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ABSTRACT

Node Anomaly Detection (NAD) has gained significant attention in the deep learn-
ing community due to its diverse applications in real-world scenarios. Existing
NAD methods primarily embed graphs within a single Euclidean space, while
overlooking the potential of non-Euclidean spaces. Besides, to address the preva-
lent issue of limited supervision in real NAD tasks, previous methods tend to
leverage synthetic data to collect auxiliary information, which is not an effective
solution as shown in our experiments. To overcome these challenges, we introduce
a novel SpaceGNN model designed for NAD tasks with extremely limited labels.
Specifically, we provide deeper insights into a task-relevant framework by empir-
ically analyzing the benefits of different spaces for node representations, based on
which, we design a Learnable Space Projection function that effectively encodes
nodes into suitable spaces. Besides, we introduce the concept of weighted homo-
geneity, which we empirically and theoretically validate as an effective coefficient
during information propagation. This concept inspires the design of the Distance
Aware Propagation module. Furthermore, we propose the Multiple Space En-
semble module, which extracts comprehensive information for NAD under con-
ditions of extremely limited supervision. Our findings indicate that this module
is more beneficial than data augmentation techniques for NAD. Extensive experi-
ments conducted on 9 real datasets confirm the superiority of SpaceGNN, which
outperforms the best rival by an average of 8.55% in AUC and 4.31% in F1 scores.
Our code is available at https://github.com/xydong127/SpaceGNN.

1 INTRODUCTION

With the rapid development of the Internet in recent years, graph-structured data has become ubiq-
uitous. However, this popularity also presents a significant challenge: identifying anomalous nodes
within a graph to prevent them from compromising the entire system. This task is commonly known
as Node Anomaly Detection (NAD), which appears in various real-world scenarios, such as detect-
ing money laundering in financial networks (Huang et al., 2022), identifying malicious comments
in review networks (Li et al., 2019), and spotting bots on social platforms (Guo et al., 2022). While
NAD is crucial for maintaining the integrity of these systems, effectively addressing it presents
several challenges. Firstly, graph data inherently captures complex relationships across various do-
mains, and the intricate shapes of the data complicate the accurate generation of node representations
for NAD (Dong et al., 2025). Secondly, the ubiquitous issue of limited supervision in real scenarios
makes it even harder to obtain sufficient comprehensive information for various types of nodes.

In the literature, researchers have widely employed Graph Neural Networks (GNNs) in their meth-
ods to solve general graph-related tasks. They have explored multiple frameworks from different
spaces to enhance the expressiveness of their GNNs. For instance, GCN (Kipf & Welling, 2017),
GraphSage (Hamilton et al., 2017), GAT (Velickovic et al., 2018), and GIN (Xu et al., 2019) embed
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(a) Euclidean Space (κ = 0) (b) Hyperbolic Space (κ < 0) (c) Spherical Space (κ > 0)

Figure 1: Diverse data shapes with corresponding suitable projection spaces, where κ represents the
curvature of the space.

graphs into Euclidean space, while HNN (Ganea et al., 2018), HGCN (Chami et al., 2019), and
HYLA (Yu & Sa, 2023) encode graphs into non-Euclidean space.

In addition to the generalized GNNs mentioned above, various specialized GNNs have been devel-
oped to address complex challenges in NAD tasks. Some of these models leverage the properties of
anomalous nodes within Euclidean space to improve the quality of node representations for NAD,
including GDN (Gao et al., 2023a), SparseGAD (Gong et al., 2023), GAGA (Wang et al., 2023b)
and XGBGraph (Tang et al., 2023). Others enhance performance by employing a spectral view in
Euclidean space, such as AMNet (Chai et al., 2022), BWGNN (Tang et al., 2022), and GHRN (Gao
et al., 2023b). Moreover, to extract sufficient information from limited supervision, data augmenta-
tion techniques have been incorporated in recent work like CONSISGAD (Chen et al., 2024).

However, both generalized and specialized GNNs have overlooked the key challenges when applied
to NAD tasks. For instance, without considering the diverse structural properties in real NAD sce-
narios, it is unlikely to design the most suitable node projection functions and propagation methods.
As shown in Figure 1, we abstract subgraphs from real-world NAD datasets and provide their cor-
responding apt projection spaces (Bachmann et al., 2020). Specifically, the Euclidean space suits
plain relational structures within graphs (Bandyopadhyay et al., 2020), serving as the base projec-
tion space for NAD tasks. However, certain subfields in NAD, such as rumor detection (Ma et al.,
2018; Bian et al., 2020), require the ability to handle hierarchical data. The Hyperbolic space, which
expands exponentially, is particularly adept at accommodating such data. Additionally, in financial
networks, anomalies like money laundering crime usually display circle patterns (Dumitrescu et al.,
2022; Altman et al., 2023). The Spherical space allows for a nuanced understanding of node prop-
erties in such data. As a result, directly encoding graphs from different NAD tasks in a single space
with a fixed curvature κ can result in suboptimal performance, as shown in our experiments. Fur-
thermore, the limited supervision in real NAD applications presents another challenge for current
methods. Given the imbalanced nature of the data, data augmentation techniques may not always
effectively provide sufficient information, as will be shown in our experiments.

To address the above concerns, we present both empirical and theoretical analyses of NAD tasks with
limited supervision. Motivated by this, we introduce SpaceGNN, a novel graph learning framework,
which consists of three key components: Learnable Space Projection (LSP), Distance Aware
Propagation (DAP), and Multiple Space Ensemble (MulSE). Specifically, we design an insightful
measure and conduct an empirical analysis to investigate the influence of various spaces on distinct
classes of nodes, revealing the advantages of the adjustable projection function discussed in Section
4.2. Building on these empirical findings, we propose LSP as a projection function that embeds
nodes into the most suitable spaces by a learnable curvature. Moreover, we introduce a novel metric
to explore the benefits of a distance-based attention mechanism during propagation across different
spaces. This metric further showcases the utility of various space representations from both empir-
ical and theoretical perspectives, as elaborated in Section 4.3. Based on these results, we design
DAP to adjust edge weights according to the distances within different spaces during feature propa-
gation, which effectively mitigates the influence of noisy features propagated from different classes.
Additionally, through an investigation of recent research, we empirically evaluate the limitations of
relying on synthetic information via data augmentation in Section 4.4. To provide a more robust
solution, we theoretically demonstrate that model augmentation approaches can serve as more ef-
fective alternatives. Thus, we develop MulSE to aggregate information from the ensemble of models
from multiple spaces, a process shown to be effective from empirical and theoretical perspectives.

In summary, the main contributions of our work are as follows:

• We are the first, to the best of our knowledge, to reveal the benefits of leveraging multiple spaces
for supervised NAD tasks from both empirical and theoretical perspectives.
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• We propose SpaceGNN, a novel framework that ensembles comprehensive information from dif-
ferent spaces with a specialized attention mechanism based on solid analysis.

• Extensive experiments demonstrate the effectiveness of our framework. Compared to state-of-
the-art models, SpaceGNN achieves superior performance in terms of AUC and F1 scores.

2 RELATED WORK

Generalized GNNs. GNNs have gained popularity for processing graph-structured data due to
their outstanding ability to capture both structure and attribute information. For example, Euclidean
GNNs, such as GCN (Kipf & Welling, 2017), extend convolution operations to graphs by aggre-
gating information from neighboring nodes. Following this, GraphSAGE (Hamilton et al., 2017)
introduces a sampling technique to enhance node representations. Subsequently, models like GAT
(Velickovic et al., 2018) and GIN (Xu et al., 2019) are developed to increase the expressiveness of
GNNs. In addition to Euclidean GNNs, non-Euclidean representations for nodes have drawn at-
tention in the graph learning community due to their ability to encode special structures in graphs.
For instance, HNN (Ganea et al., 2018) embeds node features into Hyperbolic space, which effec-
tively captures hierarchical information. Based on this, HGCN (Chami et al., 2019) extends GNN
principles to Hyperbolic space, leveraging its capability to represent hierarchical relationships more
effectively. Recently, HYLA (Yu & Sa, 2023) combines Hyperbolic space with Laplacian-based
graph learning, further enhancing the ability to capture hierarchical features in graph data. Despite
the successes of generalized GNNs in some graph-related tasks, they often struggle to effectively
address NAD problems due to their lack of consideration for specific properties within NAD tasks.
In contrast, our proposed SpaceGNN leverages the combination of multi-space to collect compre-
hensive information, specifically targeting to solve the issues of NAD that generalized GNNs find
difficult to process.

Specialized GNNs. Recognizing the limitations of generalized GNNs in NAD tasks, researchers
have proposed several approaches specifically designed for this purpose. For instance, GDN (Gao
et al., 2023a) is designed to resist high heterogeneity in anomalous nodes while benefiting the learn-
ing of normal nodes through homogeneity. Similarly, SparseGAD (Gong et al., 2023) introduces
sparsity to the adjacency matrix to mitigate the negative influence of heterogeneity. GAGA (Wang
et al., 2023b) employs a group aggregation technique to address low homogeneity issues. Addi-
tionally, XGBGraph (Tang et al., 2023) combines XGBoost with GIN to deal with tree-like data
contained in NAD tasks. Beyond these spatial GNNs, several studies have explored NAD from a
spectral view within Euclidean space. For example, AMNet (Chai et al., 2022) adaptively integrates
signals of varying frequencies to extract more information. Following this, BWGNN (Tang et al.,
2022) applies a Beta kernel to detect higher frequency anomalies. GHRN (Gao et al., 2023b) com-
bines solutions from spectral space and homogeneity to boost performance in NAD tasks. Other
than these studies, the most recent work, CONSISGAD (Chen et al., 2024), is proposed to tackle
the limited supervision issue in NAD by generating pseudo labels. Despite the improvements in
performance achieved by these specialized GNNs for NAD tasks, they lack a unified framework that
integrates empirical and theoretical analysis related to NAD. This gap highlights the need for our
proposed SpaceGNN, which aims to unify these valuable designs while providing a comprehensive
understanding of their effectiveness in addressing NAD challenges.

3 PRELIMINARIES

A graph-structured data can be represented as G = {V,E,X}, where V is the node set, E is the
edge set, and X ∈ R|V |×d is the node feature matrix. The i-th row xi ∈ Rd of X denotes the
features of node i ∈ V . For a labeled node i, let Yi ∈ RC denote the one-hot label vector, where
Yic = 1 if and only if node i belongs to class c.

Node Anomaly Detection (NAD). NAD can be seen as a binary classification task, where nodes
in the graph are categorized into two different categories: normal and anomalous. Specifically,
C = 2 with label 0 representing normal class and label 1 representing anomalous class. Typically,
the number of normal nodes is way larger than that of anomalous nodes, leading to an imbalanced
dataset. Due to the sparse nature, there exists a thorny problem in the real NAD applications, e.g.,
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the number of labeled nodes is extremely limited. Consequently, effectively leveraging the limited
labels in datasets becomes a key challenge in NAD.

