attribute-irrelevant part encodes other information. For example,
given a facial image, we are trying to obtain a latent representation that each individual part con-
trols different attributes, such as hairstyles, genders, expressions and so on. Though annihilating
recessive pieces and swapping certain pieces, we can obtain novel crossbreeds that can be decoded
into new images. By the adversarial discriminator loss and the reconstruction loss, DNA-GAN can
reconstruct the input images and generate new images with new attributes. Each attribute is disen-
tangled from others gradually though iterative training. Finally, we are able to obtain disentangled
representations in the latent representations.

The summary of contributions of our work is as follows:
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1. We propose a supervised algorithm called DNA-GAN, that is able to disentangle multiple
attributes as demonstrated by the experiments of interpolating multiple attributes on Multi-
PIE (Gross et al., 2010) and CelebA (Liu et al., 2015) datasets.

2. We introduce the annihilating operation that prevents from trivial solutions: the attribute-
relevant part encodes information of the whole image instead of a certain attribute.

3. We employ iterative training to address the problem of unbalanced multi-attribute image
data, which was theoretically proved to be more efficient than random image pairs.

2 RELATED WORK

Traditional representation learning algorithms focus on (1) probabilistic graphical models, charac-
terized by Restricted Boltzmann Machine (RBM) (Smolensky, 1986), Autoencoder (AE) and their
variants; (2) manifold learning and geometrical approaches, such as Principal Components Analysis
(PCA) (Pearson, 1901), Locally Linear Embedding (LLE) (Roweis & Saul, 2000), Local Coordinate
Coding (LCC) (Yu et al., 2009), etc. However, recent research has actively focused on developing
deep probabilistic models that learn to represent the distribution of data. Kingma & Welling (2013)
employs an explicit model distribution and uses variational inference to learn its parameters. As the
generative adversarial networks (GAN) (Goodfellow et al., 2014) has been invented, many implicit
models are developed.

In the semi-supervised setting, Siddharth et al. (2016) learns a disentangled representations by using
an auxiliary variable. Bouchacourt et al. (2017) proposes the ML-VAE that can learn disentangled
representations from a set of grouped observations. In the unsupervised setting, InfoGAN (Chen
et al., 2016) tries to maximize mutual information between a small subset of latent variables and
observations by introducing an auxiliary network to approximate the posterior. However, it relies
much on the a-priori choice of distributions and suffered from unstable training. Another popular
unsupervised method β-VAE (Higgins et al., 2016), adapted from VAE, lays great stress on the KL
distance between the approximate posterior and the prior. However, unsupervised approaches do not
anchor a specific meaning into the disentanglement.

More closely with our method, supervised methods take the advantage of labeled data and try to
disentangle the factors as expected. DC-IGN (Kulkarni et al., 2015) asks the active attribute to
explain certain factor of variation by feeding the other attributes by the average in a mini-batch.
TD-GAN (Wang et al., 2017) uses a tag mapping net to boost the quality of disentangled representa-
tions, which are consistent with the representations extracted from images through the disentangling
network. Besides, the quality of generated images is improved by implementing the adversarial
training strategy. However, the identity information should be labeled so as to preserve the id in-
formation when swapping attributes, which renders the limitation of applying it into many other
datasets without id labels. IcGAN (Perarnau et al., 2016) is a multi-stage training algorithm that first
takes the advantage of cGAN (Mirza & Osindero, 2014) to learn a map from latent representations
and conditional information to real images, and then learn its inverse map from images to the latent
representations and conditions in a supervised manner. The overall effect depends on each train-
ing stage, therefore it is hard to obtain satisfying images. Unlike these models, our model requires
neither explicit id information in labels nor multi-stage training.

Many works have studied the image-to-image translation between unpaired image data using GAN-
based architectures, see Isola et al. (2016), Taigman et al. (2016), Zhu et al. (2017), Liu et al. (2017)
and Zhou et al. (2017). Interestingly, these models require a form of 0/1 weak supervision that is
similar to our setting. However, they are circumscribed in two image domains which are opposite
to each other with respect to a single attribute. Our model differs from theirs as we generalize to
the case of multi-attribute image data. Specifically, we employ the strategy of iterative training to
overcome the difficulty of training on unbalanced multi-attribute image datasets.

