
Under review as a conference paper at ICLR 2018

HUMAN-LIKE CLUSTERING WITH DEEP CONVOLU-
TIONAL NEURAL NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Classification and clustering have been studied separately in machine learning and
computer vision. Inspired by the recent success of deep learning models in solv-
ing various vision problems (e.g., object recognition, semantic segmentation) and
the fact that humans serve as the gold standard in assessing clustering algorithms,
here, we advocate for a unified treatment of the two problems and suggest that
hierarchical frameworks that progressively build complex patterns on top of the
simpler ones (e.g., convolutional neural networks) offer a promising solution. We
do not dwell much on the learning mechanisms in these frameworks as they are
still a matter of debate, with respect to biological constraints. Instead, we empha-
size on the compositionality of the real world structures and objects. In particular,
we show that CNNs, trained end to end using back propagation with noisy labels,
are able to cluster data points belonging to several overlapping shapes, and do so
much better than the state of the art algorithms. The main takeaway lesson from
our study is that mechanisms of human vision, particularly the hierarchal orga-
nization of the visual ventral stream should be taken into account in clustering
algorithms (e.g., for learning representations in an unsupervised manner or with
minimum supervision) to reach human level clustering performance. This, by no
means, suggests that other methods do not hold merits. For example, methods
relying on pairwise affinities (e.g., spectral clustering) have been very successful
in many cases but still fail in some cases (e.g., overlapping clusters).

1 INTRODUCTION

Clustering, a.k.a unsupervised classification or nonparametric density estimation, is central to many
data-driven domains and has been studied heavily in the past. The task in clustering is to group a
given collection of unlabeled patterns into meaningful clusters such that objects within a cluster are
more similar to each other than they are to objects in other clusters. Clustering provides a summary
representation of data at a coarse level and is used widely in many disciplines (e.g., computer ver-
sion, bioinformatics, text processing) for exploratory data analysis (a.k.a pattern mining) as well as
representation learning (e.g., bag of words). Despite the introduction of thousands of clustering al-
gorithms in the past Aggarwal & Reddy (2013), some challenges still remain. For instance, existing
algorithms fall short in dealing with different cluster shapes, high dimensions, automatically deter-
mining the number of clusters or other parameters, large amounts of data, choosing the appropriate
similarity measure, incorporating domain knowledge, and cluster evaluation. Further, no clustering
algorithm can consistently win over other algorithms, handle all test cases, and perform at the level
of humans.

Deep neural networks have become a dominant approach to solve various tasks across many fields.
They have been proven successful in several domains including computer vision Krizhevsky et al.
(2012), natural language processing Collobert et al. (2011), and speech recognition Dahl et al. (2012)
for tasks such as scene and object classification Krizhevsky et al. (2012), pixel-level labeling for
image segmentation Long et al. (2015); Zheng et al. (2015), modeling attention Borji & Itti (2013);
Borji et al. (2013), image generation Goodfellow et al. (2014), robot arm control Levine et al. (2015),
speech recognition Graves & Jaitly (2014), playing Atari games Mnih et al. (2015) and beating the
Go champion.

1



Under review as a conference paper at ICLR 2018

Figure 1: U-Net architecture Ronneberger et al. (2015) adopted in this work.

Deep Convolutional Neural Networks (CNNs) LeCun et al. (1998) have been particularly successful
over vision problems. One reason is that nearby pixels in natural scenes are highly correlated.
Further natural objects are compositional. These facts allow applying the same filters across spatial
locations (and hence share weights), and build complex filters from simpler ones to detect high-
level patterns (e.g., object parts, objects). We advocate that these properties are highly appealing
when dealing with clustering problems. For instance, the classic two half moons example can be
solved by applying a filter that is selective to each half moon. Or, when two clusters with different
shapes overlap, the problem can be solved by having filters responding to each shape. Solving
these cases is very challenging by just looking at local regions around points and being blind to the
high-level patterns. Incorporating domain knowledge, while working in some cases, does not give
a general solution for solving all clustering problems. The human visual system easily solves these
2D problems because it is a general system with a rich set of learned or evolved filters. We believe
that deep CNNs, although imperfect models of the human vision as they lack feedback and lateral
connections carry a huge promise for solving clustering tasks. Further, as we will argue, they offer
a unified solution to both classification and clustering tasks.