Graph Neural Network (GNN). A GNN consists of a sequence of fundamental operations, such
as message passing through linear transformations and pointwise non-linear functions, which are
performed on a set of nodes embedded in a given space. GNNs have been widely applied to vari-
ous tasks related to graph-structured data. While these operations are well-understood in Euclidean
space, extending them to non-Euclidean spaces presents challenges. After the concept of GNNs be-
ing generalized to operate on spaces with different curvature κ, allowing the network to be agnostic
to the underlying geometry of the space. The propagation process for a node i is as follows:

H l+1
i = σ(expκx′(

1

|N(i)|
∑

j∈N(i)

gθ(log
κ
x′(H l

i), log
κ
x′(H l

j)))),

where H l
i is the i-th row of node representation matrix at the l-th layer, expκx′(·) and logκx′(·) are

projection functions specific to different spaces (Equations 1-2 show a possible choice for these two
functions), gθ(·) is the aggregation function, N(i) is the nodes within the one-hop neighborhood
of node i, and σ(·) is the activation function. For GNNs in Euclidean space, where κ = 0, the
projection functions act as identical mapping. In contrast, for GNNs operating in non-Euclidean
space, where κ ̸= 0 (as in (Chami et al., 2019)), two common choices for projection functions are
the Poincaré Ball model and the Lorentz model, both characterized by κ = −1. Further details of
these two models can be found in Appendix H.

κ-stereographic model. To further investigate the properties of NAD tasks across different spaces,
the κ-stereographic model is introduced. This model can represent spaces with distinct curvature κ
that is not limited to −1. For a curvature κ ∈ R and a dimension d ≥ 2, the model is defined as
Md

κ = {x ∈ Rd| − κ||x||22 < 1}. Note that when κ ≥ 0, Md
κ is Rd, while for κ < 0, Md

κ represents
the open ball of radius 1√

−κ
. Following the extension presented by Bachmann et al. (2020), the

κ-addition for x,y ∈Md
κ is defined as:

x⊕κ y =
(1− 2κxTy − κ||y||2)x+ (1 + κ||x||2)y

1− 2κxTy + κ2||x||2||y||2
∈Md

κ .

The projection functions expκx′(·) and logκx′(·) can be defined as:

expκx′(x) = x′ ⊕κ (tanκ(|κ|
1
2
λκ
x′ ||x||
2

)
x

||x||
), (1)

logκx′(x) =
2|κ|− 1

2

λκ
x′

tan−1
κ ||(−x′)⊕κ x|| (−x′)⊕κ x

||(−x′)⊕κ x||
, (2)

where x′ can be chosen as the origin of the specific space, λκ
x′ = 2

1+κ||x′||2 , and tanκ is the
curvature-dependent trigonometric function defined as follows:

tanκ(x) =


1√
−κ

tanh(
√
−κx), κ < 0,

x, κ = 0,
1√
κ
tan(
√
κx), κ > 0.

With the detailed definition of the κ-stereographic model established, a straightforward approach to
design a GNN is to replace the projection functions by selecting a specific κ. However, this common
design may not be suitable for NAD, as will be demonstrated in Section 4.2, where the usefulness
of applying learnable projection functions to NAD will be highlighted.

4 OUR METHOD: SPACEGNN

4.1 OVERVIEW OF SPACEGNN

The proposed SpaceGNN consists of three key components, which will be discussed in detail in
Sections 4.2-4.4. In Section 4.2, we begin by defining the expansion rate of different spaces and then
utilize this concept to empirically demonstrate the advantages of incorporating learnable curvature
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in NAD tasks, which serves as the foundation for designing the LSP module. Next, in Section
4.3, we revisit the concept of homogeneity and introduce weighted homogeneity to highlight the
effectiveness of distance-aware attention across various spaces for NAD tasks. We also provide a
theoretical analysis to justify the inclusion of distance-based propagation in diverse spaces, leading
to the design of the DAP module. Finally, in Section 4.4, we first show the potential drawbacks of
data augmentation techniques and then demonstrate the advantages of employing an ensemble of
multiple spaces instead of relying on a single one. This motivates the design of the MulSE module,
a robust solution for NAD tasks with limited supervision.

4.2 LEARNABLE SPACE PROJECTION

Before delving into the design of LSP, we first formulate the distance between two vectors x,y ∈
Md

κ as follows:
dκ(x,y) = 2 tan−1

κ ||(−x)⊕κ y||. (3)

Notice that this distance is not applicable when κ = 0. In such cases, we leverage the Euclidean
distance, denoted as d0(x,y).

Recap from Section 3 that NAD tasks can be viewed as binary classification tasks. Consider three
data points: x0 and x1 belonging to class 0, and y belonging to class 1. An optimal model trained on
such a dataset should minimize the distances between data points in the same class while maximizing
the distances between data points from different classes. The ideal scenario is dκ(x0,x1) ≈ 0,
dκ(x0,y) ≈ ∞, and dκ(x1,y) ≈ ∞. In such a case, even rule-based techniques can classify the
data points correctly. To quantify the advantages of the projections in spaces with curvature κ, we
propose a measure that reflects the scenario, which is stated in the following definition.

Definition 1 (Expansion Rate). For three data points, x0 and x1 in class 0 and y in class 1, let the
inter-distance be dκ(x0,y) and intra-distance be dκ(x0,x1), then we can denote the ratio between
them as rκ(x0,x1,y) = dκ(x0,y)

dκ(x0,x1)
. Based on this, the Expansion Rate can be further defined as

ERκ(x0,x1,y) =
rκ(x0,x1,y)
r0(x0,x1,y)

.
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Figure 2: ERκ for different node
triplets, varying based on κ. (Opt.
stands for optimal.)

As for the ratio rκ(x0,x1,y), an effective projection
into space with curvature κ should maximize the sepa-
ration between data points from different classes, making
their distances sufficiently distinct for accurate detection.
Since data points are originally embedded in Euclidean
space, it is natural to utilize the ratio in Euclidean space
as the base to investigate the changes that occur when
data points are projected into different spaces. Hence,
the Expansion Rate quantifies the extent to which this
ratio is expanded by the projection. To be specific, if
ERκ(x0,x1,y) > 1, it indicates that the projection into
the space with curvature κ will have positive effects on
NAD tasks, otherwise, it suggests that staying within Eu-
clidean space may be more beneficial to the task.

As shown in Figure 2, we investigate several node triplets within real datasets and plot the ERκ

for representatives, varying based on κ. Specifically, for the blue line, the maximum value of ERκ

is achieved when κ is negative; for the orange line, the maximum value of ERκ is gained when κ
is positive; and for the green line, the maximum value of ERκ is obtained when κ is 0. Based on
these observations, it is desirable to design a GNN framework with learnable curvature, enabling
the model to capture the optimal curvatures for nodes. To this end, we propose our base model
architecture fL

κ as follows:

El = CLAMPκl

(
TRANS(expκ

l

o (H l))
)
,

H l+1
i = ϕ(logκ

l

o (El
i) +

∑
j∈N(i)

ωκl

ij logκ
l

o (El
j)),

Z = σ(MLP(CONCAT(H0,H1, ...,HL))),

(4)
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Figure 3: (Weighted) homogeneity of 9 real-world datasets.

where H0 = X , TRANS(·) is the transformation function of the feature matrix built on two-layer
linear projection and non-linear activation, CLAMPκl(·) is the clamp function to restrict the node
representations to a valid space, ϕ(·) and σ(·) are the activation functions, expκ

l

o (·) and logκ
l

o (·) are
projection functions (Equations 1-2) based on the original point o of the corresponding space, ωκl

ij
is the coefficient based on the distances between node i and j, which will be detailed in Section 4.3,
and Z ∈ Rn×2 is the probability matrix under spaces with learnable curvatures κ ∈ RL.

Based on the empirical analysis in this section, the importance of distances within different spaces
stands out, which motivates us to further explore the effectiveness of incorporating the properties of
these distances in our GNN framework. In the next subsection, we will first introduce the concept of
weighted homogeneity and then provide both empirical and theoretical analysis to substantiate the
rationale for designing a distance-aware attention mechanism for information propagation.

4.3 DISTANCE AWARE PROPAGATION

To elucidate the intuition behind weighted homogeneity, we first define the homogeneity for a node
i as |{j:j∈N(i),Yi=Yj}|

|N(i)| , which reflects the ratio of neighbors in the same category of i. Similarly, the

homogeneity for a graph G is defined as
∑

(i,j)∈E I[Yi=Yj ]

|E| , where I[·] is the indicator function. This
definition indicates the ratio of intra-edges within this graph. Hence, if we consider the information
of each node as 1, the homogeneity metric can be interpreted as a measure of the information a
node can gain from its neighbors with the same label during propagation. However, as will be
demonstrated later, homogeneity alone is not an effective measure for guiding the message passing.
Therefore, we introduce weighted homogeneity to enhance the passed information along intra-edges:

Definition 2 (Weighted Homogeneity). Let σ denote the sigmoid function, dκ(·, ·) denote the dis-
tance between two vectors in the space with curvature κ, then we can define the similarity vec-
tor for node i as sκi = 1 − σ([dκ(Xi,Xj) : j ∈ N(i)]). The weighted homogeneity of a

node i can be defined as WHκ
i =

∑
j∈N(i) s

κ
ijI[Yi=Yj ]∑

j∈N(i) s
κ
ij

, and that of a graph G can be defined as

WHκ =
∑

i∈V

∑
j∈N(i) s

κ
ijI[Yi=Yj ]∑

i∈V

∑
j∈N(i) s

κ
ij

, where sκij is the j-th entry of sκi .

In the above definition, sκi represents the similarities between a node i and its neighbors based on
the distances of their representation in a space with curvature κ. This similarity vector is used as
the weights in weighted homogeneity, allowing us to measure the information that a node can derive
from its neighbors with the same label. If sκi accurately reflects the similarities between nodes,
it will assign larger weights to intra-edges, leading to the increased value of WHκ. Its desirable
benefits as coefficients in the propagation process will be shown in Theorem 1, that is, a higher
WHκ correlates with improved performance of GNN. Next, we present a comparison between
homogeneity and weighted homogeneity WHκ across 9 real-world datasets within different spaces
to show the effectiveness of weighted homogeneity.

As shown in Figure 3, in most cases, WHκ with different κ have higher values than homogeneity,
which indicates that WHκ is beneficial to information from intra-edges. Besides, the results sug-
gest that the optimal projection functions vary across different datasets, which further validates the
motivation for integrating information from multiple spaces to enhance the performance of NAD.
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Building on the above empirical findings, we present Theorem 1 to elucidate why WHκ serves as
an effective measure for the propagation process. Detailed proof can be found in Appendix A.
Theorem 1. Assume features of normal and anomalous nodes follow independent Gaussian dis-
tributions N (µn,Σn) and N (µa,Σa), respectively, and let WHκ (resp. 1 − WHκ) denote the
coefficients of intra-edges (resp. inter-edges), then the probability of a node following its original
distribution after a propagation process increases as WHκ increases.