3 DNA-GAN APPROACH

In this section, we formally outline our method. A set X of multi-labeled images and a set of labels
Y are considered in our setting. Let {(X1,Y1), . . . , (Xm,Ym)} denote the whole training dataset,
where Xi ∈ X is the i-th image with its label Yi ∈ Y . The small letter m denotes the number
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of samples in set X and n denotes the number of attributes. The label Yi = (yi
1, . . . ,y

i
n) is a

n-dimensional vector where each element represents whether Xi has certain attribute or not. For
example, in the case of labels with three candidates [Bangs, Eyeglasses, Smiling], the facial image
Xi whose label is Yi = (1, 0, 1) should depict a smiling face with bangs and no eyeglasses.

3.1 MODEL

As shown in Figure 1, DNA-GAN is mainly composed of three parts: an encoder (Enc), a decoder
(Dec) and a discriminator (D). The encoder maps the real-world images A and B into two latent
disentangled representations

Enc(A) = [a1, . . . , ai, . . . , an, za], Enc(B) = [b1, . . . , bi, . . . , bn, zb] (1)

where [a1, . . . , ai, . . . , an] is called the attribute-relevant part, and za is called the attribute-irrelevant
part. ai is supposed to be a DNA piece that controls yi, the i-th attribute in the label, and za is
for keeping other silent factors which do not appear in the attribute list as well as image identity
information. The same thing applies for Enc(B).

Encoder

... ...

... ...
D
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od
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Discriminator loss

annihilating

Reconstruction loss

... ...

... ...

... ...

... ...

Figure 1: DNA-GAN architecture.

We focus on one attribute each time in our framework. Let’s say we are at i-th attribute. A and
B are required to have different labels, i.e. (yA

1 , . . . , 1
A
i , . . . ,y

A
n ) and (yB

1 , . . . , 0
B
i , . . . ,y

B
n ), re-

spectively. In our convention, A is always for the dominant pattern, while B is for the recessive
pattern. We copy Enc(A) directly as the latent representation of A1, and annihilate bi in the copy of
Enc(B) as the latent representation of B1. The annihilating operation means replacing all elements
with zeros, and plays a key role in disentangling the attribute, which we will discuss in detail in Sec-
tion 3.3. By swapping ai and 0i, we obtain two new latent representations [a1, . . . , 0i, . . . , an, za]
and [b1, . . . , ai, . . . , bn, zb] that are supposed to be decoded into A2 and B2, respectively. Though a
decoder Dec, we can get four newly generated images A1, B1, A2 and B2.

Dec([a1, . . . , ai, . . . , an, za]) = A1, Dec([b1, . . . , 0i, . . . , bn, zb]) = B1

Dec([a1, . . . , 0i, . . . , an, za]) = A2, Dec([b1, . . . , ai, . . . , bn, zb]) = B2
(2)

Out of these four children, A1 and B1 are reconstructions of A and B, while A2 and B2 are novel
crossbreeds. The reconstruction losses between A and A1, B and B1 ensure the quality of recon-
structed samples. Besides, using an adversarial discriminator D that helps make generated samples
A2 indistinguishable from B, and B2 indistinguishable from A, we can enforce attribute-related
information to be encoded in ai.
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3.2 LOSS FUNCTIONS

Given two images A and B and their labels YA = (yA
1 , . . . , 1

A
i , . . . ,y

A
n ) and YB =

(yB
1 , . . . , 0

B
i , . . . ,y

B
n ) which are different at the i-th position, the data flow can be summarized

by (1) and (2). We force the i-th latent encoding of B to be zero in order to prevent from trivial
solutions as we will discuss in Section 3.3.