The current demarcation between classification and clustering becomes murky when we notice that
researchers often refer to human judgments in evaluating the outcomes of clustering algorithms.
Indeed, humans learn quite a lot about the visual world during their life time. Moreover, the structure
of the visual system has been fine-tuned through the evolution. Thus, certainly, there is a learning
component involved which has been often neglected in formulating clustering algorithms. While
this is sensible from an application point of view (e.g., pattern mining), not only it limits the pursuit
for stronger algorithms but also narrows our understanding of human vision.

Learning techniques have been utilized for clustering in the past (e.g., Bach & Jordan (2004); Pin-
heiro et al. (2016)), for example for tuning parameters (e.g., Bach & Jordan (2004)). Deep networks
have also been exploited for clustering (e.g., Hsu & Kira (2015); Hershey et al. (2016); Wang et al.
(2016)). However, to our knowledge, while CNNs have been already adopted for image segmen-
tation, so far they have not been exploited for generic clustering. Our goal is to investigate such
possibility. To this end, instead of borrowing from clustering to do image segmentation, we follow
the opposite direction and propose a deep learning based approach to clustering.

Our method builds on the fully convolutional network literature, in particular, recent work on edge
detection and semantic segmentation which utilize multi-scale local and non-local cues Ronneberger
et al. (2015). Thanks to a high volume of labeled data, high capacity of deep networks, powerful
optimization algorithms, and high computational power, deep models win on these tasks. We are also
strongly inspired by the works showing the high resemblance between human vision mechanisms
and CNNs from behavioral, electrophysiological, and computational aspects (e.g., Yamins et al.
(2014); DiCarlo & Cox (2007); LeCun et al. (1998); Krizhevsky et al. (2012); Borji & Itti (2014).
Our study enriches our understanding of the concept of clustering and its relation to classification.

2 MODEL DESCRIPTION

We are motivated by three observations. First, CNNs have been very successful over a variety of
vision problems such as semantic segmentation, edge detection, and recognition. Second, CNNs

2



Under review as a conference paper at ICLR 2018

learn representations through several stages of non-linear processing, akin to how the cortex adapts
to represent the visual world Yamins et al. (2014). Similar to other biological models of visual cortex
(e.g., HMAX Serre et al. (2007)), these models capture aspects of the organization of the visual
ventral stream. Third, clustering methods are often evaluated against human perception motivating
biologically inspired solutions.

Our strategy parallels recent work in using CNNs for semantic segmentation. A crucial difference,
however, is that cluster identities (class labels) are not important here. For instance, if a triangle and
a circle exist in the image, the shape labels can be anything as long as clusters are correctly sepa-
rated. Unlike previous work, instead of learning embeddings, we use back propagation via stochastic
gradient descent to optimize a clustering objective to learn the mapping, which is parameterized by
a deep neural network. In this way, there is no need to specify parameters like number of clusters,
distance measure, scale, cluster centers, etc.

2.1 THE NETWORK ARCHITECTURE

Figure 1 shows the proposed deep network architecture which is based on the U-Net Ronneberger
et al. (2015); an encoder-decoder with skip connections. The input is a binary image with a single
channel, also shown in Figure 2. Input is fed to five stacks of [convolution, convolutions, pooling]
modules. These are followed by five stacks of decoder modules [convolution, convolution, upsam-
pling]. Skip connections from mirrored layers in the encoder are fed to decoder stacks. Such skip
connections recover the spatial image information which might have been lost through successive
convolution and pooling operations in the encoder. Finally, three 1× 1 filters are applied to collapse
the convolutional maps to three channels that can cluster three objects (one channel per cluster).
Each convolution layer in the decoder module has 16 filters and is followed by a ReLU layer except
the last convolution layer which uses Sigmoid activation. Then, the pointwise multiplication of the
output and the input is calculated to generate the final cluster map (denoted as the output map in
Figure 2). This multiplication removes the background pixels from the output, giving us only the
prediction for points that are of interest.

