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Abstract

This paper presents a decentralized approach for train pla-
tooning, combining reinforcement learning and autonomous
decision-making. A Double Deep Q-Network (DDQN)
model is employed to ensure safe following within a platoon,
while novel algorithms are used to manage real-time deci-
sions for virtual coupling and uncoupling. Our method aims
to improve network efficiency by maximizing track usage and
facilitating coordinated, safe platoon formation, leading to in-
creased rail capacity and flexibility. The proposed methods
were evaluated in a custom Gym environment, demonstrating
scalability and effectiveness in forming platoons.

Introduction
Efficient train scheduling is crucial for reducing delays,
maximizing track use, and meeting growing demand. De-
centralized scheduling, where trains rely on local informa-
tion to coordinate movements, marks a shift from central-
ized systems, reducing reliance on a single authority. By dis-
tributing decision-making across the network, it reduces vul-
nerability to single-point failures, enhances scalability, and
provides greater flexibility to adapt to disruptions or unex-
pected changes. However, ensuring safety in such a system
requires robust coordination mechanisms and clear commu-
nication protocols between trains.

Decentralized scheduling and coordination are becom-
ing crucial as demand for rail transportation increases, ne-
cessitating higher density and greater flexibility, challenges
that centralized systems often struggle to address effectively.
This shift is particularly vital in urban metro systems, high-
speed rail networks, and freight corridors, where even mi-
nor delays can disrupt the entire network. By empowering
trains to make localized decisions based on real-time infor-
mation, decentralized systems enhance flexibility, resilience,
and scalability. These attributes make them well-suited for
modern rail networks, enabling more efficient use of infras-
tructure.

This paper introduces novel deep-reinforcement learning-
based distributed coordination mechanisms and commu-
nication protocols with a particular focus on platooning
and virtual coupling. These innovative strategies go be-
yond traditional systems, such as fixed block and moving
block, enabling trains to travel closely together in a coor-
dinated group. This approach improves efficiency, reduces

energy consumption, and maximizes track usage (Felez and
Vaquero-Serrano 2023).

In this paper, we first start with a literature review that
discusses traditional train systems and ongoing efforts to ad-
vance them, followed by the research and methods section,
and concluding with a discussion of future directions. The
research itself is divided into two parts: the first focuses on
ensuring safe train following within a platoon, while the sec-
ond examines decision-making for coupling and uncoupling,
as well as handling deviation scenarios.

Literature Review
Traditionally, two main systems have been used to coordi-
nate trains on unidirectional tracks to avoid collisions: fixed
block and moving block systems. Figure 1 illustrates these
two systems.

In the fixed block system, the track is divided into pre-
defined sections, or ”blocks,” with only one train allowed
to occupy a block at any given time. Signals often control
these blocks, and a train must wait until the block ahead is
cleared before it can proceed. The length of each block is
fixed, based on safety considerations, such as braking dis-
tances. The advantages of this system are its simplicity, ease
of implementation and maintenance, and inherent safety, as
only one train can occupy a block at a time. However, it is in-
flexible because the fixed block length limits track capacity
and operational efficiency.

In the moving block system, a safe distance between
trains is calculated in real-time based on the speed and brak-
ing capacity of each train. Unlike the fixed block system,
there are no predefined blocks; instead, the ”block” moves
with the lead train. The following train continuously calcu-
lates the area of the track that the leading train may occupy.
In practice, an absolute braking distance is maintained be-
tween the trains, ensuring that the following train can safely
stop before reaching the last known position of the lead-
ing train. This method reduces headway and increases ef-
ficiency, while still maintaining safety.

Virtual Coupling advances the concept of moving blocks
allowing trains to operate closer together, almost as if they
are physically coupled wagons, but without any actual me-
chanical connection. Instead of absolute braking distance, it
uses relative braking and assumes the train in front is also
in motion and won’t stop suddenly (Quaglietta et al. 2022).



The idea is to enable trains to form a platoon where they
behave like a single train but retain the flexibility to discon-
nect or adjust independently. The trains in a virtual coupling
system move in a synchronized fashion, with the lead train
dictating speed and movement. Figure 1 also illustrates vir-
tual coupling.

Figure 1: Train coordination systems.

Although real-time, high-precision Vehicle-to-Vehicle
(V2V) and Vehicle-to-Infrastructure (V2I) communication
is needed, this method has some benefits (Goikoetxea 2016).
Firstly, trains can couple on the go without interrupting ser-
vice. This allows flexible routing and better handling of di-
verse passenger or freight demands. Secondly, trains built by
different manufacturers, or designed for different purposes,
could interoperate on the same platoon without infrastruc-
ture modification since the link is virtual. Thirdly, virtual
coupling would allow trains to operate at much shorter in-
tervals, maximizing track usage. It also helps avoid the need
for expensive track expansions. Furthermore, platooning en-
ables fuel efficiency and reduces carbon emissions (Tsug-
awa, Jeschke, and Shladover 2016). Finally, the autonomous
capabilities of the trains would potentially reduce the need
for physical signaling infrastructure and make the system
more adaptive and resilient.

Virtual coupling also has some drawbacks. For trains to
operate in close proximity, ultra-reliable, low-latency com-
munication systems are critical to prevent accidents or mis-
coordination (Flammini et al. 2018). Ensuring the safety of
passengers and cargo in virtually coupled trains will require
new standards for emergency braking, fault tolerance, and
fail-safe protocols. Additionally, While the concept allows
trains from different manufacturers to operate together, en-
suring they can seamlessly communicate and react to one
another will require standardization across the industry.