The encoder and decoder receive two types of losses: (1) the reconstruction loss,

Lreconstruct = ‖A−A1‖1 + ‖B −B1‖1 (3)

which measures the reconstruction quality after a sequence of encoding and decoding; (2) the stan-
dard GAN loss,

LGAN = −E[log(D(A2|yA
i = 1))]− E[log(D(B2|yB

i = 0))] (4)

which measures how realistic the generated images are. The discriminator takes the generated image
and the i-th element of its label as inputs, and outputs a number which indicates how realistic the
input image is. The larger the number is, the more realistic the image is. Omitting the coefficient,
the loss function for the encoder and decoder is

LG = Lreconstruct + LGAN . (5)

The discriminator D receives the standard GAN discriminator loss

LD1
= −E[log(D(A|yA

i = 1))]− E[log(1−D(B2|yA
i = 1))] (6)

LD0
= −E[log(D(B|yB

i = 0))]− E[log(1−D(A2|yB
i = 0))] (7)

LD = LD1 + LD0 (8)

where LD1 drives D to tell A from B2, and LD0 drives D to tell B from A2.

3.3 ANNIHILATING OPERATION PREVENTS FROM TRIVIAL SOLUTIONS

Through experiments, we observe that there exist trivial solutions to our model without the annihilat-
ing operation. We just take the single-attribute case as an example. Suppose that Enc(A) = [a, za]
and Enc(B) = [b, zb], we can get four children without annihilating operation

A1 = Dec([a, za]), B1 = Dec([b, zb]), A2 = Dec([b, za]), B2 = Dec([a, zb]) (9)

The reconstruction loss makes it invertible between the latent encoding space and image space. The
adversarial discriminator D is supposed to disentangle the attribute from other information by telling
whether A2 looks as real as B and B2 looks as real as A or not. As we know that the generative
adversarial networks give the best solution when achieving the Nash equilibrium. But without the
annihilating operation, information of the whole image could be encoded into the attribute-relevant
part, which means

Enc(A) = [a, 0], Enc(B) = [b, 0] (10)

Therefore, we obtain the following four children

A1 = Dec([a, 0]), B1 = Dec([b, 0]), A2 = Dec([b, 0]), B2 = Dec([a, 0]) (11)

In this situation, the discriminator D cannot discriminate A2 from B, since they share the same
latent encodings. By reconstruction loss, A2 and B are exactly the same image, which is against our
expectation that A2 should depict the person from A with the attribute borrowed from B. The same
thing happens to B2 and A as well.

To prevent from learning trivial solutions, we adopt the annihilating operation by replacing the
recessive pattern b with a zero tensor of the same size1. If information of the whole image were
encoded into the attribute-relevant part, the four children in this case are

A1 = Dec([a, 0]), B1 = Dec([0, 0]), A2 = Dec([0, 0]), B2 = Dec([a, 0]) (12)

The encodings ofB1 andA2 contain no information at all, thus neither the person inB1 norA2 who
is supposed to be the same as in B can be reconstructed by Dec. This forces the attribute-irrelevant
part to encode some information of images.

1Use tf.zeros like() in TensorFlow implementation.
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3.4 ITERATIVE TRAINING

To reduce the difficulty of disentangling multiple attributes, we take the strategy of iterative training:
we update our model using a pair of images with opposite labels at a certain position each time.
Suppose that we are at the i-th position, the label of image A is (yA

1 , . . . , 1
A
i , . . . ,y

A
n ), while the

label of image B is (yB
1 , . . . , 0

B
i , . . . ,y

B
n ). During each iteration, as i goes through from 1 to n

repeatedly, our model fed with such a pair of images can disentangle multiple attributes one-by-one.

Compared with training with random pairs of images, iterative training is proved to be more effec-
tive. Random pairs of images means randomly selecting pairs of images each time without label
constraints. A pair of images with different labels is called a useful pair.

We theoretically show that our iterative training is much more efficient than random image pairs
especially when the dataset is unbalanced. All proofs can be found in the Appendix.
Theorem 1. Let X = {(X1,Y1), . . . , (Xm,Ym)} denote the whole multi-attribute image dataset,
where Xi is a multi-attribute image and its label Yi = (yi

1, . . . ,y
i
n) is an n-dimensional vector.