Theorem 1 emphasizes the importance of utilizing weighted homogeneity for effective information
propagation. In particular, it mitigates the impact of noisy information passed from inter-edges while
augmenting valuable information passed from intra-edges. Based on both empirical and theoretical
results, we propose the DAP as follows:

ωκ
ij = MLP(CONCAT(Xi, ŝijXj)), (5)

where ŝκij is the j-th entry of ŝκi , which is an approximation of the similarity vector sκi in Definition
2. The rationale behind approximating sκi in DAP is to prevent the occurrence of invalid values for
dκ(·, ·) during the learning process. The details of this approximation are shown in Theorem 2:

Theorem 2. Assume x, y ∈ Rd such that x ̸= y(x ̸= −y
κ||y||2 if κ > 0), and |κ| < 1

min(||x||2,||y||2) ,

then dκ(x,y) ≈ 2||x− y|| − 2κ((xTy)||x− y||2 + ||x−y||3
3 ).

The proof of Theorem 2 can be found in Appendix A. With this simple yet powerful design, our
proposed SpaceGNN effectively harnesses information from intra-edges to boost the performance.

So far, we have presented the basic design of our model architecture fL
κ , which effectively captures

information from spaces characterized by curvatures κ ∈ RL. We have improved the expressiveness
of GNN and explored properties underlying different spaces, tackling most problems existing in pre-
vious works. However, another thorny issue still remains: how to extract sufficient information when
only extremely limited number of labels are available. In Section 4.4, we will empirically and the-
oretically demonstrate the advantages of utilizing an ensemble of GNNs from multiple spaces over
data augmentation techniques for collecting auxiliary information in NAD with limited supervision.

4.4 MULTIPLE SPACE ENSEMBLE True False
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Figure 4: True/False Anomalous Rate.

In this section, we first provide an empiri-
cal analysis of CONSISGAD (Chen et al.,
2024), the most recent work for the super-
vised NAD task aimed at tackling the issue
of limited labels. CONSISGAD leverages a
learnable framework to generate pseudo la-
bels, thereby increasing the number of la-
beled nodes for training. However, the qual-
ity of these pseudo labels may not always
be sufficient to provide valuable informa-
tion. Moreover, as shown in a previous study
(Wang et al., 2023a), the noise introduced by
training samples with inaccurate pseudo la-
bels will harm the final performance. Specifically, we investigate the well-trained CONSISGAD
framework and present the false rate of pseudo labels it generates on 9 real-world datasets in Figure
4. As we can observe, even with a fully-trained model, most generated anomalous labels are false
across nearly all datasets. This situation negatively impacts the primary objective of NAD tasks,
which is to detect anomalous nodes. Besides, due to the imbalanced nature of NAD tasks, the model
tends to prioritize learning features of normal nodes. Consequently, with more normal labels and
false anomalous labels, the model can finally degrade to a state of inferior performance.

Other than pseudo-label techniques, previous studies (Kirichenko et al., 2023; Lin et al., 2024)
also point out the potential negative effects of other popular data augmentation techniques, such
as increasing the bias of models and inducing the distribution shift between training and test data.
Thus, we need to explore a more suitable way to tackle the issue of limited supervision existing in
real NAD tasks. As shown in previous works (Xia et al., 2022; Liu et al., 2024), model augmentation
can be an alternative way to enhance the limited information. The ensemble technique is one of the
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most important ways to conduct model augmentation, as it brings enough benefits when there exist
several independent views of the data. Such a characteristic provides explanations for combining
our multiple GNNs within different spaces for NAD problems. Specifically, we have the following
Proposition 1 to show the effectiveness of the ensemble of our multi-space framework on NAD tasks.
The corresponding proof can be found in Appendix A.
Proposition 1. Consider there exists a single node with label vector p ∈ RC , and the corresponding
probability vector qi generated by our base model fL

κi
, where i = 1, · · · ,m. Let q̄ =

∑m
i=1 αiqi,

where
∑m

i=1 αi = 1, and L(·, ·) denote cross-entropy loss, then the ensemble cross-entropy loss,
L(p, q̄), is upper bounded by weighted cross-entropy loss of m single models,

∑m
i=1 αiL(p, qi),

with a gap term related to a label-dependent value Ω(p).

Proposition 1 shows that, for every node in the graph, the combination of independent models of
different spaces can reduce the loss during training, which can lead to better performance, indicating
its superiority over the single-model framework. Further, building on the above Proposition 1, we
provide the expected loss over graph G in Proposition 2, whose proof can be found in Appendix A:
Proposition 2. Let q̂ denote argminy∈Y EG[L(y, q)], the centroid of model distribution with re-
spect to G, then the ensemble cross-entropy loss over entire graph G, EG[L(p, q̄)], is upper bounded
by weighted cross-entropy loss of m single models,

∑m
i=1 αiL(p, q̂i), with a gap term related to a

label-dependent value Θ(p).

With the above empirical and theoretical analysis, we conclude that a safer and more effective way
to tackle the limited supervision issues for supervised NAD tasks is the combination of views from
multiple independent spaces, and thus we present our framework as follows:

f = αfL
0 +

H∑
i=1

βif
L
κ−

i

+

S∑
j=1

γjf
L
κ+

j
(6)

where fL
0 , fL

κ−
i

, and fL
κ+

j

represent the Euclidean GNN, the i-th Hyperbolic GNN and the j-th

Spherical GNN, respectively.

With empirical and theoretical analysis in Sections 4.2, 4.3, and 4.4, we present our SpaceGNN with
a solid foundation, targeting to solve thorny issues in supervised NAD tasks, such as the existence
of complex architectures, the requirement of the high-level expressive ability of the framework, and
limited supervision. In the following Section 5, we will further provide the experimental results to
show how effective our proposed framework is.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Datasets. We evaluate SpaceGNN on 9 real-world datasets from the benchmark paper (Tang et al.,
2023), including Weibo, Reddit, Tolokers, Amazon, T-Finance, YelpChi, Questions, DGraph-Fin,
and T-Social. The detailed information on the datasets is listed in the Appendix B. To simulate
the real application with limited supervision, we randomly divide each dataset into 50/50 for train-
ing/validation, and the rest of the nodes for testing.

Baselines. We compare SpaceGNN against 16 SOTA competitors, including generalized models,
aiming to solve general graph-related tasks, and specialized models, which are designed for NAD.

• Generalized Models: MLP (Rosenblatt, 1958), GCN (Kipf & Welling, 2017), GraphSAGE
(Hamilton et al., 2017), GAT (Velickovic et al., 2018), GIN (Xu et al., 2019), HNN (Ganea et al.,
2018), HGCN (Chami et al., 2019), and HYLA (Yu & Sa, 2023).

• Specialized Models: AMNet (Chai et al., 2022), BWGNN (Tang et al., 2022), GDN (Gao et al.,
2023a), SparseGAD (Gong et al., 2023), GHRN (Gao et al., 2023b), GAGA (Wang et al., 2023b),
XGBGraph (Tang et al., 2023), and CONSISGAD (Chen et al., 2024).

Experimental Settings. To ensure a fair comparison, we obtain the source code of all competitors
from GitHub and execute these models using the default parameter settings suggested by their au-
thors. The hyperparameters of SpaceGNN are set according to the best value of the F1 score of the
validation set in each dataset. The specific hyperparameters can be found in Appendix D.
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Table 1: AUC and F1 scores (%) on 9 datasets with random split, compared with generalized models,
where OOM represents out-of-memory.

Datasets Metrics MLP GCN SAGE GAT GIN HNN HGCN HYLA SpaceGNN

Weibo AUC 0.4989 0.7338 0.6949 0.6887 0.4983 0.6726 0.8104 0.9056 0.9389
F1 0.6393 0.6253 0.4399 0.4671 0.5404 0.6029 0.6773 0.5884 0.8541

Reddit AUC 0.5892 0.5869 0.4074 0.5181 0.5954 0.5364 0.5348 0.4686 0.6159
F1 0.4909 0.4820 0.4915 0.4915 0.4915 0.4915 0.4915 0.4915 0.4915

Tolokers AUC 0.6462 0.6403 0.6786 0.5895 0.7004 0.6521 0.5980 0.5577 0.7089
F1 0.4674 0.5697 0.5653 0.5526 0.5887 0.5446 0.5249 0.4888 0.6012

Amazon AUC 0.8499 0.7677 0.7372 0.7487 0.7203 0.8597 0.7799 0.7192 0.9331
F1 0.8441 0.3643 0.6339 0.4847 0.4822 0.6640 0.5608 0.5414 0.8935

T-Finance AUC 0.8932 0.8882 0.6115 0.7210 0.8034 0.8773 0.9333 0.3935 0.9400
F1 0.8354 0.7230 0.5740 0.6426 0.7313 0.8337 0.8656 0.4883 0.8723

YelpChi AUC 0.5876 0.5385 0.5844 0.6120 0.5520 0.6519 0.5551 0.5505 0.6566
F1 0.4623 0.4727 0.3711 0.4608 0.4608 0.5552 0.5029 0.4608 0.5719

Questions AUC 0.4871 0.6075 0.5185 0.5002 0.5163 0.5073 0.5216 0.4052 0.6510
F1 0.4984 0.4617 0.5041 0.4923 0.5045 0.4924 0.4965 0.4924 0.5336

DGraph-Fin AUC 0.3830 0.4486 0.4127 0.3593 0.3781 0.3254 0.3299 OOM 0.6548
F1 0.4608 0.3920 0.3842 0.4724 0.3790 0.4968 0.3312 OOM 0.5017

T-Social AUC 0.5423 0.7523 0.6851 0.3593 0.7286 0.4728 0.4341 OOM 0.9392
F1 0.4864 0.4473 0.5688 0.4724 0.5130 0.4923 0.4923 OOM 0.7571

5.2 EXPERIMENTAL RESULTS

We evaluate the performance of SpaceGNN against 8 generalized models and 8 specialized models.
Tables 1 and 2 report the AUC and F1 scores of each model on 9 datasets, respectively. The best
result on each dataset is highlighted in boldface. As we can see, SpaceGNN outperforms almost all
baseline models on all datasets. Next, we provide our detailed observations.

Firstly, the most simple neural network, MLP, can only process the node features without considering
structure information in the graph. The result is surprisingly high in several datasets compared
with some generalized GNN models, which shows without correctly dealing with special structural
properties, propagation may hurt performance in NAD tasks. In contrast, our SpaceGNN leverages
information from multiple spaces, which is suitable for various structures, outperforming MLP by
17.34% and 9.91% on these 9 datasets in terms of average AUC and F1 scores, respectively.

Secondly, we examine four Euclidean GNNs, i.e., GCN, GraphSage, GAT, and GIN. They are the
most popular GNNs for graph-related tasks. However, due to the lack of ability to tackle complex
structures in different NAD datasets under limited supervision, they fail to generalize their power to
such tasks, leading to inferior performance. In particular, compared with them, SpaceGNN takes the
lead by 11.94%, 18.98%, 21.57%, and 17.17% on these 9 datasets in terms of average AUC score,
and 17.10%, 17.16%, 17.12%, and 15.39% in terms of average F1 score, separately.

