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ABSTRACT

An intriguing property of deep neural networks is the existence of adversarial ex-
amples, which can transfer among different architectures. These transferable ad-
versarial examples may severely hinder deep neural network-based applications.
Previous works mostly study the transferability using small scale datasets. In this
work, we are the first to conduct an extensive study of the transferability over
large models and a large scale dataset, and we are also the first to study the trans-
ferability of targeted adversarial examples with their target labels. We study both
non-targeted and targeted adversarial examples, and show that while transferable
non-targeted adversarial examples are easy to find, targeted adversarial examples
generated using existing approaches almost never transfer with their target labels.
Therefore, we propose novel ensemble-based approaches to generating transfer-
able adversarial examples. Using such approaches, we observe a large proportion
of targeted adversarial examples that are able to transfer with their target labels for
the first time. We also present some geometric studies to help understanding the
transferable adversarial examples. Finally, we show that the adversarial examples
generated using ensemble-based approaches can successfully attack Clarifai.com,
which is a black-box image classification system.

1 INTRODUCTION

Recent research has demonstrated that for a deep architecture, it is easy to generate adversarial
examples, which are close to the original ones but are misclassified by the deep architecture (Szegedy
et al. (2013); Goodfellow et al. (2014)). The existence of such adversarial examples may have severe
consequences, which hinders vision-understanding-based applications, such as autonomous driving.
Most of these studies require explicit knowledge of the underlying models. It remains an open
question how to efficiently find adversarial examples for a black-box model.

Several works have demonstrated that some adversarial examples generated for one model may
also be misclassified by another model. Such a property is referred to as transferability, which
can be leveraged to perform black-box attacks. This property has been exploited by constructing
a substitute of the black-box model, and generating adversarial instances against the substitute to
attack the black-box system (Papernot et al. (2016a;b)). However, so far, transferability is mostly
examined over small datasets, such as MNIST (LeCun et al. (1998)) and CIFAR-10 (Krizhevsky &
Hinton (2009)). It has yet to be better understood transferability over large scale datasets, such as
ImageNet (Russakovsky et al. (2015)).

In this work, we are the first to conduct an extensive study of the transferability of different adver-
sarial instance generation strategies applied to different state-of-the-art models trained over a large
scale dataset. In particular, we study two types of adversarial examples: (1) non-targeted adversar-
ial examples, which can be misclassified by a network, regardless of what the misclassified labels
may be; and (2) targeted adversarial examples, which can be classified by a network as a target
label. We examine several existing approaches searching for adversarial examples based on a single
model. While non-targeted adversarial examples are more likely to transfer, we observe few targeted
adversarial examples that are able to transfer with their target labels.

∗Work is done while visiting UC Berkeley.
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We further propose a novel strategy to generate transferable adversarial images using an ensemble
of multiple models. In our evaluation, we observe that this new strategy can generate non-targeted
adversarial instances with better transferability than other methods examined in this work. Also, for
the first time, we observe a large proportion of targeted adversarial examples that are able to transfer
with their target labels.

We study geometric properties of the models in our evaluation. In particular, we show that the
gradient directions of different models are orthogonal to each other. We also show that decision
boundaries of different models align well with each other, which partially illustrates why adversarial
examples can transfer.

Last, we study whether generated adversarial images can attack Clarifai.com, a commercial com-
pany providing state-of-the-art image classification services. We have no knowledge about the train-
ing dataset and the types of models used by Clarifai.com; meanwhile, the label set of Clarifai.com
is quite different from ImageNet’s. We show that even in this case, both non-targeted and targeted
adversarial images transfer to Clarifai.com. This is the first work documenting the success of gen-
erating both non-targeted and targeted adversarial examples for a black-box state-of-the-art online
image classification system, whose model and training dataset are unknown to the attacker.

Contributions and organization. We summarize our main contributions as follows:

• For ImageNet models, we show that while existing approaches are effective to generate
non-targeted transferable adversarial examples (Section 3), only few targeted adversarial
examples generated by existing methods can transfer (Section 4).

• We propose novel ensemble-based approaches to generate adversarial examples (Sec-
tion 5). Our approaches enable a large portion of targeted adversarial examples to transfer
among multiple models for the first time.

• We are the first to present that targeted adversarial examples generated for models trained
on ImageNet can transfer to a black-box system, i.e., Clarifai.com, whose model, training
data, and label set is unknown to us (Section 7). In particular, Clarifai.com’s label set is
very different from ImageNet’s.

• We conduct the first analysis of geometric properties for large models trained over Ima-
geNet (Section 6), and the results reveal several interesting findings, such as the gradient
directions of different models are orthogonal to each other.

In the following, we first discuss related work, and then present the background knowledge and
experiment setup in Section 2. Then we present each of our experiments and conclusions in the
corresponding section as mentioned above.