2.2 TRAINING PROCEDURE AND GROUND TRUTH

To implement our model, we use the Keras Chollet (2015) platform. We use 128 × 128 binary
images as inputs (see Figure 2). The corresponding ground truth map for each input is generated as
follows: the points belonging to the topmost cluster are assigned label 0, descending top-down in the
image, points belonging to the next cluster are assigned label 1, and so on. This process is repeated
until all clusters are labeled. This way the labels are independent of the object shapes. This makes
our training scheme different from classification and segmentation methods where each object is
always assigned the exact same label. Notice that here we are mainly interested in separating the
objects from each other rather than correctly classifying them. Despite this, as we will show later,
the network is able to cluster objects with the same shape successfully. We use the mean squared
error loss and train the network with the Adam optimizer Kingma & Ba (2014). Batch size is set to
16 and learning rate to 0.001.

3 EXPERIMENTAL SETUP

3.1 SYNTHETIC DATA

Geometric shape stimuli. Objects are parametrized using several variables including S = {Circle,
Ring, Square, SquareRing, Bar}, O = {1, . . . ,m}, D = [200 300], and SC = [10 30]. They,
in order, denote the set of possible shapes, the set of the possible number of objects to place in the
image, the interval of point densities for an object, and the interval of possible object scales.

To generate an image, first a number k ∈ O, indicating the number of objects is randomly drawn.
The following is then repeated k times. Random density and scales are chosen for clusters. The
cluster is randomly rotated θ degrees (θ ∈ [0, 2π]) and shifted such that it remains within the image
boundary. The output is then saved as a 128× 128 pixels binary image (1 for shape pixels and 0 for
background) to be fed to CNN. Ground truth of clusters is saved for training and evaluation.

3



Under review as a conference paper at ICLR 2018

(a)

0 50 100
0

40

80

120

0 50 100 0 50 100 0 50 100 0 50 100 0 50 100

(b)
Figure 2: Examples stimuli. Parameters include number of objects, shape type, point density, object scale,
rotation, and location. Parameter ranges are set to increase the chance of overlap among objects. (a) Stimuli
generated with shapes. Shapes include circle(filled), ring, square(filled), square ring, and bar. (b) Stimuli
generated with Gaussian distributions. Gaussian clusters are shown with different markers for the illustration
purpose.

A B

Figure 3: Sample images and the output of our clustering algorithm compared to other methods (A) in exper-
iment three (3 clusters, 3 shapes) and (B) in experiment five (2 or 3 clusters, Gaussian mixtures).

Gaussian mixture distribution. To randomly generate a Gaussian Mixture Density distribution, a
2D mean vector M = [x y] is randomly sampled (x, y ∈ [20 100]). A random matrix A = [a b; c d]
is generated with elements in [0 1]. The matrix A′A which is symmetric and positive semidefinite
is chosen as the covariance matrix for a Gaussian. The same is repeated to assign random mean
and covariances matrices for m Gaussians (m ∈ {2, 3}) in the image. After having the Gaussian
distributions, we randomly sample D ∈ [100 400] points from each Gaussian and form the input
and output images as in the shapes case.

Some sample generated images are shown in Figure 2. While it seems easy for humans to find the
clusters in these images, as will be shown in the next section, our stimuli poses a serious challenge
to current best clustering algorithms. In particular, current clustering algorithms fail when clusters
occlude each other. The reason is that they lack a global understanding of the patterns.

3.2 EVALUATION METRIC

Since our purpose is to do clustering, and not classification, prediction score is not sensible to evalu-
ate the performance. Instead, we use rand index which is used to evaluate clustering methods Rand
(1971). The metric is as follows: Given n points in the image, a binary matrix of size n2 is formed
where each element indicates whether two points belong to the same cluster or not. A similar ma-

4



Under review as a conference paper at ICLR 2018

trix is created for the prediction of each model. Notice that the order of points is preserved when
constructing these matrices. Then, the Hamming distance between the ground truth matrix and the
prediction matrix is calculated which determines the fraction of cases they do not agree with each
other (i.e., error rate).

3.3 BENCHMARK ALGORITHMS

We used the following classic and state of the art clustering methods as the benchmark algorithms:
k-Means (KM) Lloyd (1982), minimizes the sum of squared errors between data points and their
nearest cluster centers. It is a simple and widely used method.