There are totally 2n kinds of labels, denoted by L = {l1, . . . , l2n}. The number of images with
label li is mi, and

∑2n

i=1mi = m. To select all useful pairs at least once, the expected numbers of
iterations needed for randomly selecting pairs and for iterative training are denoted by E1 and E2

respectively. Then,

E1 = m2

(
1 +

1

2
+ · · ·+ 1

m2 −
∑2n

i=1m
2
i

)
(13)

E2 ≤ 2n · max
s=1,...,n

∑
i∈Is,j∈Js

mimj

(
1 +

1

2
+ · · ·+ 1

m2 −
∑2n−1

k1=1(mik1
+mjk1

)2

)
(14)

where Is represents the indices of labels where the s-th element is 1, and Js represents the indices
of labels where the s-th element is 0.
Definition 1. (Balancedness) Define the balancedness of a dataset X described above with respect
to the s-th attribute as follows:

ρs =

∑
i∈Is mi∑
j∈Js

mj
(15)

where Is represents the indices of labels where the s-th element is 1, and Js represents the indices
of labels where the s-th element is 0.
Theorem 2. We have E2 ≤ E1, when

n ≤ min
s

(ρs + 1)2

2ρs
. (16)

Specifically, E2 ≤ E1 holds true for all n ≤ 2.

The property of the function (ρ+1)2/(2ρ) suits well with the definition of balancedness, because it
attains the same value for ρ and 1/ρ, which is invariant to different labeling methods. Its value gets
larger as the dataset becomes more unbalanced. The minimum is obtained at ρ = 1, which is the
case of a balanced dataset.

Theorem 2 demonstrates that the iterative training mechanism is always more efficient than random
pairs of images when the number of attributes met the criterion (16). As the dataset becomes more
unbalanced, (ρs + 1)2/(2ρs) goes larger, which means (16) can be more easily satisfied. More im-
portantly, iterative training helps stabilize the training process on unbalanced datasets. For example,
given a two-attribute dataset, the number of data of each kind is as follows:

Table 1: The example of an unbalanced two-attribute dataset.

Label (0, 0) (0, 1) (1, 0) (1, 1)
Number of data 1 1 m m

If m � 1 is a very large number, then it is highly likely that we will select a pair of images whose
labels are (1, 0) and (1, 1) each time by randomly selecting pairs. We ignore the pair of images
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A B A2 B2 A1 B1

Figure 2: Manipulating illumination factors on the Multi-PIE dataset. From left to right, the six
images in a row are: original images A with light illumination and B with the dark illumination,
newly generated images A2 and B2 by swapping the illumination-relevant piece in disentangled
representations, and reconstructed images A1 and B1.

whose labels are (1, 0) and (1, 0) or (1, 1) and (1, 1), though these two cases have equal probabilities
of being chosen. Because they are not useful pairs, thus do not participated in training. In this case,
most of the time the model is trained with respect to the second attribute, which will cause the final
learnt model less effective to the first attribute. However, iterative training can prevent this from
happening, since we update our model evenly with respect to two attributes.

4 EXPERIMENTS

In this section, we perform different kinds of experiments on two real-world datasets to validate the
effectiveness of our methods. We use the RMSProp (Sutskever et al., 2013) optimization method
initialized by a learning rate of 5e-5 and momentum 0. All neural networks are equipped with
Batch Normalization (Ioffe & Szegedy, 2015) after convolutions or deconvolutions. We used Leaky
Relu (Maas et al., 2013) as the activation function in the encoder. Besides, we adopt strategies
mentioned in Wasserstein GAN (Arjovsky et al., 2017) for stable training. More details will be
available online. We divide all images into training images and test images according to the ratio of
9:1. All of the following results are from test images without cherry-picking.