Related work. Transferability of adversarial examples was first examined by Szegedy et al.
(2013), which studied the transferability (1) between different models trained over the same dataset;
and (2) between the same or different model trained over disjoint subsets of a dataset; However,
Szegedy et al. (2013) only studied MNIST.

The study of transferability was followed by Goodfellow et al. (2014), which attributed the phe-
nomenon of transferability to the reason that the adversarial perturbation is highly aligned with the
weight vector of the model. Again, this hypothesis was tested using MNIST and CIFAR-10 datasets.
We show that this is not the case for models trained over ImageNet.

Papernot et al. (2016a;b) examined constructing a substitute model to attack a black-box target
model. To train the substitute model, they developed a technique that synthesizes a training set and
annotates it by querying the target model for labels. They demonstrate that using this approach,
black-box attacks are feasible towards machine learning services hosted by Amazon, Google, and
MetaMind. Further, Papernot et al. (2016a) studied the transferability between deep neural networks
and other models such as decision tree, kNN, etc.

Our work differs from Papernot et al. (2016a;b) in three aspects. First, in these works, only the model
and the training process are a black box, but the training set and the test set are controlled by the
attacker; in contrast, we attack Clarifai.com, whose model, training data, training process, and even
the test label set are unknown to the attacker. Second, the datasets studied in these works are small
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scale, i.e., MNIST and GTSRB (Stallkamp et al. (2012)); in our work, we study the transferability
over larger models and a larger dataset, i.e., ImageNet. Third, to attack black-box machine learning
systems, we do not query the systems for constructing the substitute model ourselves.

In a concurrent and independent work, Moosavi-Dezfooli et al. (2016) showed the existence of a
universal perturbation for each model, which can transfer across different images. They also show
that the adversarial images generated using these universal perturbations can transfer across different
models on ImageNet. However, they only examine the non-targeted transferability, while our work
studies both non-targeted and targeted transferability over ImageNet.

2 ADVERSARIAL DEEP LEARNING AND TRANSFERABILITY

2.1 THE ADVERSARIAL DEEP LEARNING PROBLEM

We assume a classifier fθ(x) outputs a category (or a label) as the prediction. Given an original
image x, with ground truth label y, the adversarial deep learning problem is to seek for adversarial
examples for the classifier fθ(x). Specifically, we consider two classes of adversarial examples.
A non-targeted adversarial example x? is an instance that is close to x, in which case x? should
have the same ground truth as x, while fθ(x?) 6= y. For the problem to be non-trivial, we assume
fθ(x) = y without loss of generality. A targeted adversarial example x? is close to x and satisfies
fθ(x

?) = y?, where y? is a target label specified by the adversary, and y? 6= y.

2.2 APPROACHES FOR GENERATING ADVERSARIAL EXAMPLES

In this work, we consider three classes of approaches for generating adversarial examples:
optimization-based approaches, fast gradient approaches, and fast gradient sign approaches. Each
class has non-targeted and targeted versions respectively.

2.2.1 APPROACHES FOR GENERATING NON-TARGETED ADVERSARIAL EXAMPLES

Formally, given an image x with ground truth y = fθ(x), searching for a non-targeted adversarial
example can be modeled as searching for an instance x? to satisfy the following constraints:

fθ(x
?) 6= y (1)

d(x, x?) ≤ B (2)

where d(·, ·) is a metric to quantify the distance between an original image and its adversarial coun-
terpart, and B, called distortion, is an upper bound placed on this distance. Without loss of gener-
ality, we consider model f is composed of a network Jθ(x), which outputs the probability for each
category, so that f outputs the category with the highest probability.

Optimization-based approach. One approach is to approximate the solution to the following
optimization problem:

argminx?λd(x, x?)− `(1y, Jθ(x?)) (3)
where 1y is the one-hot encoding of the ground truth label y, ` is a loss function to measure the
distance between the prediction and the ground truth, and λ is a constant to balance constraints (2)
and (1), which is empirically determined. Here, loss function ` is used to approximate constraint (1),
and its choice can affect the effectiveness of searching for an adversarial example. In this work, we
choose `(u, v) = log (1− u · v), which is shown to be effective by Carlini & Wagner (2016).

Fast gradient sign (FGS). Goodfellow et al. (2014) proposed the fast gradient sign (FGS) method
so that the gradient needs be computed only once to generate an adversarial example. FGS can be
used to generate adversarial images to meet the L∞ norm bound. Formally, non-targeted adversarial
examples are constructed as

x? ← clip(x+Bsgn(∇x`(1y, Jθ(x))))
Here, clip(x) is used to clip each dimension of x to the range of pixel values, i.e., [0, 255] in this
work. We make a slight variation to choose `(u, v) = log (1− u · v), which is the same as used in
the optimization-based approach.
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Fast gradient (FG). The fast gradient approach (FG) is similar to FGS, but instead of moving
along the gradient sign direction, FG moves along the gradient direction. In particular, we have

x? ← clip(x+B
∇x`(1y, Jθ(x))
||∇x`(1y, Jθ(x))||

))

Here, we assume the distance metric in constraint (2), d(x, x?) = ||x − x?|| is a norm of x − x?.
The term sgn(∇x`) in FGS is replaced by ∇x`

||∇x`|| to meet this distance constraint.