Thirdly, to the best of our knowledge, HNN is the first neural network that projects features into
non-Euclidean space. The result aligns with the performance of MLP, that is, without carefully
considering the suitable space for corresponding structures in NAD datasets, no structural infor-
mation included may enhance the performance. On the contrary, our proposed model considers
both Euclidean and non-Euclidean spaces for node projection and propagation, effectively utilizing
structural features within graphs, so SpaceGNN can surpass HNN by 9.82% and 9.05% on these 9
datasets in terms of average AUC and F1 scores, respectively.

Fourthly, HGCN and HYLA are two non-Euclidean GNNs, encoding graph information into a single
non-Euclidean space. The underfitting issue of complicated structural information in NAD graphs
results in unsatisfactory performance on several datasets. In comparison with them, SpaceGNN cap-
tures enough features accurately through multiple spaces, exceeding them by 17.13% and 20.63%
in terms of average AUC score, and 12.60% and 18.09% in terms of average F1 score, separately.

Fifthly, we compare our SpaceGNN with four specialized models within Euclidean space, i.e. GDN,
SparseGAD, GAGA, and XGBGraph. They are built on the observation of the underlying properties
of NAD graphs. Nevertheless, under limited supervision, the observed properties lose their power
to be applied to the entire dataset. As a result, their performance degrades severely. In comparison,
without manually detecting the special structures, our SpaceGNN can automatically capture accurate
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Table 2: AUC and F1 scores (%) on 9 datasets with random split, compared with specialized models,
where TLE represents the experiment can not be conducted successfully within 72 hours.

Datasets Metrics AMNet BWGNN GDN SparseGAD GHRN GAGA XGBGraph CONSISGAD SpaceGNN

Weibo AUC 0.6367 0.7734 0.6392 0.6561 0.7722 0.6986 0.8421 0.7195 0.9389
F1 0.6560 0.7528 0.2516 0.6428 0.7344 0.6219 0.6353 0.6379 0.8541

Reddit AUC 0.4024 0.5540 0.5716 0.4937 0.5583 0.4893 0.4768 0.4987 0.6159
F1 0.4915 0.4915 0.4915 0.4915 0.4915 0.4915 0.4944 0.4915 0.4915

Tolokers AUC 0.5395 0.6202 0.6941 0.6739 0.6499 0.6137 0.6253 0.6531 0.7089
F1 0.5141 0.5698 0.5836 0.5325 0.5670 0.4889 0.5025 0.5652 0.6012

Amazon AUC 0.9160 0.8661 0.8508 0.8698 0.8649 0.7772 0.8928 0.8993 0.9331
F1 0.7355 0.9006 0.6173 0.6016 0.8745 0.6509 0.9231 0.9031 0.8935

T-Finance AUC 0.7885 0.8492 0.7200 0.6892 0.8758 0.8720 0.8563 0.9237 0.9400
F1 0.7576 0.6761 0.5339 0.2747 0.7777 0.7077 0.7673 0.8583 0.8723

YelpChi AUC 0.5786 0.6012 0.5809 0.5652 0.6007 0.5351 0.5953 0.5983 0.6566
F1 0.4822 0.4608 0.5202 0.4608 0.4610 0.4868 0.5134 0.5133 0.5719

Questions AUC 0.3628 0.5146 0.5044 0.5202 0.5118 0.5868 0.5069 0.6291 0.6510
F1 0.4924 0.5093 0.4950 0.4952 0.4934 0.4924 0.4548 0.5077 0.5336

DGraph-Fin AUC 0.4359 0.4608 0.4723 0.3559 0.4216 TLE 0.4962 0.4345 0.6548
F1 0.4860 0.4975 0.4970 0.4988 0.4942 TLE 0.4947 0.5084 0.5017

T-Social AUC 0.5239 0.6517 0.6259 0.5418 0.6336 TLE 0.7077 0.9129 0.9392
F1 0.5034 0.5204 0.5331 0.4923 0.5060 TLE 0.5604 0.7033 0.7571

properties underlying datasets in different spaces, taking the lead by 15.32%, 18.58%, 12.45%, and
11.54% in terms of average AUC score, and 17.26%, 17.63%, 12.54%, and 8.12% in terms of
average F1 score, respectively.

Sixly, several specialized models, like AMNet, BWGNN, and GHRN, have considered NAD from
a spectral view within Euclidean space, trying to gain diverse features to handle NAD tasks. Al-
though such spectral kernels can detect frequency change because of anomalous nodes, they still
fall behind our SpaceGNN by 20.60%, 12.75%, and 12.77% in terms of average AUC score, and
10.65%, 7.76%, and 7.52% in terms of average F1 score, separately, due to the inability to capture
comprehensive enough properties within NAD datasets.

Finally, CONSISGAD tries to handle the problem of limited labels existing within real NAD tasks.
Specifically, CONSISGAD, the most recent work in this area, generates pseudo labels for nodes to
gain more supervision. However, as shown in Section 4.4, such a technique may lead to enormous
noise, leading to subordinate results. By contrast, our theoretical analysis supports the usage of an
ensemble of multiple spaces in SpaceGNN, and its performance demonstrates it empirically. To
be specific, on 9 real-world datasets, CONSISGAD falls back SpaceGNN by 8.55% and 4.31% in
terms of AUC and F1 scores on average, respectively.

Beyond the above results, we also provide parameter analysis, ablation study, additional experiments
on different settings, an alternative model, the learned κ, time complexity, performance with more
training data, and performance under GADBench (Tang et al., 2023) semi-supervised setting in
Appendix E, F, G, H, I, J, K, and L, separately, which can further demonstrate the effectiveness of
our proposed SpaceGNN.

6 CONCLUSION

In this paper, we provide detailed studies of the benefits of including multiple-space information
to solve NAD tasks from both empirical and theoretical perspectives. Based on the results, we de-
sign SpaceGNN, an ensemble of diverse GNNs within Euclidean and non-Euclidean spaces, that
can effectively handle difficulties in real NAD tasks, such as the appearance of complicated archi-
tectures, the need for powerful models, and limited labels. Extensive experiments demonstrate that
SpaceGNN consistently outperforms other SOTA competitors by a significant margin, demonstrat-
ing our proposed SpaceGNN is an effective identifier for NAD tasks.
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Ines Chami, Zhitao Ying, Christopher Ré, and Jure Leskovec. Hyperbolic graph convolutional neural
networks. In NeurIPS, pp. 4869–4880, 2019.

Nan Chen, Zemin Liu, Bryan Hooi, Bingsheng He, Rizal Fathony, Jun Hu, and Jia Chen. Consis-
tency training with learnable data augmentation for graph anomaly detection with limited super-
vision. In ICLR, 2024.

Xiangyu Dong, Xingyi Zhang, Yanni Sun, Lei Chen, Mingxuan Yuan, and Sibo Wang. Smoothgnn:
Smoothing-based GNN for unsupervised node anomaly detection. In WWW, 2025.

Bogdan Dumitrescu, Andra Baltoiu, and Stefania Budulan. Anomaly detection in graphs of bank
transactions for anti money laundering applications. IEEE Access, 10:47699–47714, 2022.

Octavian-Eugen Ganea, Gary Bécigneul, and Thomas Hofmann. Hyperbolic neural networks. In
NeurIPS, pp. 5350–5360, 2018.

Yuan Gao, Xiang Wang, Xiangnan He, Zhenguang Liu, Huamin Feng, and Yongdong Zhang. Alle-
viating structural distribution shift in graph anomaly detection. In WSDM, pp. 357–365, 2023a.

Yuan Gao, Xiang Wang, Xiangnan He, Zhenguang Liu, Huamin Feng, and Yongdong Zhang. Ad-
dressing heterophily in graph anomaly detection: A perspective of graph spectrum. In WWW, pp.
1528–1538, 2023b.

Zheng Gong, Guifeng Wang, Ying Sun, Qi Liu, Yuting Ning, Hui Xiong, and Jingyu Peng. Beyond
homophily: Robust graph anomaly detection via neural sparsification. In IJCAI, pp. 2104–2113,
2023.

Qinglang Guo, Haiyong Xie, Yangyang Li, Wen Ma, and Chao Zhang. Social bots detection via
fusing BERT and graph convolutional networks. Symmetry, 14(1):30–43, 2022.

William L. Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large
graphs. In NeurIPS, pp. 1024–1034, 2017.

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter.
Gans trained by a two time-scale update rule converge to a local nash equilibrium. In NeurIPS,
pp. 6626–6637, 2017.

Xuanwen Huang, Yang Yang, Yang Wang, Chunping Wang, Zhisheng Zhang, Jiarong Xu, Lei Chen,
and Michalis Vazirgiannis. Dgraph: A large-scale financial dataset for graph anomaly detection.
In NeurIPS, pp. 1–13, 2022.

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
works. In ICLR, 2017.

11



Published as a conference paper at ICLR 2025

Polina Kirichenko, Mark Ibrahim, Randall Balestriero, Diane Bouchacourt, Shanmukha Ramakr-
ishna Vedantam, Hamed Firooz, and Andrew Gordon Wilson. Understanding the detrimental
class-level effects of data augmentation. In NeurIPS, pp. 1–29, 2023.

Ao Li, Zhou Qin, Runshi Liu, Yiqun Yang, and Dong Li. Spam review detection with graph convo-
lutional networks. In CIKM, pp. 2703–2711, 2019.

Chi-Heng Lin, Chiraag Kaushik, Eva L. Dyer, and Vidya Muthukumar. The good, the bad and
the ugly sides of data augmentation: An implicit spectral regularization perspective. JMLR, 25:
91:1–91:85, 2024.

Qi Liu, Maximilian Nickel, and Douwe Kiela. Hyperbolic graph neural networks. In NeurIPS, pp.
8228–8239, 2019.

Xinru Liu, Yongjing Hao, Lei Zhao, Guanfeng Liu, Victor S. Sheng, and Pengpeng Zhao. LMACL:
improving graph collaborative filtering with learnable model augmentation contrastive learning.
TKDD, 18(7):1–24, 2024.

Jing Ma, Wei Gao, and Kam-Fai Wong. Rumor detection on twitter with tree-structured recursive
neural networks. In ACL, pp. 1980–1989, 2018.

Maximilian Nickel and Douwe Kiela. Learning continuous hierarchies in the lorentz model of
hyperbolic geometry. In ICML, pp. 3776–3785, 2018.

F. Rosenblatt. The perceptron: A probabilistic model for information storage and organization in
the brain. Psychological Review, 65(6):386–408, 1958.

Jianheng Tang, Jiajin Li, Ziqi Gao, and Jia Li. Rethinking graph neural networks for anomaly
detection. In ICML, pp. 21076–21089, 2022.

Jianheng Tang, Fengrui Hua, Ziqi Gao, Peilin Zhao, and Jia Li. Gadbench: Revisiting and bench-
marking supervised graph anomaly detection. In NeurIPS, pp. 1–26, 2023.

Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
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APPENDIX

A PROOFS

Proof of Theorem 1. Let p denote WHκ, then the information a normal node can gain within its
neighborhood during a propagation process follows N (pµn + (1 − p)µa, p

2Σn + (1 − p)2Σa)
according to the linear properties of independent Gaussian variables.

Let X and Y denote the distribution of the normal node and the information over Rd, respectively.
We then use Fréchet inception distance (Heusel et al., 2017) to describe the distance between two
distributions as follows:

F (X,Y )2 = ( inf
γ∈Γ(X,Y )

∫
Rd×Rd

||x− y||2dγ(x,y)),

= ( inf
γ∈Γ(X,Y )

E(x,y)∼γ [||x− y||2]),

where Γ(X,Y ) is the set of all measures on Rd × Rd with marginals X and Y on the first and
second factors, separately. Hence, we have the following equation:

E(x,y)∼γ [||x− y||2]
=E(x̃,ỹ)∼γ̃ [||(x̃+ µx)− (ỹ + µy)||2]
=E(x̃,ỹ)∼γ̃ [||x̃− ỹ||2 + ||µx − µy||2 + 2⟨x̃− ỹ,µx − µy⟩]
=||µx − µy||2 + E(x̃,ỹ)∼γ̃ [||x̃− ỹ||2]

where µx and µy represent the mean value of distributions X and Y , and x̃ and ỹ represent vectors
following distribution X̃ and Ỹ , which have 0 mean value and the same variance value as X and
Y , respectively. Hence, the Fréchet inception distance can be decomposed as:

F (X,Y )2 = ||µx − µy||2 + F (X̃, Ỹ )2

This result shows the distance between the distribution of the normal node and the information is
determined by two parts, the mean value and the variance value. Specifically, we can assume Σn ≈
Σa ≈ cI in real NAD tasks, where c is a small constant, due to the independent similar behaviors
of nodes in the same category. Thus, we have F (X̃, Ỹ )2 ≈ 0 and F (X,Y )2 = ||µx − µy||2.

Then, we check the distance between mean values of X and Y . Specifically, it can be written as:

||µx − µy||2 = (1− p)2||µn − µa||2

which concludes that if ||µn−µa||2 remains the same, as p increases, the distance between the dis-
tribution of the normal node and the information will decrease, and thus the probability of a normal
node following its original distribution after a propagation process increases as WHκ increases.

The situation of an anomalous node can be analyzed accordingly. This solution concludes that
weighted homogeneity can benefit the propagation procedure for NAD tasks.

Proof of Theorem 2. First, we apply Taylor expansion on tan−1
κ (t) for a fixed t when κ→ 0+:

tan−1
κ (t) =κ− 1

2 tan(κ
1
2 t)

=κ− 1
2 (κ

1
2 t+ κ

3
2
t3

3
+O(κ 5

2 ))

=t+ κ
t3

3
+O(κ2)

When κ→ 0−:
tan−1

κ (t) =(−κ)− 1
2 tanh((−κ) 1

2 t)

=(−κ)− 1
2 ((−κ) 1

2 t− (−κ) 3
2
t3

3
+O(κ 5

2 ))

=t+ κ
t3

3
+O(κ2)
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When κ → 0, we also have tan−1
κ (t) = t − κ t3

3 + O(κ2). Hence, we conclude that near 0,
tan−1

κ (t) = t− κ t3

3 +O(κ2).

Then, we need to use the Tayler expansion for ||·||. Specifically, ||x+o|| = ||x||+⟨x,o⟩+O(||o||2)
when o→ 0.

After that, we derive the Tayler expansion for x⊕κ y when κ near 0:

x⊕ y =
(1− 2κxTy − κ||y||2)x+ (1 + κ||x||2)y

1− 2κxTy + κ2||x||2||y||2

=((1− 2κxTy − κ||y||2)x+ (1 + κ||x||2)y)(1 + 2κxTy +O(κ2))

=(1− 2κxTy − κ||y||2)x+ (1 + κ||x||2)y + 2κxTy(x+ y) +O(κ2)

=(1− κ||y||2)x+ (1 + κ||x||2)y + 2κ(xTy)y +O(κ2)

=x+ y + κ(||x||2y − ||y||2x+ 2(xTy)y) +O(κ2)

By combining the above three Tayler expansions and ignoreO(κ2), we have the following equation:

dκ(x,y) =2 tan−1
κ (||(−x)⊕κ y||)

=2(||x− y||+ κ((−x)Ty)||x− y||2)(1− κ

3
(||x− y||2))

=2||x− y|| − 2κ((xTy)||x− y||2 + ||x− y||3

3
)

which concludes our theorem.

Proof of Proposition 1. We use the weighted cross-entropy loss of m single models to subtract the
ensemble cross-entropy loss:

m∑
i=1

αiL(p, qi)− L(p, q̄) =
C∑

c=1

pc log q̄c −
m∑
i=1

C∑
c=1

αip
c log qc

i

=

C∑
c=1

pc log q̄c −
C∑

c=1

pc log(
∏
i

(qc
i )

αi)

=

C∑
c=1

pc log(
q̄c∏

i(q
c
i )

αi
)

=Ω(p)

By applying the weighted AM–GM inequality, we have q̄ ≥
∏

i(q
c
i )

αi , which means the term inside
the log function is greater or equal to 1, and so the Ω(p) is non-negative. Thus, it finishes the proof
of the Proposition.

Proof of Proposition 2. We take the expectation of the equation in Proposition 1 over entire graph
G and apply KL bias-variance decomposition in previous study (Wood et al., 2023), then we have:

EG[L(p, q̄)] =EG[

m∑
i=1

αiL(p, qi)]− EG[Ω(p)]

=

m∑
i=1

αiL(p, q̂i) +
m∑
i=1

αiEG[DKL(q̂i||qi)]− EG[Ω(p)]

=

m∑
i=1

αiL(p, q̂i) + Θ(p),

where Θ(p) is demonstrated as non-negative in previous study (Wood et al., 2023), and thus this
Proposition is proven.
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Table 3: Statistics of 9 datasets including the number of nodes and edges, the number of normal and
anomalous nodes, the ratio of anomalous labels, average degree, and the node feature dimension.

Datasets #Nodes #Edges #Normal #Anomalous #Anomalous Rate Average Degree #Feature
Weibo 8,405 407,963 7,537 868 0.1033 48.54 400
Reddit 10,984 168,016 10,618 366 0.0333 15.30 64

Tolokers 11,758 519,000 9,192 2,566 0.2182 44.14 10
Amazon 11,944 4,398,392 11,123 821 0.0687 368.25 25

T-Finance 39,357 21,222,543 37,554 1,803 0.0458 539.23 10
YelpChi 45,954 3,846,979 39,277 6,677 0.1453 83.71 32

Questions 48,921 153,540 47,461 1,460 0.0298 3.14 301
DGraph-Fin 3,700,550 4,300,999 1,210,092 15,509 0.0127 1.16 17

T-Social 5,781,065 73,105,508 5,606,785 174,280 0.0301 12.65 10

B DATASETS AND BASELINES

Datasets. The datasets used in our experiments are from the most recent benchmark paper (Tang
et al., 2023), according to which, Weibo, Reddit, Questions, and T-Social aim to detect anomalous
accounts on social media, Tolokers, Amazon, and YelpChi are proposed for malicious comments
detection in review platforms, and T-Finance and DGraph-Fin focus on fraud detection in financial
networks. The statistics of these 9 real-world datasets are shown in Table 3.

Baselines. The first group is generalized models:

• MLP (Rosenblatt, 1958): A type of neural network with multiple layers of fully connected artifi-
cial neurons;

• GCN (Kipf & Welling, 2017): A type of GNN that leverages convolution function on a graph to
propagate information within the neighborhood of each node;

• GraphSAGE (Hamilton et al., 2017): A type of GNN that uses sampling technique to aggregate
features from the neighborhood;

• GAT (Velickovic et al., 2018): A type of GNN that adopts an attention mechanism to assign
different importance to different nodes within the neighborhood of each node;

• GIN (Xu et al., 2019): A type of GNN that captures the properties of a graph while following
graph isomorphism;

• HNN (Ganea et al., 2018): A type of neural network that projects data features into non-Euclidean
space;

• HGCN (Chami et al., 2019): A type of GNN that embeds node representations into non-Euclidean
space and propagates accordingly;

• HYLA (Yu & Sa, 2023): A type of GNN combines both laplacian characteristics within a graph
and the information from non-Euclidean space.

The second group is specialized models:

• AMMNet (Chai et al., 2022): A method proposed to capture both low- and high-frequency spec-
tral information to detect anomalies;

• BWGNN (Tang et al., 2022): A method designed to handle the ’right-shift’ phenomenon of graph
anomalies in spectral space;

• GDN (Gao et al., 2023a): A method that aims to learn information from a graph of the dependence
relationships between sensors;

• SparseGAD (Gong et al., 2023): A method that leverages sparsification to mitigate the heterophily
issues within the neighborhood of each node;

• GHRN (Gao et al., 2023b): A method that tackles the heterophily problem in the spectral space
of graph anomaly detection;

• GAGA (Wang et al., 2023b): A method that uses group aggregation to reduce the influence of low
homophily;

• XGBGraph (Tang et al., 2023): A method that combines XGB and GIN to boost the expressive-
ness;

• CONSISGAD (Chen et al., 2024): A method that applies a pseudo-label generation technique to
solve the limited supervision problem;
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C ALGORITHM

Algorithm 1: expκo/logκo
Input: G
Output: Hκ

1 Ĥ ← NORMALIZE(H);
2 if κ < 0 then

3 Hκ ← tanh(
√

|κ|Ĥ)H√
|κ|Ĥ

if expκo, else arctanh(
√

|κ|Ĥ)H√
|κ|Ĥ

;

4 else if κ > 0 then

5 Hκ ← tan(
√

|κ|Ĥ)H√
|κ|Ĥ

if expκo, else arctan(
√

|κ|Ĥ)H√
|κ|Ĥ

;

6 else
7 Hκ ←H;
8 Return Hκ;

Algorithm 2: CLAMPκ

Input: G
Output: Hκ

1 Ĥ ← NORMALIZE(H);
2 ϵ← 1−8;
3 τ ← 1−ϵ√

|κ|
;

4 for i = 1 to n do
5 for j = 1 to d do
6 if Ĥij > τ then
7 Hκ

ij ←
Hij

τĤij

8 else
9 Hκ

ij ←Hij

10 Return Hκ;

Algorithm 3: fL
κ

Input: G
Output: Zκ

1 H0 ←X;
2 for l = 0 to L− 1 do
3 El ← CLAMPκl(σ(expκ

l

o (MLP(σ(MLP(H l))))));
4 for i = 1 to n do
5 ŝκ

l

i ← 1− σ([2||El
i −El

j || − 2κl(El
i)

TEl
j ||E

l
i −El

j ||2 +
||El

i−El
j ||

3

3 : j ∈ N(i)]);
6 ωκl

ij ← MLP(CONCAT(El
i, ŝ

κl

ijE
l
j));

7 H l+1
i ← SELU(logκ

l

o (El
i) +

∑
j∈N(i) ω

κl

ij log
κl

o (El
j));

8 Zκ ← SOFTMAX(MLP(CONCAT(H0,H1, ...,HL)));
9 Return Zκ;

Algorithm 4: SpaceGNN
Input: G, L
Output: Z

1 Zκ+ ← fL
κ+(G), Zκ− ← fL

κ−(G), Z0 ← fL
0 (G);

2 Z ← (1− β)((1− α)Zκ−
+ αZκ+

) + βZ0;
3 Return Z;
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Table 4: Hyperparameters of 9 datasets for experiments in Section 5.