Fuzzy C-Means (FCM) Dunn (1973) assigns soft labels to data points meaning that each data point
can belong to more than one cluster with different degrees of membership.

Spectral Clustering. We employ two spectral clustering algorithms. These algorithms perform a
spectral analysis of the matrix of point-to-point similarities instead of estimating an explicit model
of data distribution (as in k-Means). The first one is the Normalized Cut (NC) proposed by Shi
and Malik Shi & Malik (2000). Here, first, a graph is built from the image (pixels as nodes, edges
as similarities between pixels). Then, algorithm cuts the graph into two subgraphs. The second
algorithm, known as Ng-Jordan-Weiss (NJW) Ng et al. (2002) is a simple and significant example of
spectral clustering which analysis the eigenvectors of the Laplacian of the similarity matrix. Spectral
clustering has been shown to work well on data that is connected but not necessarily compact or
clustered within convex boundaries.

Mean shift (MS) Comaniciu & Meer (2002) iteratively seeks the modes of a density function from
discrete samples of that function. Mean Shift performs as follows. First, it fixes a window around
each data point. Then, computes the mean of data within each window. Finally, shifts the window
to the mean and repeats till convergence.

Clustering by fast search and find of density peaks (CFSFDP) Rodriguez & Laio (2014) method
seeks the modes or peaks of a distribution. It works as follows: 1) For each point, its local density
is computed (i.e., number of points in its neighborhood), 2) For each point, its distance to all the
points with higher density is computed and the minimum value is sought, 3) A plot is made showing
the minimum distance for a point as a function of the density. The outliers in this plot are the cluster
centers, 5) Finally, each point is assigned to the same cluster of its nearest neighbor of higher density.
The input to this algorithms is the pairwise distance matrix. To find outliers (i.e., cluster centers),
we find the point [maxx maxy] in this plot and then find q closest points to this point with q being
equal to number of ground truth clusters. We use the Gaussian cut off kernel.

All algorithms are provided with the actual number of clusters that exist in the input image, except
the CNN and MS algorithm which are supposed to automatically determine the number of clusters in
the process of clustering. Euclidean distance is used in both k-Means and FCM as the distance mea-
sure. All algorithms are optimized for their best performance in each experiment (e.g., by varying
the type of affinity, scale, and normalization). The last three algorithms have been very successful
for solving the perceptual grouping problem in computer vision.

3.4 EXPERIMENTS AND RESULTS

We run a total of nine experiments. The first six experiments aim to evaluate the performance of
the proposed method with respect to the benchmark algorithms and contain different set-ups with
geometric shape and Gaussian mixture data. The last three experiments test the robustness of the
proposed method.

Experiment 1: We generate images with 2 objects randomly chosen from 5 shapes. We use 1800
training and 200 testing images. The goal here is to study the effect of cluster heterogeneity on the
results. Results of the experiment 1, the first row of Table 1, show that CNN is able to successfully
cluster the data over the easy cases when two different objects are in the image. Yet, these images
challenge the other algorithms.

Experiment 2: We generate 200 test images with 2 objects of the same shape type (one of the
5 shapes). We use the network trained in our 1st experiment. This experiment concentrates on
the proposed method’s ability to cluster shapes that look very similar to each other. This case is

5



Under review as a conference paper at ICLR 2018

100

60

20

100

60

20

100

60

20

100

60

20

100

60

20

100

60

20

100

60

20

100

60

20

100

60

20

100

60

20

100

60

20

100

60

20

100

60

20

100

60

20

100

60

20

A B No Learning 100 Samples10 Samples1 Sample 1000 SamplesNo Learning 100 Samples10 Samples1 Sample 1000 Samples

Figure 4: Results of experiment 8. Sample outputs of the CNN trained with different number of images (n =
200). A: for shapes and B: for Gaussian distributions.

important since CNNs are known to be very good at generalizing. Accuracies, presented in Table 1,
drop compared to experiment 1 but CNN still outperforms other models.