We call both FGS and FG fast gradient-based approaches.

2.2.2 APPROACHES FOR GENERATING TARGETED ADVERSARIAL EXAMPLES

A targeted adversarial image x? is similar to a non-targeted one, but constraint (1) is replaced by
fθ(x

?) = y? (4)
where y? is the target label given by the adversary. For the optimization-based approach, we ap-
proximate the solution by solving the following dual objective:

argminx?λd(x, x?) + `′(1y? , Jθ(x
?)) (5)

In this work, we choose the standard cross entropy loss `′(u, v) = −
∑
i

ui log vi.

For FGS and FG, we construct adversarial examples as follows:
x? ← clip(x−Bsgn(∇x`′(1y? , Jθ(x)))) (FGS)

x? ← clip(x−B ∇x`′(1y? , Jθ(x))
||∇x`′(1y? , Jθ(x))||

) (FG)

where `′ is the same as the one used for the optimization-based approach.

2.3 EVALUATION METHODOLOGY

For the rest of the paper, we focus on examining the transferability among state-of-the-art models
trained over ImageNet (Russakovsky et al. (2015)). In this section, we detail the models to be
examined, the dataset to be evaluated, and the measurements to be used.

Models. We examine five networks, ResNet-50, ResNet-101, ResNet-152 (He et al. (2015))1,
GoogLeNet (Szegedy et al. (2014))2, and VGG-16 (Simonyan & Zisserman (2014))3. We retrieve
the pre-trained models for each network online. The performance of these models on the ILSVRC
2012 (Russakovsky et al. (2015)) validation set can be found in our online technical report: Liu et al.
(2016). We choose these models to study the transferability between homogeneous architectures
(i.e., ResNet models) and heterogeneous architectures.

Dataset. It is less meaningful to examine the transferability of an adversarial image between two
models which cannot classify the original image correctly. Therefore, from the ILSVRC 2012 val-
idation set, we randomly choose 100 images, which can be classified correctly by all five models
in our examination. These 100 images form our test set. To perform targeted attacks, we manually
choose a target label for each image, so that its semantics is far from the ground truth. The images
and target labels in our evaluation can be found on website4.

Measuring transferability. Given two models, we measure the non-targeted transferability by
computing the percentage of the adversarial examples generated for one model that can be classified
correctly for the other. We refer to this percentage as accuracy. A lower accuracy means better
non-targeted transferability. We measure the targeted transferability by computing the percentage of
the adversarial examples generated for one model that are classified as the target label by the other
model. We refer to this percentage as matching rate. A higher matching rate means better targeted
transferability. For clarity, the reported results are only based on top-1 accuracy. Top-5 accuracy’s
counterparts can be found in our online technical report: Liu et al. (2016).

1
https://github.com/KaimingHe/deep-residual-networks

2
https://github.com/BVLC/caffe/tree/master/models/bvlc_googlenet

3
https://gist.github.com/ksimonyan/211839e770f7b538e2d8

4
https://github.com/sunblaze-ucb/transferability-advdnn-pub
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Distortion. Besides transferability, another important factor is the distortion between adversarial
images and the original ones. We measure the distortion by root mean square deviation, i.e., RMSD,
which is computed as d(x?, x) =

√∑
i(x

?
i − xi)2/N , where x? and x are the vector representations

of an adversarial image and the original one respectively, N is the dimensionality of x and x?, and
xi denotes the pixel value of the i-th dimension of x, within range [0, 255], and similar for x?i .

3 NON-TARGETED ADVERSARIAL EXAMPLES

In this section, we examine different approaches for generating non-targeted adversarial images.

3.1 OPTIMIZATION-BASED APPROACH

To apply the optimization-based approach for a single model, we initialize x? to be x and use Adam
Optimizer (Kingma & Ba (2014)) to optimize Objective (3) . We find that we can tune the RMSD
by adjusting the learning rate of Adam and λ. We find that, for each model, we can use a small
learning rate to generate adversarial images with small RMSD, i.e. < 2, with any λ. In fact, we find
that when initializing x? with x, Adam Optimizer will search for an adversarial example around x,
even when we set λ to be 0, i.e., not restricting the distance between x? and x. Therefore, we set
λ to be 0 for all experiments using optimization-based approaches throughout the paper. Although
these adversarial examples with small distortions can successfully fool the target model, however,
they cannot transfer well to other models (details can be found in our online technical report: Liu
et al. (2016)).