Datasets Learning Rate Hidden Dimension Layer Dropout Batch Size α β
Weibo 0.001 128 6 0 50 0.5 1
Reddit 0.001 128 5 0.05 50 0 0

Tolokers 0.001 128 1 0.05 50 0 0.5
Amazon 0.001 128 3 0.05 50 0 0

T-Finance 0.001 128 3 0.1 50 1 1
YelpChi 0.0001 128 1 0.1 50 0 0

Questions 0.0001 128 6 0.1 50 0.5 0.5
DGraph-Fin 0.001 128 4 0.05 50 0 1

T-Social 0.001 128 6 0.05 50 0.5 1

Amazon T-Finance T-Social
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Figure 5: Varying the Hidden Dimension and Layer.

α

0.0

0.5

1.0
β

0.0 0.5 1.0

F1 score

0.80
0.82
0.84
0.86

0.88

0.90

α

0.0

0.5

1.0
β

0.0 0.5 1.0

F1 score

0.60
0.65
0.70
0.75
0.80
0.85

α

0.0

0.5

1.0
β

0.0 0.5 1.0

F1 score

0.55

0.60

0.65

0.70

0.75

(a) Amazon (b) T-Finannce (c) T-Social

Figure 6: Varying α and β on different datasets.
We provide the detailed algorithm in this Section. In Algorithm 1, we calculate expκo(·) and logκo(·)
based on the original point o of the space with curvature κ. Besides, to satisfy the range of logκo(·),
we utilized Algorithm 2 to prune the node representations. Moreover, we construct Algorithm 3
by utilizing Algorithms 1 and 2. Specifically, we use the approximated distance to calculate the
similarities between nodes and their neighbors, and then leverage them as the corresponding coeffi-
cients during the propagation process. Notice, for each layer l during the propagation, we assign a
different learnable κl to capture comprehensive information from different spaces. To simplify our
architecture, we only use three base models, fL

κ+ , fL
κ− , and fL

0 , for constructing SpaceGNN. This
simplification can reduce the running time cost, and allow us to investigate the effectiveness of differ-
ent spaces on different datasets easily through the corresponding hyperparameters. After obtaining
probability matrix Z from Algorithm 4, we use the cross-entropy loss to update the framework.

D EXPERIMENTAL SETTINGS

Table 4 provides a comprehensive list of our hyperparameters. We use grid search to train the model
that yields the best F1 score on the validation set and report the corresponding test performance.
Specifically, Learning Rate is searched from the set {0.001, 0.0001}, Hidden Dimension is cho-
sen from the set {32, 64, 128, 256}, Layer ranges from 1 to 6, Dropout is obtained from the set
{0, 0.05, 0.1}, Batch Size is fixed based on the size of the training set, and α and β are from the set
{0, 0.5, 1}, respectively. In the following Section E, we will further analyze the influence of Hidden
Dimension, Layer, and α and β on the F1 scores of different datasets.
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Table 5: Ablation study.
Datasets Weibo Reddit Tolokers Amazon T-Finance YelpChi Questions DGraph-Fin T-Social
Metrics AUC F1 AUC F1 AUC F1 AUC F1 AUC F1 AUC F1 AUC F1 AUC F1 AUC F1

SpaceGNN 0.9389 0.8541 0.6159 0.4915 0.7089 0.6012 0.9331 0.8935 0.9400 0.8723 0.6566 0.5719 0.6510 0.5336 0.6548 0.5017 0.9392 0.7571
w/o LSP 0.9279 0.8336 0.5964 0.4915 0.6964 0.5560 0.9135 0.8896 0.9384 0.8485 0.6274 0.5414 0.6445 0.5311 0.6465 0.5010 0.9042 0.7287
w/o DAP 0.9276 0.8442 0.5966 0.4915 0.6797 0.5717 0.9158 0.8814 0.9349 0.8553 0.6221 0.5621 0.6246 0.5300 0.6430 0.5001 0.9366 0.7353

Table 6: AUC and F1 scores (%) on 9 datasets with random split, compared with generalized models,
where OOM represents out-of-memory.

Datasets Metrics MLP GCN SAGE GAT GIN HNN HGCN HYLA SpaceGNN

Weibo AUC 0.2856 0.6223 0.6176 0.8077 0.4452 0.4844 0.8020 0.9351 0.8364
F1 0.5347 0.6215 0.4732 0.5127 0.5230 0.4727 0.4721 0.7008 0.7158

Reddit AUC 0.5320 0.5865 0.5820 0.5421 0.5217 0.5266 0.5196 0.4734 0.5868
F1 0.4916 0.4916 0.4916 0.4916 0.4916 0.4916 0.4916 0.4916 0.4916

Tolokers AUC 0.4632 0.5355 0.4119 0.6453 0.6030 0.5718 0.6495 0.4927 0.6952
F1 0.4375 0.5093 0.4423 0.5075 0.5621 0.5127 0.5522 0.5004 0.6026

Amazon AUC 0.8550 0.7954 0.6162 0.5210 0.8254 0.7098 0.7468 0.7185 0.8722
F1 0.8261 0.6441 0.3725 0.3668 0.2256 0.4822 0.4822 0.5879 0.8641

T-Finance AUC 0.9058 0.6796 0.6512 0.6327 0.7567 0.8761 0.0719 0.3917 0.9349
F1 0.7856 0.3068 0.4627 0.5293 0.7681 0.8204 0.4883 0.4919 0.8031

YelpChi AUC 0.5064 0.4845 0.4975 0.5546 0.6082 0.3702 0.4745 0.5426 0.6191
F1 0.5064 0.4608 0.4980 0.5220 0.5332 0.4608 0.4608 0.4644 0.5475

Questions AUC 0.5299 0.4684 0.5654 0.5554 0.5597 0.5177 0.5057 0.4049 0.5851
F1 0.4645 0.4924 0.4371 0.4923 0.4492 0.5089 0.5083 0.4924 0.4924

DGraph-Fin AUC 0.4356 0.3900 0.5794 0.4103 0.4088 0.3282 0.3322 OOM 0.6515
F1 0.4531 0.4815 0.4994 0.4282 0.3787 0.4968 0.3312 OOM 0.5030

T-Social AUC 0.5377 0.6183 0.6948 0.6958 0.5554 0.4694 0.4297 OOM 0.9019
F1 0.1373 0.2554 0.5421 0.5501 0.3733 0.4924 0.4923 OOM 0.7320

E PARAMETER ANALYSIS

In this Section, we investigate the impact of Hidden Dimension, Layer, and α and β on three different
datasets, and present their F1 scores.

Figure 5 reports the F1 score of SpaceGNN as we vary the Hidden Dimension from 32 to 256, and
the Layer from 1 to 6. As we can observe, when we set the Hidden Dimension to 128, SpaceGNN
achieves relatively satisfactory performances on these three datasets. When we vary the Layer, we
find for different datasets, the optimal value can be different. Specifically, we set it to 3 for Amazon
and T-Finance, and 6 for T-Social to get the best performance.

Figure 6 reports the F1 score of SpaceGNN as we vary α and β from 0 to 1. These two hyperparam-
eters represent the influence of diverse spaces on the datasets, so for different datasets, the optimal
value will be distinct. Specifically, we set α to 0 for Amazon, 1 for T-Finance, and 0.5 for T-Social,
and we set β to 0 for Amazon, 1 for T-Finance and T-Social to get the satisfactory performance.

F ABLATION STUDY

To investigate the usefulness of the LSP and DAP components, we provide the ablation study of
them on 9 datasets in Table 5. Specifically, we set the κ as fixed values for different spaces during
the w/o LSP experiment and set the ŝi as 1 for each node i during the w/o DAP experiment. As
shown in Table 5, SpaceGNN consistently outperforms w/o LSP and w/o DAP by a large margin,
which demonstrates the benefits of these two components.

G ADDITIONAL EXPERIMENTAL RESULTS

In addition to the experiments in Section 5, we further compare our SpaceGNN with baseline models
on datasets with different sizes of training/validation/testing sets. Specifically, in experiments of
Tables 6 and 7, we randomly divide each dataset into 10/10 for training/validation, and the rest of
the nodes for testing, and in experiments of Tables 8 and 9, we randomly divide each dataset into
100/100 for training/validation, and the rest of the nodes for testing.
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Table 7: AUC and F1 scores (%) on 9 datasets with random split, compared with specialized models,
where TLE represents the experiment can not be conducted successfully within 72 hours.

Datasets Metrics AMNet BWGNN GDN SparseGAD GHRN GAGA XGBGraph CONSISGAD SpaceGNN

Weibo AUC 0.4206 0.7557 0.7751 0.4558 0.6349 0.7597 0.5660 0.3972 0.8364
F1 0.5328 0.7106 0.1664 0.4724 0.6379 0.6574 0.5061 0.4447 0.7158

Reddit AUC 0.6002 0.5815 0.4436 0.5263 0.5513 0.5068 0.5030 0.5536 0.5868
F1 0.4365 0.4617 0.4916 0.4721 0.4093 0.4916 0.4916 0.4514 0.4916

Tolokers AUC 0.5627 0.5725 0.6159 0.4792 0.5688 0.6327 0.6083 0.5843 0.6952
F1 0.4451 0.5312 0.4665 0.4388 0.5449 0.4388 0.4989 0.5258 0.6026

Amazon AUC 0.8356 0.7702 0.8335 0.7249 0.8028 0.7795 0.7666 0.8435 0.8722
F1 0.7144 0.5834 0.1685 0.4822 0.6777 0.6674 0.4822 0.8475 0.8641

T-Finance AUC 0.8302 0.7318 0.5899 0.3650 0.7895 0.8157 0.8570 0.8503 0.9349
F1 0.5692 0.5025 0.5568 0.4883 0.5652 0.4894 0.7406 0.8316 0.8031

YelpChi AUC 0.4738 0.5058 0.4893 0.5190 0.4231 0.4671 0.4927 0.5927 0.6191
F1 0.4875 0.4614 0.4977 0.4608 0.4608 0.4919 0.4608 0.5403 0.5475

Questions AUC 0.4971 0.4125 0.5094 0.5185 0.5062 0.5361 0.5122 0.5492 0.5851
F1 0.4843 0.4924 0.4855 0.4988 0.5125 0.4944 0.4924 0.4935 0.4924

DGraph-Fin AUC 0.3812 0.6343 0.3200 0.3346 0.3734 TLE 0.5009 0.6469 0.6515
F1 0.4128 0.4909 0.2641 0.4970 0.4871 TLE 0.4968 0.4224 0.5030

T-Social AUC 0.4745 0.6408 0.5480 0.3317 0.6319 TLE 0.5066 0.8614 0.9019
F1 0.4810 0.4487 0.5124 0.4923 0.3435 TLE 0.4923 0.5890 0.7320

Table 8: AUC and F1 scores (%) on 9 datasets with random split, compared with generalized models,
where OOM represents out-of-memory.