Experiment 3: We generate images with 3 objects randomly chosen from 3 shapes (Ring,
SquareRing, and Bar). We use 2700 training images. Figure 3(A) illustrates the output of mod-
els over 4 examples. In the first example, the bar slightly touches the rotated square. While CNN
is capable of handling this case, other models bleed around the point of touch. In example two, the
square is occluded with the bar. Again, while CNN is able to correctly assign the cluster labels to oc-
cluded objects, other models are drastically hindered. Our model scores 81.2% while other models
perform no better than 70%. Similar patterns can be observed over the other two examples. These
findings also hold over images with varying numbers of objects, and parameters (e.g., 5 objects, 5
shapes) as well as Gaussian clusters (see Figure 3(B)).

Experiment 4: We consider a more challenging case of having 3 objects sampled from 5 shapes.
Here, the train set contains 7000 images. Results are lower in experiment 4 compared to the first 2
experiments. We find that performance drops as we add more objects or increase the shape variety.

Table 1: Quantitative comparison of clustering algo-
rithms over shape stimuli. The best one is highlighted
in bold. Rows in each experiment show means and stan-
dard deviations, respectively.
Model CNN kM FCM NJW SC MS CFSFDP

Exp 1 0.916 0.850 0.858 0.816 0.805 0.748 0.771
0.131 0.173 0.165 0.220 0.213 0.181 0.207

Exp 2 0.895 0.849 0.859 0.813 0.811 0.749 0.756
0.151 0.176 0.168 0.224 0.217 0.192 0.212

Exp 3 0.895 0.770 0.771 0.721 0.760 0.714 0.728
0.098 0.107 0.103 0.138 0.139 0.116 0.134

Exp 4 0.871 0.798 0.804 0.703 0.739 0.714 0.729
0.117 0.120 0.117 0.190 0.153 0.167 0.130

Experiments 5 & 6: We use images that can
have 2 or 3 different Gaussian clusters both in
training and testing data. We do not give the
number of clusters to CNN and MS algorithms
during testing. Experiment 5 has clusters that
have (100-400) number of points, whereas
experiment 6 has denser clusters (400-700)
points. As it can be seen in Table 2, similar to
shapes, CNN is superior to other approaches in
clustering Gaussian distributions.

Experiment 7: We further investigate the be-
havior of CNN to different number of clusters
in images. Applying a network trained over 3 objects to cluster 2 objects (over shapes), shows a
drop in performance compared to the situation where the network was trained on 2 objects (from
91.6% to 88%). The accuracy is still high and better than other algorithms. This result suggests that
CNN model is not fitted to a certain task and learns about what constitutes a cluster.

Table 2: Quantitative comparison of algorithms over Gaus-
sian stimuli. CNN is over 15K training data and 1K test.

Model CNN kM FCM NJW SC MS CFSFDP

Exp 5 0.920 0.868 0.870 0.844 0.853 0.838 0.878
d(100-400) 0.112 0.138 0.135 0.158 0.145 0.176 0.152
Exp 6 0.916 0.859 0.854 0.845 0.851 0.840 0.895
d(400-700) 0.116 0.136 0.135 0.150 0.138 0.180 0.143

Experiment 8: Here, we investigates
the generalization power using different
amounts of train data for shapes and Gaus-
sian distributions. A model is first trained
over a variable number of n images (n ∈
{1, 10, 100, 1000, 3000, 7000}) and is then
tested over 200 test images. To measure the
lower bound, we also test a randomly ini-
tialized network that has not seen any training sample. Results are shown in Figure 4. The left and
right panels in this figure show models’ predictions for shapes and Gaussian clusters respectively.
Expectedly, it shows that the model fails without training (i.e., model with its weights randomly

6



Under review as a conference paper at ICLR 2018

initialized). Here, the model achieves 34% accuracy. To our surprise, training with only a single
sample leads to a better than chance performance of 62.7% (chance is 50%) for shapes. Training
with only 10 samples gives a descent accuracy (68.3%). Increasing the training size to 100 leads to
a performance comparable to some algorithms (NJW). With 1000 examples, the model is as good as
k-Means and FCM and better than other methods. This result is illustrated in Figure 5b.B. Results
on shape and Gaussian clusters follow a similar trend. In sum, results of this experiment suggest that
our model is quite efficient in learning from a few samples and generalizes well to unseen cases.