We increase the learning rate to allow the optimization algorithm to search for adversarial images
with larger distortion. In particular, we set the learning rate to be 4. We run Adam Optimizer for 100
iterations to generate the adversarial images. We observe that the loss converges after 100 iterations.
An alternative optimization-based approach leading to similar results can be found in our online
technical report: Liu et al. (2016).

Non-targeted adversarial examples transfer. We generate non-targeted adversarial examples on
one network, but evaluate them on another, and Table 1 Panel A presents the results. From the table,
we can observe that

• The diagonal contains all 0 values. This says that all adversarial images generated for one
model can mislead the same model.

• A large proportion of non-targeted adversarial images generated for one model using the
optimization-based approach can transfer to another.

• Although the three ResNet models share similar architectures which differ only in the hy-
perparameters, adversarial examples generated against a ResNet model do not necessarily
transfer to another ResNet model better than other non-ResNet models. For example, the
adversarial examples generated for VGG-16 have lower accuracy on ResNet-50 than those
generated for ResNet-152 or ResNet-101.

3.2 FAST GRADIENT-BASED APPROACHES

We then examine the effectiveness of fast gradient-based approaches. A good property of fast
gradient-based approaches is that all generated adversarial examples lie in a 1-D subspace. There-
fore, we can easily approximate the minimal distortion in this subspace of transferable adversarial
examples between two models. In the following, we first control the RMSD to study fast gradient-
based approaches’ effectiveness. Second, we study the transferable minimal distortions of fast
gradient-based approaches.

3.2.1 EFFECTIVENESS AND TRANSFERABILITY OF THE FAST GRADIENT-BASED
APPROACHES

Since the distortion B and the RMSD of the generated adversarial images are highly correlated, we
can choose this hyperparameter B to generate adversarial images with a given RMSD. In Table 1
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RMSD ResNet-152 ResNet-101 ResNet-50 VGG-16 GoogLeNet
ResNet-152 22.83 0% 13% 18% 19% 11%
ResNet-101 23.81 19% 0% 21% 21% 12%
ResNet-50 22.86 23% 20% 0% 21% 18%
VGG-16 22.51 22% 17% 17% 0% 5%

GoogLeNet 22.58 39% 38% 34% 19% 0%
Panel A: Optimization-based approach

RMSD ResNet-152 ResNet-101 ResNet-50 VGG-16 GoogLeNet
ResNet-152 23.45 4% 13% 13% 20% 12%
ResNet-101 23.49 19% 4% 11% 23% 13%
ResNet-50 23.49 25% 19% 5% 25% 14%
VGG-16 23.73 20% 16% 15% 1% 7%

GoogLeNet 23.45 25% 25% 17% 19% 1%
Panel B: Fast gradient approach

Table 1: Transferability of non-targeted adversarial images generated between pairs of models. The
first column indicates the average RMSD of all adversarial images generated for the model in the
corresponding row. The cell (i, j) indicates the accuracy of the adversarial images generated for
model i (row) evaluated over model j (column). Results of top-5 accuracy can be found in our
online technical report: Liu et al. (2016).

Panel B, we generate adversarial images using FG such that the average RMSD is almost the same
as those generated using the optimization-based approach. We observe that the diagonal values in
the table are all positive, which means that FG cannot fully mislead the models. A potential reason
is that, FG can be viewed as approximating the optimization, but is tailored for speed over accuracy.

On the other hand, the values of non-diagonal cells in the table, which correspond to the accuracies
of adversarial images generated for one model but evaluated on another, are comparable with or less
than their counterparts in the optimization-based approach. This shows that non-targeted adversarial
examples generated by FG exhibit transferability as well.

We also evaluate FGS, but the transferability of the generated images is worse than the ones gen-
erated using either FG or optimization-based approaches. The results can be found in our online
technical report: Liu et al. (2016). It shows that when RMSD is around 23, the accuracies of the
adversarial images generated by FGS is greater than their counterparts for FG. We hypothesize the
reason why transferability of FGS is worse to this fact.

3.2.2 ADVERSARIAL IMAGES WITH MINIMAL TRANSFERABLE RMSD

For an image x and two models M1,M2, we can approximate the minimal distortion B along a
direction δ, such that xB = x+Bδ generated for M1 is adversarial for both M1 and M2. Here δ is
the direction, i.e., sgn(∇x`) for FGS, and∇x`/||∇x`|| for FG.

We refer to the minimal transferable RMSD from M1 to M2 using FG (or FGS) as the RMSD of
a transferable adversarial example xB with the minimal transferable distortion B from M1 to M2

using FG (or FGS). The minimal transferable RMSD can illustrate the tradeoff between distortion
and transferability.