4.1 MULTI-PIE DATABASE

The Multi-PIE (Gross et al., 2010) face database contains over 750,000 images of 337 subjects
captured under 15 view points and 19 illumination conditions. We collecte all front faces images
of different illuminations and align them based on 5-point landmarks on eyes, nose and mouth.
All aligned images are resized into 128 × 128 as inputs in our experiments. We label the light
illumination face images by 1 and the dark illumination face images by 0. As shown in Figure 2,
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the illumination on one face is successfully transferred into the other face without modifying any
other information in the images. This demonstrates that DNA-GAN can effectively disentangle the
illumination factor from other factors in the latent space.

4.2 CELEBA DATASET

CelebA (Liu et al., 2015) is a dataset composed of 202599 face images and 40 attribute binary
vectors and 5 landmark locations. We use the aligned and cropped version and scaled all images
down to 64 × 64. To better demonstrate the advantage of our method, we choose TD-GAN (Wang
et al., 2017) and IcGAN (Perarnau et al., 2016) for comparisons.

As we mentioned before, TD-GAN requires the explicit id information in the label, thus cannot be
applied to the CelebA dataset directly. To overcome this limitation, we use some channels to encode
the id information in its latent representations. In our experiments, the id information is preserved
when swapping the attribute information in the latent encodings. We also compared the experimental
results of IcGAN with ours in the celebA dataset. The following results are obtained using the the
official code and pre-trained celebA model provided by the author2.

(a) TD-GAN (b) IcGAN

Figure 3: The experimental results of TD-GAN and IcGAN on CelebA dataset. Three rows indicates
the swapping attributes of Bangs, Eyeglasses and Smiling. For each model, the four images in a row
are: two original images, and two newly generated images by swapping the attributes. The third
image is generated by adding the attribute to the first one, and the fourth image is generated by
removing the attribute from the second one.

As displayed in Figure 3a, modified TD-GAN encounters the problem of trivial solutions. Without
id information explicitly contained in the label, TD-GAN encodes the information of the whole
image into the attribute-related part in the latent representations. As a result, two faces are swapped
directly. Whereas in Figure 3b, the quality of images generated by IcGAN are very bad, which is
probably due to the multi-stage training process of IcGAN. Since the overall effect of the model
relies much on the each stage.

DNA-GAN is able to disentangle multiple attributes in the latent representations as shown in Fig-
ure 4. Since different attributes are encoded in different DNA pieces in our latent representations, we
are able to interpolate the attribute subspaces by linear combination of disentangled encodings. Fig-
ure 4a, 4b and 4c present disentangled attribute subspaces spanned by any two attributes of Bangs,
Eyeglasses and Smiling. They demonstrate that our model is effective in learning disentangled rep-
resentations. Figure 4d shows the hairstyle transfer process among different Bangs styles. It is worth
mentioning that the top-left image in Figure 4d is outside the CelebA dataset, which further validate
the generalization potential of our model on unseen data. Please refer to Figure 5 in the Appendix
for more results.

2https://github.com/Guim3/IcGAN
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(a) Bangs and Eyeglasses (b) Bangs and Smiling

(c) Eyeglasses and Smiling (d) Different Bangs

Figure 4: The interpolation results of DNA-GAN. Figure 4a, 4b and 4c display the disentangled
attribute subspaces spanned by any two attributes of Bangs, Eyeglasses and Smiling. Figure 4d
shows the attribute subspaces spanned by several Bangs feature vectors. Besides, the top-left image
in Figure 4d is outside the CelebA dataset.

5 CONCLUSION

In this paper, we propose a supervised algorithm called DNA-GAN that can learn disentangled rep-
resentations from multi-attribute images. The latent representations of images are DNA-like, con-
sisting of attribute-relevant and attribute-irrelevant parts. By the annihilating operation and attribute
hybridization, we are able to create new latent representations which could be decoded into novel
images with designed attributes. The iterative training strategy effectively overcomes the difficulty
of training on unbalanced datasets and helps disentangle multiple attributes in the latent space.

The experimental results not only demonstrate that DNA-GAN is effective in learning disentangled
representations and image editing, but also point out its potential in interpretable deep learning,
image understanding and transfer learning.