Experiment 9: We test the robustness of our model to noise by randomly switch some points in the
background to 1 (i.e., making them shape points). Figure 5a shows some examples. The pre-trained
models from the first and fifth experiments, trained over noiseless data, are applied to the noisy
test images. We do not set a threshold in the output so the noises also receive a cluster id. In this
experiment, we are interested in analyzing the effect of injecting additional noise on the real clusters.
To measure the performance over noisy images, we discard the noise pixels in the evaluation. Two
inputs, corrupted with 3 levels of noise, are shown in Figure 5a for both shape and Gaussian clusters.
Figure 5b.A shows a gradual decrease in performance by increasing the amount of noise. Network
is affected by noise more when the clusters are Gaussians since it is a harder task as can be seen
from Figure 5a. Even with highly degraded images especially for shapes, the model does reasonably
well. Therefore, our model, unlike other methods, is robust to noise.

We repeated experiments 4 and 5 with randomly labeled clusters as opposed to our ground-truth
generation which follows a top-down ordering. The networks did not learn from such ground truth
and give accuracy of 54% for experiment 4, and 63.62% for experiment 5 (still above chance).

3.5 USER STUDY
250 500 1000 250 500 1000A B

(a)

500
10

0
15

0
20

0
25

0

50
0

10
00

number of training datanoise level

A B

1 10 100 1K 3K 7K 15K
0.6

0.7

0.8

0.9

shape
gaussian mixture

0.6

0.7

0.8

0.9

pa
irw

is
e 

ac
cu

ra
cy

shape
gaussian mixture

(b)

Figure 5: (a) Results of experiment 9. Sample outputs of CNN,
trained over noiseless data, over 3 images corrupted with {250,
500, 1000} amount of noise. A: Shape clusters, B: Gaussian clus-
ters. (b) A: Results of experiment 9, noise level versus pairwise
accuracy. B: Results of experiment 8, number of training data sam-
ples versus pairwise accuracy.

To answer whether the clustering re-
sults by our method are closer to
human perception of clusters, we
ran a user study by asking subjects
to choose the output of the model,
among three alternatives, that best de-
scribes a set of data points. Three
methods include CNN, FCM, and
CFSFDP, which were the three best
in the Gaussian experiment.

Subjects: Fourteen students from the
University of [masked] (8 women,
mean age 24.6) participated. They
all had normal or corrected-to-normal
vision.

Procedure: Fig. 6.A shows a sample
trial in which an image was shown
at the top and 3 alternative solutions
were shown at the bottom. The loca-
tions were chosen randomly for each
algorithm and were counter balanced
over all stimuli. Subjects sat 80 cm
away from a 17” LCD monitor. They
were instructed to select the cluster-
ing that they thought best describes
the data. After pressing a key (1, 2, or
3 identifying one of the algorithms),
screen moved to the next trial and so
on. The experiment took about 40
minutes to complete. There was no time constraint for each trial. There was a practice session
of five trials for the subjects to get familiar with the goal of the experiment.

7



Under review as a conference paper at ICLR 2018

Stimuli: We used the GMM stimuli for the user study. Cases where all three methods performed
better than 95% were discarded. Eventually, 300 stimuli were chosen (122 with 2 clusters and 178
with three).

Result: Fig. 6.B shows the fraction of the cases where subjects chose models (averaged over all
subjects). As it shows, subjects favored CNN output more frequently than the other two methods
(p=2.52e − 06 CNN vs. FCM; p=0.045 CNN vs. CFSFDP; using t-test over subjects; n=14). This
also holds over stimuli with two and three clusters. The average accuracies of the three clustering
algorithms are shown in Fig. 6.C. As it can be seen CNN does better than other methods over the 300
stimuli. Results of the user study indicate that our method produces clusters that are more aligned
with human clustering judgments.