In the following, we approximate the minimal transferable RMSD through a linear search by sam-
pling B every 0.1 step. We choose the linear-search method rather than binary-search method to
determine the minimal transferable RMSD because the adversarial images generated from an origi-
nal image may come from multiple intervals. The experiment can be found in our online technical
report: Liu et al. (2016).

Minimal transferable RMSD using FG and FGS. Figure 1 plots the cumulative distribution
function (CDF) of the minimal transferable RMSD from VGG-16 to ResNet-152 using non-targeted
FG (Figure 1a) and FGS (Figure 1b). From the figures, we observe that both FG and FGS can find
100% transferable adversarial images with RMSD less than 80.91 and 86.56 respectively. Further,
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(a) Fast Gradient (b) Fast Gradient Sign

Figure 1: The CDF of the minimal transferable RMSD from VGG-16 to ResNet-152 using FG (a)
and FGS (b). The green line labels the median minimal transferable RMSD, while the red line labels
the minimal transferable RMSD to reach 90% percentage.

RMSD ResNet-152 ResNet-101 ResNet-50 VGG-16 GoogLeNet
ResNet-152 23.13 100% 2% 1% 1% 1%
ResNet-101 23.16 3% 100% 3% 2% 1%
ResNet-50 23.06 4% 2% 100% 1% 1%
VGG-16 23.59 2% 1% 2% 100% 1%

GoogLeNet 22.87 1% 1% 0% 1% 100%

Table 2: The matching rate of targeted adversarial images generated using the optimization-based
approach. The first column indicates the average RMSD of the generated adversarial images. Cell
(i, j) indicates that matching rate of the targeted adversarial images generated for model i (row)
when evaluated on model j (column). The top-5 results can be found in our online technical re-
port: Liu et al. (2016).

the FG method can generate transferable attacks with smaller RMSD than FGS. A potential rea-
son is that while FGS minimizes the distortion’s L∞ norm, FG minimizes its L2 norm, which is
proportional to RMSD.

3.3 COMPARISON WITH RANDOM PERTURBATIONS

We also evaluate the test accuracy when we add a Gaussian noise to the 100 images in our test
set. The concrete results can be found in our online technical report: Liu et al. (2016), where we
show the conclusion that the “transferability” of this approach is significantly worse than either
optimization-based approaches or fast gradient-based approaches.

4 TARGETED ADVERSARIAL EXAMPLES

In this section, we examine the transferability of targeted adversarial images. Table 2 presents
the results for using optimization-based approach. We observe that (1) the prediction of targeted
adversarial images can match the target labels when evaluated on the same model that is used to
generate the adversarial examples; but (2) the targeted adversarial images can be rarely predicted
as the target labels by a different model. We call the latter that the target labels do not transfer.
Even when we increase the distortion, we still do not observe improvements on making target label
transfer. Some results can be found in our online technical report: Liu et al. (2016). Even if we
compute the matching rate based on top-5 accuracy, the highest matching rate is only 10%. The
results can be found in our online technical report: Liu et al. (2016).

We also examine the targeted adversarial images generated by fast gradient-based approaches, and
we observe that the target labels do not transfer as well. The results can be found in our online
technical report: Liu et al. (2016). In fact, most targeted adversarial images cannot mislead the
model, for which the adversarial images are generated, to predict the target labels, regardless of how
large the distortion is used. We attribute it to the fact that the fast gradient-based approaches only
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search for attacks in a 1-D subspace. In this subspace, the total possible predictions may contain a
small subset of all labels, which usually does not contain the target label. In Section 6, we study
decision boundaries regarding this issue.

We also evaluate the matching rate of images added with Gaussian noise, as described in Section 3.3.
However, we observe that the matching rate of any of the 5 models is 0%. Therefore, we conclude
that by adding Gaussian noise, the attacker cannot generate successful targeted adversarial examples
at all, let alone targeted transferability.

5 ENSEMBLE-BASED APPROACHES

We hypothesize that if an adversarial image remains adversarial for multiple models, then it is more
likely to transfer to other models as well. We develop techniques to generate adversarial images for
multiple models. The basic idea is to generate adversarial images for the ensemble of the models.
Formally, given k white-box models with softmax outputs being J1, ..., Jk, an original image x,
and its ground truth y, the ensemble-based approach solves the following optimization problem (for
targeted attack):

argminx? − log
(
(

k∑
i=1

αiJi(x
?)) · 1y?

)
+ λd(x, x?) (6)

where y? is the target label specified by the adversary,
∑
αiJi(x

?) is the ensemble model, and αi
are the ensemble weights,

∑k
i=1 αi = 1. Note that (6) is the targeted objective. The non-targeted

counterpart can be derived similarly. In doing so, we hope the generated adversarial images remain
adversarial for an additional black-box model Jk+1.