There also exist some limitations of our model. Without strong guidance on the attribute-irrelevant
parts, some background information is encoded into the attribute-relevant part. As we can see in
Figure 4, the background color gets changed when swapping attributes. Besides, our model may fail
when several attributes are highly correlated with each other. For example, Male and Mustache are
statistically dependent, which are hard to disentangle in the latent representations. These are left as
our future work.
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gans for image editing. CoRR, abs/1611.06355, 2016.

Sam T Roweis and Lawrence K Saul. Nonlinear dimensionality reduction by locally linear embed-
ding. science, 290(5500):2323–2326, 2000.

N Siddharth, Brooks Paige, Alban Desmaison, Jan-Willem van de Meent, Frank Wood, Noah D
Goodman, Pushmeet Kohli, and Philip HS Torr. Learning disentangled representations in deep
generative models. 2016.

9



Under review as a conference paper at ICLR 2018

Paul Smolensky. Information processing in dynamical systems: Foundations of harmony theory.
Technical report, COLORADO UNIV AT BOULDER DEPT OF COMPUTER SCIENCE, 1986.

Ilya Sutskever, James Martens, George E. Dahl, and Geoffrey E. Hinton. On the importance of ini-
tialization and momentum in deep learning. In Proceedings of the 30th International Conference
on Machine Learning, ICML 2013, pp. 1139–1147, 2013.

Yaniv Taigman, Adam Polyak, and Lior Wolf. Unsupervised cross-domain image generation. CoRR,
abs/1611.02200, 2016.

Chaoyue Wang, Chaohui Wang, Chang Xu, and Dacheng Tao. Tag disentangled generative adver-
sarial network for object image re-rendering. In Proceedings of the Twenty-Sixth International
Joint Conference on Artificial Intelligence, IJCAI 2017, pp. 2901–2907, 2017.

Kai Yu, Tong Zhang, and Yihong Gong. Nonlinear learning using local coordinate coding. In
Advances in Neural Information Processing Systems 22, pp. 2223–2231, 2009.

Shuchang Zhou, Taihong Xiao, Yi Yang, Dieqiao Feng, Qinyao He, and Weiran He. Gene-
gan: Learning object transfiguration and attribute subspace from unpaired data. CoRR,
abs/1705.04932, 2017.

Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A. Efros. Unpaired image-to-image translation
using cycle-consistent adversarial networks. CoRR, abs/1703.10593, 2017.

10



Under review as a conference paper at ICLR 2018

APPENDIX

To prove Theorem 1, we need the following lemma.

Lemma 1. A set S = {s1, . . . , sm} has m different elements, from which elements are being se-
lected equally likely with replacement. The expected number of trials needed to collect a subset
R = {s1, . . . , sn} of n(1 ≤ n ≤ m) elements is

m ·
(
1

1
+

1

2
+ · · ·+ 1

n

)
.

Proof. Let T be the time to collect all n elements in the subset R, and let ti be the time to collect
the i-th new elements after i − 1 elements in R have been collected. Observe that the probability
of collecting a new element is pi = (n − (i − 1))/m. Therefore, ti is a geometrically distributed
random variable with expectation 1/pi. By the linearity of expectations, we have:

E(T ) = E(t1) + E(t2) + · · ·+ E(tn)

=
1

p1
+

1

p2
+ · · ·+ 1

pn

=
m

n
+

m

n− 1
+ · · ·+ m

1

= m ·
(
1

1
+

1

2
+ · · ·+ 1

n

)
.