4 CONCLUSION

CNN FCM CFSFDP
0.74

0.76

0.78

0.8

0.82

0.84

0.86

0.88

Pa
irw

is
e 

ac
cu

ra
cy

Models

CNN FCM CFSFDP

0.1

0.2

0.3

0.4

0.5
Fr

ac
tio

n 
of

 c
ho

ic
es

User study

All (300)
Two clusters (122)
Three clusters (178)

B C

A

Figure 6: A) A sample trial in the user study, B)
Fraction of the cases where subjects chose models
and break downs over clusters (all, 2, or 3), and
C) Performance of the models over the stimuli.

We argued that deep neural networks, especially
CNNs, hold a great promise for data clustering. We
are motivated by the fact that human vision (and
learning) is a general system capable of solving
both classification and clustering tasks thus blur-
ring the current dichotomy in treating these prob-
lems. Our results show that CNNs can successfully
handle complex and occluded clusters much better
than other algorithms. This means that a learning
mechanism, unsupervised or with minimal supervi-
sion, seems inevitable in capturing complex cluster
shapes.

While our formulation is supervised, feeding the la-
bels to the network is not always consistent. This is
where our work differs from semantic segmentation
and instance level segmentation. We exploited the
mean squared loss to train the network. It might be
possible to define other loss functions to teach the
network more efficiency using less number of train-
ing data or even with weaker labels. One possibility
is the pairwise accuracy that we used here for eval-
uation. Instead of correctly classifying labels, the
emphasis can be placed on correctly predicting whether two points belong to the same cluster, re-
gardless of cluster identities (i.e., class labels may vary).

Notice that while here we focused on synthetic stimuli, variations of the proposed CNN architecture,
have been successfully applied to natural image segmentation. Thus, CNNs offer a unified solution
that can be applied to different data modalities and even to higher dimensional data. Further work is
needed to extend this line of work to higher dimensions, and more versatile types of cluster shapes
(e.g., free form curves, Gestalt examples, density-based clusters). In this regard, adopting CNNs
trained on natural images containing a rich set of intermediate- and high-level patterns can give
invaluable insights.

In sum, our results provide encouragement for researchers seeking unified theoretical explanations
for supervised and unsupervised categorization but raise a range of challenging theoretical questions.
We emphasized more on the capacity of hierarchical frameworks and compositionality to capture
complex structures rather than the learning algorithms. Indeed, further discussion and research are
needed for training CNNs in unsupervised or weakly supervised manners. Some new works on
learning representations from videos (e.g., for predicting future frames) are particularly interesting.
Further, research on unsupervised training of spiking neural networks Masquelier & Thorpe (2007)
and CNNs (e.g., using Hebb rule Wadhwa & Madhow (2016)), along with computational modeling
(e.g., Serre et al. (2007); LeCun et al. (2015)), and experimental studies on mechanisms of human
vision (e.g., Yamins et al. (2014)), will hopefully converge to computational vision algorithms that
are capable of solving a variety of tasks, including classification and clustering.

8



Under review as a conference paper at ICLR 2018

REFERENCES

Charu C Aggarwal and Chandan K Reddy. Data clustering: algorithms and applications. Chapman and
Hall/CRC, 2013.

Francis R Bach and Michael I Jordan. Learning spectral clustering. In NIPS, pp. 305–312, 2004.

Ali Borji and Laurent Itti. State-of-the-art in visual attention modeling. IEEE PAMI, 35(1):185–207, 2013.

Ali Borji and Laurent Itti. Human vs. computer in scene and object recognition. In CVPR, pp. 113–120, 2014.

Ali Borji, Dicky N Sihite, and Laurent Itti. Quantitative analysis of human-model agreement in visual saliency
modeling: A comparative study. IEEE Transactions on Image Processing, 22(1):55–69, 2013.

François Chollet. Keras, 2015.

Ronan Collobert, Jason Weston, Léon Bottou, Michael Karlen, Koray Kavukcuoglu, and Pavel Kuksa. Natural
language processing (almost) from scratch. Journal of Machine Learning Research, 12:2493–2537, 2011.

Dorin Comaniciu and Peter Meer. Mean shift: A robust approach toward feature space analysis. IEEE Trans-
actions on pattern analysis and machine intelligence, 24(5):603–619, 2002.

George E Dahl, Dong Yu, Li Deng, and Alex Acero. Context-dependent pre-trained deep neural networks for
large-vocabulary speech recognition. IEEE Transactions on Audio, Speech, and Language Processing, 20
(1):30–42, 2012.