We evaluate the effectiveness of the ensemble-based approach. For each of the five models, we treat
it as the black-box model to attack, and generate adversarial images for the ensemble of the rest
four, which is considered as white-box. We evaluate the generated adversarial images over all five
models. Throughout the rest of the paper, we refer to the approaches evaluated in Section 3 and 4 as
the approaches using a single model, and to the ensemble-based approaches discussed in this section
as the approaches using an ensemble model.

Optimization-based approach. We use Adam to optimize the objective (6) with equal ensemble
weights across all models in the ensemble to generate targeted adversarial examples. In particular,
we set the learning rate of Adam to be 8 for each model. In each iteration, we compute the Adam
update for each model, sum up the four updates, and add the aggregation onto the image. We run 100
iterations of updates, and we observe that the loss converges after 100 iterations. By doing so, for the
first time, we observe a large proportion of the targeted adversarial images whose target labels can
transfer. The results are presented in Table 3. We observe that not all targeted adversarial images
can be misclassified to the target labels by the models used in the ensemble. This suggests that
while searching for an adversarial example for the ensemble model, there is no direct supervision to
mislead any individual model in the ensemble to predict the target label. Further, from the diagonal
numbers of the table, we observe that the transferability to ResNet models is better than to VGG-16
or GoogLeNet, when adversarial examples are generated against all models except the target model.

We also evaluate non-targeted adversarial images generated by the ensemble-based approach. We
observe that the generated adversarial images have almost perfect transferability. We use the same
procedure as for the targeted version, except the objective to generate the adversarial images. We
evaluate the generated adversarial images over all models. The results are presented in Table 4.
The generated adversarial images all have RMSDs around 17, which are lower than 22 to 23 of
the optimization-based approach using a single model (See Table 1 for comparison). When the
adversarial images are evaluated over models which are not used to generate the attack, the accuracy
is no greater than 6%. For a reference, the corresponding accuracies for all approaches evaluated in
Section 3 using one single model are at least 12%. Our experiments demonstrate that the ensemble-
based approaches can generate almost perfectly transferable adversarial images.

Fast gradient-based approach. The results for non-targeted fast gradient-based approaches ap-
plied to the ensemble can be found in our online technical report: Liu et al. (2016). We observe
that the diagonal values are not zero, which is the same as we observed in the results for FG and
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RMSD ResNet-152 ResNet-101 ResNet-50 VGG-16 GoogLeNet
-ResNet-152 30.68 38% 76% 70% 97% 76%
-ResNet-101 30.76 75% 43% 69% 98% 73%
-ResNet-50 30.26 84% 81% 46% 99% 77%
-VGG-16 31.13 74% 78% 68% 24% 63%

-GoogLeNet 29.70 90% 87% 83% 99% 11%

Table 3: The matching rate of targeted adversarial images generated using the optimization-based
approach. The first column indicates the average RMSD of the generated adversarial images. Cell
(i, j) indicates that percentage of the targeted adversarial images generated for the ensemble of the
four models except model i (row) is predicted as the target label by model j (column). In each row,
the minus sign “−” indicates that the model of the row is not used when generating the attacks.
Results of top-5 matching rate can be found in our online technical report: Liu et al. (2016).

RMSD ResNet-152 ResNet-101 ResNet-50 VGG-16 GoogLeNet
-ResNet-152 17.17 0% 0% 0% 0% 0%
-ResNet-101 17.25 0% 1% 0% 0% 0%
-ResNet-50 17.25 0% 0% 2% 0% 0%
-VGG-16 17.80 0% 0% 0% 6% 0%

-GoogLeNet 17.41 0% 0% 0% 0% 5%

Table 4: Accuracy of non-targeted adversarial images generated using the optimization-based ap-
proach. The first column indicates the average RMSD of the generated adversarial images. Cell
(i, j) corresponds to the accuracy of the attack generated using four models except model i (row)
when evaluated over model j (column). In each row, the minus sign “−” indicates that the model
of the row is not used when generating the attacks. Results of top-5 accuracy can be found in our
online technical report: Liu et al. (2016).

FGS applied to a single model. We hypothesize a potential reason is that the gradient directions of
different models in the ensemble are orthogonal to each other, as we will illustrate in Section 6. In
this case, the gradient direction of the ensemble is almost orthogonal to the one of each model in the
ensemble. Therefore searching along this direction may require large distortion to reach adversarial
examples.

For targeted adversarial examples generated using FG and FGS based on an ensemble model, their
transferability is no better than the ones generated using a single model. The results can be found in
our online technical report: Liu et al. (2016). We hypothesize the same reason to explain this: there
are only few possible target labels in total in the 1-D subspace.

6 GEOMETRIC PROPERTIES OF DIFFERENT MODELS

In this section, we show some geometric properties of the models to try to better understand transfer-
able adversarial examples. Prior works also try to understand the geometic properties of adversarial
examples theoretically (Fawzi et al. (2016)) or empirically (Goodfellow et al. (2014)). In this work,
we examine large models trained over a large dataset with 1000 labels, whose geometric properties
are never examined before. This allows us to make new observations to better understand the models
and their adversarial examples.