Proof. (of Theorem 1)

We first consider the case of randomly selecting pairs. All possible image pairs are actually in the
product space X ×X , whose cardinality is m2. If we take the order of two images in a pair into
consideration, the number of possible pairs ism2. Recall that the useful pair denotes a pair of image
of different labels. Therefore, the number of all useful pairs is

∑
i6=j mimj . By Lemma 1, the

expected number of iterations for randomly selecting pairs to select all useful pairs at least once is

E1 = m2

(
1 +

1

2
+ · · ·+ 1∑

i 6=j mimj

)

= m2

(
1 +

1

2
+ · · ·+ 1∑2n

i=1(mi

∑
j 6=imj)

)

= m2

(
1 +

1

2
+ · · ·+ 1∑2n

i=1mi(m−mi)

)

= m2

(
1 +

1

2
+ · · ·+ 1

m2 −
∑2n

i=1m
2
i

)
. (17)

Now we consider the case of iterative training. We always select a pair of images of different labels
each time. Suppose we are selecting images with opposite labels at the s-th position. Let Is denote
the indices of all labels with the s-th element 1, and Js denote the indices of all labels with the s-th
element 0, where |Is| = |Js| = 2n−1. Then we consider the subproblem by neglecting the first
position in data labels, the number of all possible pairs is 2

∑
i∈Is,j∈Js

mimj (regarding of order),

11
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and the number of useful pairs is∑
k1 6=k2

(mik1
+mjk1

)(mik2
+mjk2

)

=

2n−1∑
k1=1

∑
k2 6=k1

(mik1
+mjk1

)(mik2
+mjk2

)

=

2n−1∑
k1=1

(mik1
+mjk1

)(m−mik1
−mjk1

)

= m2 −
2n−1∑
k1=1

(mik1
+mjk1

)2. (18)

Therefore, the expectation to select all useful pairs at least once regardless of the s-th element in the
label is

E\s = 2
∑

i∈Is,j∈Js

mimj

(
1 +

1

2
+ · · ·+ 1

m2 −
∑2n−1

k1=1(mik1
+mjk1

)2

)
(19)

Since we rotate the subscript s from 1 to n, the expected number of iterations for iterative training
to select all useful pairs at least once is

E2 ≤ n · max
s=1,...,n

E\s

= 2n · max
s=1,...,n

∑
i∈Is,j∈Js

mimj

(
1 +

1

2
+ · · ·+ 1

m2 −
∑2n−1

k1=1(mik1
+mjk1

)2

)
. (20)

Proof. (of Theorem 2) We firstly show that
2n−1∑
k1=1

(mik1
+mjk1

)2 ≥
2n−1∑
k1=1

(m2
ik1

+m2
jk1

) =

2n∑
i=1

m2
i (21)

According to the result of Theorem 1 and the Definition 1 of balancedness, we have

E2 = 2n ·max
s

∑
i∈Is,j∈Js

mimj

(
1 +

1

2
+ · · ·+ 1

m2 −
∑2n−1

k1=1(mik1
+mjk1

)2

)

≤ 2n ·max
s

∑
i∈Is,j∈Js

mimj

(
1 +

1

2
+ · · ·+ 1

m2 −
∑2n

i=1m
2
i

)

= 2n ·max
s

(∑
i∈Is

mi

)∑
j∈Js

mj

(1 + 1

2
+ · · ·+ 1

m2 −
∑2n

i=1m
2
i

)

= 2n ·max
s

ρsm

ρs + 1

m

ρs + 1

(
1 +

1

2
+ · · ·+ 1

m2 −
∑2n

i=1m
2
i

)

= max
s

2nρs
(ρs + 1)2

·m2

(
1 +

1

2
+ · · ·+ 1

m2 −
∑2n

i=1m
2
i

)
≤ E1. (22)

Specifically, if n ≤ 2,
2nρs

(ρs + 1)2
≤ 4ρs

(ρs + 1)2
≤ 1. (23)

The inequality holds true forever.
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(a) Bangs and Eyeglasses (b) Bangs and Eyeglasses

(c) Bangs and Smiling (d) Bangs and Smiling

(e) Male and Smiling (f) Male and Smiling

(g) Male and Smiling (h) Male and Wearing Hat
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(i) Male and Wearing Hat (j) Male and Wearing Hat

(k) Smiling and Wearing Hat (l) Smiling and Wearing Hat

(m) Smiling and Wearing Hat (n) Smiling and Wearing Hat

(o) Wearing Hat and Mustache (p) Wearing Hat and Mustache

Figure 5: More experimental results of DNA-GAN.
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