James J DiCarlo and David D Cox. Untangling invariant object recognition. Trends in cognitive sciences, 11
(8):333–341, 2007.

Joseph C Dunn. A fuzzy relative of the isodata process and its use in detecting compact well-separated clusters.
1973.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron
Courville, and Yoshua Bengio. Generative adversarial nets. In NIPS, pp. 2672–2680, 2014.

Alex Graves and Navdeep Jaitly. Towards end-to-end speech recognition with recurrent neural networks. In
ICML, pp. 1764–1772, 2014.

John R Hershey, Zhuo Chen, Jonathan Le Roux, and Shinji Watanabe. Deep clustering: Discriminative embed-
dings for segmentation and separation. In Acoustics, Speech and Signal Processing (ICASSP), 2016 IEEE
International Conference on, pp. 31–35. IEEE, 2016.

Yen-Chang Hsu and Zsolt Kira. Neural network-based clustering using pairwise constraints. arXiv preprint
arXiv:1511.06321, 2015.

Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convolutional neural
networks. In NIPS, 2012.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to document
recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. Nature, 521(7553):436–444, 2015.

Sergey Levine, Chelsea Finn, Trevor Darrell, and Pieter Abbeel. End-to-end training of deep visuomotor
policies. arXiv preprint arXiv:1504.00702, 2015.

Stuart Lloyd. Least squares quantization in pcm. IEEE transactions on information theory, 28(2):129–137,
1982.

Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully convolutional networks for semantic segmentation.
In CVPR, pp. 3431–3440, 2015.

Timothée Masquelier and Simon J Thorpe. Unsupervised learning of visual features through spike timing
dependent plasticity. PLoS Comput Biol, 3(2):e31, 2007.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Bellemare, Alex
Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level control through deep
reinforcement learning. Nature, 518(7540):529–533, 2015.

9



Under review as a conference paper at ICLR 2018

Andrew Y Ng, Michael I Jordan, and Yair Weiss. On spectral clustering: Analysis and an algorithm. In NIPS,
pp. 849–856, 2002.

Pedro O Pinheiro, Tsung-Yi Lin, Ronan Collobert, and Piotr Dollár. Learning to refine object segments. In
ECCV, 2016.

William M Rand. Objective criteria for the evaluation of clustering methods. Journal of the American Statistical
association, 66(336):846–850, 1971.

Alex Rodriguez and Alessandro Laio. Clustering by fast search and find of density peaks. Science, 344(6191):
1492–1496, 2014.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedical image
segmentation. In International Conference on Medical Image Computing and Computer-Assisted Interven-
tion, pp. 234–241. Springer, 2015.

Thomas Serre, Lior Wolf, Stanley Bileschi, Maximilian Riesenhuber, and Tomaso Poggio. Robust object
recognition with cortex-like mechanisms. IEEE PAMI, 29(3), 2007.

Jianbo Shi and Jitendra Malik. Normalized cuts and image segmentation. IEEE PAMI, 22(8):888–905, 2000.

Aseem Wadhwa and Upamanyu Madhow. Bottom-up deep learning using the hebbian principle, 2016.

Zhangyang Wang, Shiyu Chang, Jiayu Zhou, Meng Wang, and Thomas S Huang. Learning a task-specific deep
architecture for clustering. In SIAM, pp. 369–377. SIAM, 2016.

Daniel LK Yamins, Ha Hong, Charles F Cadieu, Ethan A Solomon, Darren Seibert, and James J DiCarlo.
Performance-optimized hierarchical models predict neural responses in higher visual cortex. PNAS, 2014.

Shuai Zheng, Sadeep Jayasumana, Bernardino Romera-Paredes, Vibhav Vineet, Zhizhong Su, Dalong Du,
Chang Huang, and Philip HS Torr. Conditional random fields as recurrent neural networks. In ICCV, 2015.

10


	Introduction
	Model Description
	The network architecture
	Training procedure and ground truth

	Experimental Setup
	Synthetic data
	Evaluation metric
	Benchmark algorithms
	Experiments and Results
	User study

	Conclusion