The gradient directions of different models in our evaluation are almost orthogonal to each
other. We study whether the adversarial directions of different models align with each other. We
calculate cosine value of the angle between gradient directions of different models, and the results
can be found in our online technical report: Liu et al. (2016). We observe that all non-diagonal
values are close to 0, which indicates that for most images, their gradient directions with respect to
different models are orthogonal to each other.

Decision boundaries of the non-targeted approaches using a single model. We study the deci-
sion boundary of different models to understand why adversarial examples transfer. We choose two
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Figure 2: The example image to study the decision boundary. Its ID in ILSVRC 2012 validation set
is 49443, and its ground truth label is “anemone fish.”
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Figure 3: Decision regions of different models. We pick the same two directions for all plots: one is
the gradient direction of VGG-16 (x-axis), and the other is a random orthogonal direction (y-axis).
Each point in the span plane shows the predicted label of the image generated by adding a noise to
the original image (e.g., the origin corresponds to the predicted label of the original image). The
units of both axises are 1 pixel values. All sub-figure plots the regions on the span plane using the
same color for the same label. The image is in Figure 2.

normalized orthogonal directions δ1, δ2, one being the gradient direction of VGG-16 and the other
being randomly chosen. Each point (u, v) in this 2-D plane corresponds to the image x+uδ1+vδ2,
where x is the pixel value vector of the original image. For each model, we plot the label of the
image corresponding to each point, and get Figure 3 using the image in Figure 2.

We can observe that for all models, the region that each model can predict the image correctly
is limited to the central area. Also, along the gradient direction, the classifiers are soon misled.
One interesting finding is that along this gradient direction, the first misclassified label for the three
ResNet models (corresponding to the light green region) is the label “orange”. A more detailed
study can be found in our online technical report: Liu et al. (2016). When we look at the zoom-
out figures, however, the labels of images that are far away from the original one are different for
different models, even among ResNet models.

On the other hand, in Table 5, we show the total number of regions in each plane. In fact, for each
plane, there are at most 21 different regions in all planes. Compared with the 1,000 total categories
in ImageNet, this is only 2.1% of all categories. That means, for all other 97.9% labels, no targeted
adversarial example exists in each plane. Such a phenomenon partially explains why fast gradient-
based approaches can hardly find targeted adversarial images.

Further, in Figure 4, we draw the decision boundaries of all models on the same plane as described
above. We can observe that
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Model VGG-16 ResNet-50 ResNet-101 ResNet-152 GoogLeNet
# of labels 10 9 21 10 21

Table 5: The number of all possible predicted labels for each model in the same plane described in Figure 3.
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Figure 4: The decision boundary to sep-
arate the region within which all points
are classified as the ground truth label
(encircled by each closed curve) from
others. The plane is the same one de-
scribed in Figure 3. The origin of
the coordinate plane corresponds to the
original image. The units of both axises
are 1 pixel values.
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Figure 5: The decision boundary to separate the
region within which all points are classified as the
target label (encircled by each closed curve) from
others. The plane is spanned by the targeted ad-
versarial direction and a random orthogonal di-
rection. The targeted adversarial direction is com-
puted as the difference between the original image
in Figure 2 and the adversarial image generated by
the optimization-based approach for an ensemble.
The ensemble contains all models except ResNet-
101. The origin of the coordinate plane corre-
sponds to the original image. The units of both
axises are 1 pixel values.

• The boundaries align with each other very well. This partially explains why non-targeted
adversarial images can transfer among models.

• The boundary diameters along the gradient direction is less than the ones along the ran-
dom direction. A potential reason is that moving a variable along its gradient direction
can change the loss function (i.e., the probability of the ground truth label) significantly.
Therefore along the gradient direction it will take fewer steps to move out of the ground
truth region than a random direction.

• An interesting finding is that even though we move left along the x-axis, which is equivalent
to maximizing the ground truth’s prediction probability, it also reaches the boundary much
sooner than moving along a random direction. We attribute this to the non-linearity of the
loss function: when the distortion is larger, the gradient direction also changes dramatically.
In this case, moving along the original gradient direction no longer increases the probability
to predict the ground truth label (details can be found in our online technical report: Liu
et al. (2016)).

• As for VGG-16 model, there is a small hole within the region corresponding to the ground
truth. This may partially explain why non-targeted adversarial images with small distortion
exist, but do not transfer well. This hole does not exist in other models’ decision planes. In
this case, non-targeted adversarial images in this hole do not transfer.