Datasets Metrics MLP GCN SAGE GAT GIN HNN HGCN HYLA SpaceGNN

Weibo AUC 0.4438 0.9066 0.8157 0.8401 0.8541 0.7243 0.8545 0.9159 0.9521
F1 0.6538 0.8444 0.4746 0.7941 0.6561 0.6545 0.7620 0.4965 0.8481

Reddit AUC 0.5907 0.5725 0.5767 0.6001 0.4793 0.5330 0.5315 0.4714 0.6232
F1 0.4916 0.4916 0.4916 0.4916 0.4916 0.4916 0.4916 0.4916 0.5228

Tolokers AUC 0.7050 0.6952 0.7101 0.7139 0.7067 0.7063 0.7115 0.6402 0.7140
F1 0.5427 0.5978 0.5776 0.5844 0.5835 0.4711 0.5510 0.4864 0.6040

Amazon AUC 0.8647 0.7936 0.7748 0.8808 0.9186 0.8635 0.7719 0.7188 0.9428
F1 0.7273 0.6167 0.6310 0.4354 0.7272 0.7711 0.5620 0.4822 0.9069

T-Finance AUC 0.8960 0.8916 0.6722 0.8647 0.8087 0.8768 0.9329 0.3982 0.9486
F1 0.5737 0.7507 0.6042 0.8025 0.7680 0.8384 0.8753 0.4883 0.8789

YelpChi AUC 0.7113 0.5160 0.5217 0.7249 0.7052 0.7119 0.5642 0.5508 0.7321
F1 0.6081 0.4608 0.4838 0.6256 0.6164 0.5919 0.4833 0.4608 0.6256

Questions AUC 0.4707 0.6130 0.6000 0.5847 0.5083 0.5098 0.5081 0.4055 0.6476
F1 0.4961 0.4924 0.4999 0.5020 0.4819 0.4923 0.4924 0.4924 0.5386

DGraph-Fin AUC 0.5752 0.6117 0.5487 0.6505 0.6408 0.3260 0.3298 OOM 0.6545
F1 0.4820 0.4769 0.4225 0.5000 0.5037 0.4968 0.3321 OOM 0.5097

T-Social AUC 0.5896 0.7611 0.7268 0.6968 0.7248 0.5959 0.4245 OOM 0.9428
F1 0.4126 0.5666 0.5549 0.5770 0.5433 0.4936 0.4898 OOM 0.7828

In Tables 6 and 7, we can observe that our SpaceGNN can consistently surpass both generalized and
specialized models on 9 datasets. In short, SpaceGNN outperforms the best rival 10.84% and 5.46%
on average in terms of AUC and F1 scores, respectively.

Similarly, in Tables 8 and 9, it is easy to find out that SpaceGNN is able to beat both generalized
and specialized models on 9 datasets. In summary, compared with the best rival, SpaceGNN takes a
lead by 4.98% and 3.02% on average in terms of AUC and F1 scores, separately.

H ALTERNATIVE MODEL

The most common non-Euclidean GNN is based on either the Poincaré Ball model (Liu et al., 2019)
or the Lorentz model (Nickel & Kiela, 2018). We discover that the Poincaré Ball model can be a
special form of κ-stereographic model when setting the κ to −1, which inspires us to investigate
the general form of the Lorentz model. Following the definition of the κ-stereographic model, we
generalize the Lorentz model as the κ-Lorentz model. Notice that we only provide a similar form
to the κ-stereographic model, serving as the projection functions without considering the physical
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Table 9: AUC and F1 scores (%) on 9 datasets with random split, compared with specialized models,
where TLE represents the experiment can not be conducted successfully within 72 hours.

Datasets Metrics AMNet BWGNN GDN SparseGAD GHRN GAGA XGBGraph CONSISGAD SpaceGNN

Weibo AUC 0.6902 0.8430 0.4353 0.8570 0.8286 0.8283 0.9496 0.7838 0.9521
F1 0.7156 0.7925 0.6680 0.6369 0.7918 0.7433 0.7431 0.7217 0.8481

Reddit AUC 0.6011 0.5833 0.5840 0.4864 0.5823 0.4430 0.5518 0.5704 0.6232
F1 0.4916 0.4916 0.4916 0.4916 0.4916 0.4916 0.4909 0.4916 0.5228

Tolokers AUC 0.6939 0.7100 0.7325 0.6879 0.7197 0.4817 0.6804 0.7088 0.7140
F1 0.5910 0.5943 0.5834 0.4711 0.5871 0.2794 0.5954 0.5932 0.6040

Amazon AUC 0.8812 0.8742 0.8939 0.7263 0.8843 0.7476 0.9124 0.9325 0.9428
F1 0.8768 0.8893 0.8732 0.5939 0.8286 0.7224 0.8607 0.8990 0.9069

T-Finance AUC 0.7774 0.8907 0.7863 0.9247 0.8982 0.8387 0.9407 0.9359 0.9486
F1 0.7528 0.7726 0.7779 0.4883 0.7805 0.5482 0.8831 0.8722 0.8789

YelpChi AUC 0.7201 0.7022 0.7165 0.5504 0.6974 0.5107 0.7239 0.7152 0.7321
F1 0.6202 0.6119 0.6161 0.4608 0.5575 0.4608 0.6232 0.6187 0.6256

Questions AUC 0.5959 0.5939 0.4870 0.5080 0.5931 0.5088 0.5217 0.5652 0.6476
F1 0.5145 0.4992 0.4936 0.4955 0.4993 0.4924 0.4926 0.5174 0.5386

DGraph-Fin AUC 0.5392 0.5887 0.5407 0.3418 0.6012 TLE 0.5080 0.5108 0.6545
F1 0.5043 0.5073 0.4968 0.4487 0.4973 TLE 0.4974 0.5058 0.5097

T-Social AUC 0.5114 0.7544 0.4846 0.7199 0.6353 TLE 0.7381 0.9192 0.9428
F1 0.4653 0.5731 0.4697 0.4924 0.4923 TLE 0.5547 0.7170 0.7828

Table 10: Alternative framework.
Datasets Weibo Reddit Tolokers Amazon T-Finance YelpChi Questions DGraph-Fin T-Social
Metrics AUC F1 AUC F1 AUC F1 AUC F1 AUC F1 AUC F1 AUC F1 AUC F1 AUC F1

SpaceGNN 0.9389 0.8541 0.6159 0.4915 0.7089 0.6012 0.9331 0.8935 0.9400 0.8723 0.6566 0.5719 0.6510 0.5336 0.6548 0.5017 0.9392 0.7571
SpaceGNN-L 0.9389 0.8550 0.5900 0.4915 0.7035 0.5818 0.9155 0.8911 0.9251 0.8728 0.6610 0.5577 0.6403 0.5356 0.6407 0.5008 0.9392 0.7469

meaning. The expκo(·) and logκo(·) for x ∈ Rd are defined as follows:

expκx′(x) = cosκ(||x||L)x′ + sinκ(||x||L)
x

||x||L

logκx′(x) = dκ(x,x
′)

x+ 1
κ ⟨x,x

′⟩Lx′

||x+ 1
κ ⟨x,x′⟩Lx′||L

where ⟨x,x′⟩L = −x0x
′
0+x1x

′
1+...+xdx

′
d, ||x||L =

√
⟨x,x′⟩L, dκ(x,x′) = cos−1

κ (−⟨x,x′⟩L),
and cosκ and sinκ are defined as:

cosκ(x) =


1√
−κ

cosh(
√
−κx), κ < 0,

x, κ = 0,
1√
κ
cos(
√
κx), κ > 0.

sinκ(x) =


1√
−κ

sinh(
√
−κx), κ < 0,

x, κ = 0,
1√
κ
sin(
√
κx), κ > 0.

We replace the corresponding functions in our SpaceGNN framework to get SpaceGNN-L. As
shown in Table 10, SpaceGNN and SpaceGNN-L can have similar performance in terms of all the 9
datasets, which shows SpaceGNN-L can also outperform other baselines. These results demonstrate
that our framework can be generalized to other base models.

I LEARNED κ

In this section, we report the learned κ of the experiments in Tables 1 and 2. Notice that, for
simplicity, we only include 1 Euclidean GNN, 1 Hyperbolic GNN, and 1 Spherical GNN in our
framework. Recap from Section 4, in our final architecture, we utilize a hyperparameter L to control
the number of layers of all three GNNs, and the number of entries in κ for each GNN is the same
as the number of layers of it. Specifically, if L is set to be 6, then there will be 6 entries in κ0 for
Euclidean GNN, 6 entries in κ− for Hyperbolic GNN, and 6 entries in κ+ for Spherical GNN. For
κ0, we want the GNN to stay in the Euclidean space, so we set each entry in it to 0. For κ− and κ+,
we want the Hyperbolic GNN and Spherical GNN to search for the optimal curvatures for different
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Table 11: Learned κ

Datasets κ−
1 κ−

2 κ−
3 κ−

4 κ−
5 κ−

6 κ+
1 κ+

2 κ+
3 κ+

4 κ+
5 κ+

6

Weibo -0.1272 -0.0766 -0.0795 -0.1176 -0.1239 -0.1103 0.0989 0.1233 0.0936 0.0961 0.0747 0.1116
Reddit -0.0898 -0.1012 -0.1028 -0.1048 -0.1106 - 0.0839 0.0990 0.1223 0.0939 0.0963 -

Tolokers -0.1046 - - - - - 0.1259 - - - - -
Amazon -0.0873 -0.1095 -0.1054 - - - 0.0768 0.0685 0.0864 - - -

T-Finance -0.1347 -0.0701 -0.0738 - - - 0.0744 0.0652 0.0850 - - -
YelpChi -0.1014 - - - - - 0.1369 - - - - -

Questions -0.0999 -0.1013 -0.0992 -0.1004 -0.0983 -0.1008 0.1006 0.0998 0.0998 0.1006 0.1001 0.0998
DGraph-Fin -0.1262 -0.0774 -0.0803 -0.1169 - - 0.0784 0.0906 0.0994 0.1130 - -

T-Social -0.1440 -0.0621 -0.0669 -0.1284 -0.1386 -0.1167 0.0992 0.1181 0.0950 0.0970 0.0804 0.1090

datasets, so we set these two as learnable curvatures. Notice that, according to Table 4, the optimal
L varies by datasets, so the number of entries in learned κ− and κ+ will also be different, as shown
in Table 11, where ”− ” represents no such entry in the vector.

As we can see from Table 11, the learned values stay close to 0 after the learning process, which is
aligned with the analysis of Section 4.2. As shown in Figure 2, the largest ERκ will be obtained
around 0, which further demonstrates our findings are effective for graph anomaly detection tasks.

J TIME COMPLEXITY ANALYSIS

As shown in Section 4.4, our framework is composed of 1 Euclidean GNN, H Hyperbolic GNN,
and S Spherical GNN. The differences between these GNNs are the projection functions and the
Distance Aware Propagation (DAP) component, but the time complexity of them is the same for
different GNNs. Hence, We only need to analyze one of the GNNs.

Our analysis of the GNN time complexity is primarily based on the Algorithm 3 in Appendix C,
which illustrates the base architecture of each GNN. For simplicity, we focus on a single layer in the
base architecture (Lines 3-7).

First, in Line 3, we apply a two-layer MLP with time complexity of O(|V |dd1 + |V |d1d2) followed
by a projection function with time complexity of O(|V |d2), where |V | is the total number of nodes
in the graph, d is the dimension of the node feature, and d1, d2 are the output dimension of the two
MLPs, respectively. Thus, the total time complexity of Line 3 is O(|V |dd1 + |V |d1d2).

Then, in Line 5, we have to calculate the ŝκ
l

i for each node i. Specifically, for each edge connected
to node i, we have a time complexity of O(d2) to get the corresponding coefficient. Thus, the total
time complexity for all nodes in Line 5 would be O(|E|d2), where |E| is the total number of edges
in this graph.

Afterward, in Line 6, for each edge between nodes i and j, we need to calculate the ωκl

ij with time
complexity of O(d22), where the input dimension of the MLP is 2d2 and the output dimension of it
is d2, so the total complexity for all edges in Line 6 would be O(|E|d22).
Next, in Line 7, we also have to propagate the node embeddings for each edge in the graph, so the
total time complexity of Line 7 is O(|E|d2).
Finally, we combine the results before to get the time complexity of a single layer in the base
architecture, i.e., O(|V |dd1 + |V |d1d2 + |E|d22).
According to the time analysis of GAT (Velickovic et al., 2018), one of the most popular architec-
tures in the area of graph learning, the time complexity of a single GAT attention head computing
F0 features can be expressed as O(|V |FF0 + |E|F0), where F is the number of input features, and
|V | and |E| are the numbers of nodes and edges in the graph, respectively.

Hence, each layer of our proposed GNN has a similar time complexity to GAT by choosing the
proper hyperparameters d1 and d2 in our architecture. In the experiments, we find that combining 1
Euclidean GNN, 1 Hyperbolic GNN, and 1 Spherical GNN in our framework is enough to achieve
superior performance over all the other baselines, so the increase of time complexity by the Multiple
Space Ensemble component will not be the limitation of our models in real applications.
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Figure 7: Varying the training set size of Reddit.
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Figure 8: Varying the training set size of Questions.
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Figure 9: Varying the training set size of DGraph-Fin.

K PERFORMANCE WITH MORE TRAINING DATA

To further demonstrate the superior ability of our proposed framework, we provide the performance
on Reddit, Questions, and DGraph-Fin varying by the size of the training set, as shown in Figures
7, 8, and 9. Note that, since HYLA and GAGA can not successfully run on DGraph-Fin, we only
report the performance of the other 14 baselines and our proposed SpaceGNN in Figure 9.

As we can see, the red lines, which represent the performance of our SpaceGNN, are always on
the top of the figures, which demonstrates that with more training data, our SpaceGNN can still
outperform all the other baselines consistently in terms of both AUC and F1. In summary, such
experiments further make our SpaceGNN a more general and practical algorithm.

L PERFORMANCE ON GADBENCH (TANG ET AL., 2023) SEMI-SUPERVISED
SETTING

For a fair comparison, we also provide AUC, AUPRC, and Rec@K scores on 9 datasets with data
split of the semi-supervised setting in GADBench (Tang et al., 2023). Specifically, in this setting, we
use 20 positive labels (anomalous nodes) and 80 negative labels (normal nodes) for both the training
set and the validation set in each dataset, separately. Note that, for the baselines in GADBench,
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Table 12: AUC, AUPRC, and Rec@K scores (%) on 9 datasets with data split of the semi-supervised
setting in GADBench (Tang et al., 2023), compared with generalized models, where OOM repre-
sents out-of-memory.

Datasets Metrics MLP GCN SAGE GAT GIN HNN HGCN HYLA SpaceGNN

Weibo
AUC 0.666 0.935 0.818 0.864 0.838 0.747 0.942 0.960 0.964

AUPRC 0.562 0.860 0.585 0.733 0.676 0.312 0.808 0.727 0.864
Rec@K 0.532 0.792 0.634 0.702 0.665 0.371 0.757 0.736 0.795

Reddit
AUC 0.591 0.569 0.603 0.605 0.600 0.619 0.625 0.523 0.637

AUPRC 0.044 0.042 0.045 0.047 0.043 0.045 0.045 0.038 0.050
Rec@K 0.065 0.062 0.058 0.065 0.048 0.055 0.052 0.064 0.077

Tolokers
AUC 0.681 0.642 0.676 0.681 0.668 0.690 0.699 0.618 0.715

AUPRC 0.333 0.330 0.340 0.330 0.318 0.327 0.335 0.290 0.362
Rec@K 0.355 0.334 0.352 0.351 0.336 0.346 0.351 0.311 0.366

Amazon
AUC 0.922 0.820 0.814 0.924 0.916 0.861 0.792 0.717 0.947

AUPRC 0.830 0.328 0.425 0.816 0.754 0.785 0.306 0.168 0.812
Rec@K 0.793 0.369 0.480 0.771 0.704 0.776 0.356 0.236 0.782

T-Finance
AUC 0.899 0.883 0.689 0.850 0.845 0.880 0.933 0.615 0.949

AUPRC 0.534 0.605 0.117 0.289 0.448 0.677 0.799 0.063 0.849
Rec@K 0.599 0.606 0.185 0.362 0.544 0.638 0.760 0.080 0.796

YelpChi
AUC 0.647 0.512 0.589 0.656 0.629 0.662 0.480 0.551 0.726

AUPRC 0.236 0.164 0.209 0.250 0.237 0.263 0.141 0.174 0.331
Rec@K 0.265 0.169 0.229 0.281 0.265 0.296 0.149 0.200 0.366

Questions
AUC 0.612 0.600 0.612 0.623 0.622 0.601 0.575 0.619 0.650

AUPRC 0.077 0.061 0.055 0.073 0.067 0.047 0.039 0.057 0.097
Rec@K 0.120 0.098 0.088 0.109 0.103 0.051 0.030 0.106 0.145

DGraph-Fin
AUC 0.691 0.662 0.648 0.672 0.657 0.644 0.638 OOM 0.678

AUPRC 0.023 0.023 0.020 0.022 0.020 0.022 0.023 OOM 0.025
Rec@K 0.034 0.036 0.025 0.031 0.021 0.013 0.027 OOM 0.040

T-Social
AUC 0.591 0.716 0.720 0.754 0.704 0.473 0.435 OOM 0.947

AUPRC 0.039 0.084 0.078 0.092 0.062 0.027 0.024 OOM 0.642
Rec@K 0.032 0.102 0.095 0.116 0.053 0.009 0.001 OOM 0.667

Table 13: AUC, AUPRC, and Rec@K scores (%) on 9 datasets with data split of the semi-supervised
setting in GADBench (Tang et al., 2023), compared with specialized models, where TLE represents
the experiment can not be conducted successfully within 72 hours.

Datasets Metrics AMNet BWGNN GDN SparseGAD GHRN GAGA XGBGraph CONSISGAD SpaceGNN

Weibo
AUC 0.824 0.936 0.682 0.897 0.916 0.732 0.964 0.873 0.964

AUPRC 0.671 0.806 0.582 0.696 0.770 0.376 0.759 0.654 0.864
Rec@K 0.621 0.751 0.560 0.678 0.724 0.324 0.689 0.583 0.795

Reddit
AUC 0.629 0.577 0.596 0.634 0.575 0.501 0.592 0.629 0.637

AUPRC 0.049 0.042 0.043 0.047 0.042 0.032 0.041 0.046 0.050
Rec@K 0.068 0.060 0.052 0.074 0.063 0.019 0.049 0.061 0.077

Tolokers
AUC 0.617 0.685 0.713 0.673 0.690 0.636 0.675 0.709 0.715

AUPRC 0.286 0.353 0.353 0.318 0.359 0.293 0.341 0.337 0.362
Rec@K 0.305 0.355 0.363 0.346 0.361 0.318 0.366 0.364 0.366

Amazon
AUC 0.928 0.918 0.868 0.935 0.909 0.504 0.947 0.933 0.947

AUPRC 0.824 0.817 0.691 0.800 0.807 0.148 0.844 0.792 0.812
Rec@K 0.778 0.777 0.652 0.788 0.777 0.143 0.782 0.775 0.782

T-Finance
AUC 0.926 0.921 0.900 0.944 0.926 0.725 0.948 0.932 0.949

AUPRC 0.602 0.609 0.671 0.835 0.634 0.252 0.783 0.815 0.849
Rec@K 0.657 0.649 0.656 0.794 0.677 0.400 0.724 0.758 0.796

YelpChi
AUC 0.648 0.643 0.670 0.639 0.645 0.549 0.640 0.715 0.726

AUPRC 0.239 0.237 0.244 0.213 0.238 0.173 0.248 0.330 0.331
Rec@K 0.266 0.264 0.278 0.222 0.269 0.187 0.268 0.358 0.366

Questions
AUC 0.636 0.602 0.609 0.574 0.605 0.513 0.614 0.649 0.650

AUPRC 0.074 0.065 0.070 0.036 0.065 0.039 0.077 0.085 0.097
Rec@K 0.127 0.109 0.097 0.032 0.111 0.072 0.106 0.092 0.145

DGraph-Fin
AUC 0.671 0.655 0.660 0.674 0.671 TLE 0.624 0.635 0.678

AUPRC 0.022 0.021 0.022 0.023 0.023 TLE 0.019 0.017 0.025
Rec@K 0.026 0.031 0.032 0.022 0.034 TLE 0.025 0.011 0.040

T-Social
AUC 0.537 0.775 0.716 0.766 0.787 TLE 0.852 0.940 0.947

AUPRC 0.031 0.159 0.104 0.256 0.162 TLE 0.406 0.484 0.642
Rec@K 0.016 0.243 0.199 0.362 0.246 TLE 0.430 0.535 0.667
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we use the reported performance in it, and for baselines not in GADBench, we obtain the source
code of all competitors from GitHub and execute these models using the default parameter settings
suggested by their authors. The hyperparameters of SpaceGNN are set based on the same setting in
GADBench, i.e., random search.

As we can see from Tables 12 and 13, our proposed model can still outperform all the baselines
on almost all the datasets consistently using AUC, AUPRC, and Rec@K scores as metrics, which
demonstrates the effectiveness of our SpaceGNN.
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