Decision boundaries of the targeted ensemble-based approaches. In addition, we choose the
targeted adversarial direction of the ensemble of all models except ResNet-101 and a random or-
thogonal direction, and we plot decision boundaries on the plane spanned by these two direction
vectors in Figure 5. We observe that the regions of images, which are predicted as the target label,
align well for the four models in the ensemble. However, for the model not used to generate the
adversarial image, i.e., ResNet-101, it also has a non-empty region such that the prediction is suc-
cessfully misled to the target label, although the area is much smaller. Meanwhile, the region within
each closed curve of the models almost has the same center.
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7 REAL WORLD EXAMPLE: ADVERSARIAL EXAMPLES FOR CLARIFAI.COM

Clarifai.com is a commercial company providing state-of-the-art image classification services. We
have no knowledge about the dataset and types of models used behind Clarifai.com, except that we
have black-box access to the services. The labels returned from Clarifai.com are also different from
the categories in ILSVRC 2012. We submit all 100 original images to Clarifai.com and the returned
labels are correct based on a subjective measure.

We also submit 400 adversarial images in total, where 200 of them are targeted adversarial examples,
and the rest 200 are non-targeted ones. As for the 200 targeted adversarial images, 100 of them
are generated using the optimization-based approach based on VGG-16 (the same ones evaluated
in Table 2), and the rest 100 are generated using the optimization-based approach based on an
ensemble of all models except ResNet-152 (the same ones evaluated in Table 3). The 200 non-
targeted adversarial examples are generated similarly (the same ones evaluated in Table 1 and 4).

For non-targeted adversarial examples, we observe that for both the ones generated using VGG-16
and those generated using the ensemble, most of them can transfer to Clarifai.com.

More importantly, a large proportion of our targeted adversarial examples are misclassified by Clari-
fai.com as well. We observe that 57% of the targeted adversarial examples generated using VGG-16,
and 76% of the ones generated using the ensemble can mislead Clarifai.com to predict labels irrele-
vant to the ground truth.

Further, our experiment shows that for targeted adversarial examples, 18% of those generated us-
ing the ensemble model can be predicted as labels close to the target label by Clarifai.com. The
corresponding number for the targeted adversarial examples generated using VGG-16 is 2%. Con-
sidering that in the case of attacking Clarifai.com, the labels given by the target model are different
from those given by our models, it is fairly surprising to see that when using the ensemble-based
approach, there is still a considerable proportion of our targeted adversarial examples that can mis-
lead this black-box model to make predictions semantically similar to our target labels. All these
numbers are computed based on a subjective measure, and we include some examples in Table 6.
More examples can be found in our online technical report: Liu et al. (2016).

original
image

true
label

Clarifai.com
results of

original image

target
label

targeted
adversarial
example

Clarifai.com results
of targeted

adversarial example

viaduct

bridge,
sight,
arch,
river,
sky

window
screen

window,
wall,
old,

decoration,
design

hip, rose
hip,

rosehip

fruit,
fall,

food,
little,

wildlife

stupa,
tope

Buddha,
gold,

temple,
celebration,

artistic

dogsled,
dog
sled,
dog

sleigh

group together,
four,

sledge,
sled,

enjoyment

hip, rose
hip,

rosehip

cherry,
branch,
fruit,
food,

season
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pug,
pug-dog

pug,
friendship,
adorable,
purebred,

sit

sea lion

sea seal,
ocean,
head,
sea,
cute

Old
English
sheep-
dog,

bobtail

poodle,
retriever,
loyalty,

sit,
two

abaya

veil,
spirituality,

religion,
people,

illustration

maillot,
tank suit

beach,
woman,
adult,
wear,

portrait

amphib-
ian,

amphibi-
ous

vehicle

transportation
system,
vehicle,

man,
print,
retro

patas,
hussar

monkey,
Erythro-

cebus
patas

primate,
monkey,
safari,

sit,
looking

bee eater

ornithology,
avian,
beak,
wing,

feather

Table 6: Original images and adversarial images evaluated over Clarifai.com. For labels returned
from Clarifai.com, we sort the labels firstly by rareness: how many times a label appears in the
Clarifai.com results for all adversarial images and original images, and secondly by confidence.
Only top 5 labels are provided.

8 CONCLUSION

In this work, we are the first to conduct an extensive study of the transferability of both non-targeted
and targeted adversarial examples generated using different approaches over large models and a
large scale dataset. Our results confirm that the transferability for non-targeted adversarial exam-
ples are prominent even for large models and a large scale dataset. On the other hand, we find that
it is hard to use existing approaches to generate targeted adversarial examples whose target labels
can transfer. We develop novel ensemble-based approaches, and demonstrate that they can gen-
erate transferable targeted adversarial examples with a high success rate. Meanwhile, these new
approaches exhibit better performance on generating non-targeted transferable adversarial examples
than previous work. We also show that both non-targeted and targeted adversarial examples gen-
erated using our new approaches can successfully attack Clarifai.com, which is a black-box image
classification system. Furthermore, we study some geometric properties to better understand the
transferable adversarial examples.
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