Extensive research has been conducted in vehicle platoon-
ing and virtual coupling, particularly for cars and trucks, fo-
cusing on improving traffic flow, fuel efficiency, and safety
(Hou et al. 2023). Early concepts for train platooning ap-
peared in (Bock and Bikker 2000), with dynamic coupling
and uncoupling proposed in (Konig and Schnieder 2001).
Multi-agent systems, where autonomous modular trains
operate alongside conventional trains, were introduced in
(König, Braun, and Schnieder 2003). Limited advancements
followed until the European Shift2Rail initiative (European

Research Initiative 2024) revived interest by supporting re-
search into modernized communication technologies.

Communication systems play a crucial role in train co-
ordination, particularly in ensuring safety in modern rail
networks. Recent advancements in train-to-train (T2T) and
train-to-infrastructure (T2I) communication have signifi-
cantly improved the ability of rail systems to handle high-
density traffic. Reliable technologies for Moving Block Sig-
naling architecture have widely been adopted in systems like
the European Rail Traffic Management System (ERTMS)
Level 3 (Di Meo et al. 2020) and the China Train Con-
trol System Level 3 (Dong et al. 2010). Each train’s occu-
pancy zone is continuously updated via real-time bidirec-
tional Train-to-Ground (T2G) communication between the
train and wayside infrastructure, such as radio block cen-
ters and GSM-R exchange centers. However, virtual cou-
pling requires more advanced technology for wireless train-
to-train (T2T) communication. MOVINGRAIL Deliverable
D3.3 suggested that 5G cellular networks are well-suited
for long-distance inter-platoon communications, while IEEE
802.11 networks can be used for short-range intra-platoon
communications, ensuring real-time data exchange for speed
and braking coordination (Ge et al. 2024).

Virtual coupling has been analyzed for applications like
high-speed rail (Schumann 2016) and metro transit (Luo
et al. 2021), leading to the development of various con-
trol architectures, primarily centralized and decentralized.
Centralized systems optimize train operations globally, co-
ordinating movements across the network. In contrast, de-
centralized systems enable each train to make decisions
autonomously, relying on local environmental knowledge.
Platoon formation in decentralized systems is facilitated
through communication topologies, such as unidirectional
train communication (Felez, Kim, and Borrelli 2019) or
leader-issued commands (Zheng et al. 2017).

One of the major challenges in platooning is making
effective decisions about coupling and uncoupling. While
forming platoons at stop-in stations is an option, it can be
time-intensive, prompting proposals for dynamic coupling at
operational speeds (Nold and Corman 2021). Significant re-
search has focused on platoon merging for cars on multi-lane
highways (Rios-Torres and Malikopoulos 2017), including
strategies for integrating a single vehicle into a coopera-
tive platoon (Scholte, Zegelaar, and Nijmeijer 2022). How-
ever, relatively little attention has been given to trains. One
notable study framed the scheduling of freight trains and
their assignment to rail platoons as an optimization prob-
lem, specifically addressing corridors equipped with rapid-
shunting facilities (Schwerdfeger, Otto, and Boysen 2021).

In recent years, reinforcement learning (RL) has facili-
tated more autonomous decision-making in platooning, par-
ticularly in optimizing speed control coordination. For ex-
ample, a distributed deep RL model using bidirectional com-
munication was developed to achieve local training while
maintaining global consensus (Liu, Ding, and Lv 2020). Ad-
ditionally, multi-agent reinforcement learning for platoon-
ing in highway on-ramp scenarios has been studied, where
a centralized training and decentralized execution solution
was identified (Chen et al. 2023).



Problem Setup and Proposed Approach

The increasing demand for rail transportation systems high-
lights the need for more trains to share tracks simultane-
ously. This demand necessitates train coordination strate-
gies that minimize communication overhead to ensure scal-
ability while maintaining safety and adaptability. Despite
the advancements in the field, a gap remains in scalable,
fully decentralized approaches, particularly in their appli-
cation to the railway industry. This paper aims to address
this gap by proposing a new decentralized train platooning
system where each train operates independently but collabo-
rates locally with nearby trains to form platoons. By relying
on unidirectional communication—where each train shares
data only with the train directly behind—and bidirectional
communication—where each platoon shares data with the
platoon in front and behind—the system achieves scalabil-
ity and efficiency. A custom reinforcement learning frame-
work was implemented to train agents to maintain safe brak-
ing distances and dynamically couple or decouple based on
shared routes and destinations. This modular approach sim-
plifies coordination and ensures trains can safely adapt to
real-world complexities, such as route deviations and vary-
ing speeds. The research aims to optimize this coordination
system to enhance rail efficiency and maximize track usage.

Our first focus is on situations where trains are coupled.
We created a custom OpenAI Gym environment to train a
single agent to follow a leader train at a safe braking dis-
tance. The idea is that if one agent can learn the optimal
policy to maintain a safe distance from the train ahead, then
the model can be scaled to multiple trains. Given a unidirec-
tional track and restricted forward movement, this approach
is sufficient to prevent collisions within the platoon.

Figure 2: Custom Gym environment.

The agent learns the optimal behavior by interacting with
the environment and observing how it responds. It collects
feedback in the form of rewards and tries to maximize them.
Over time, it learns the optimal action to take for a particular
state. Reinforcement learning is suitable in real-world situ-
ations where feedback isn’t immediately available for every
step, such as in this case where communication can be in-
consistent or have delays.

The training process adopts a Sim-to-Real approach,
where the policy is first learned in a simulated environ-
ment and then deployed in real trains. Simulation allows
for the creation of a diverse set of scenarios, including edge
cases and rare events, enabling thorough policy training un-
der controlled and reproducible conditions. Furthermore, it
avoids exposing real-world systems to potentially unsafe or
impractical scenarios.

On each episode of the training process, the leader and
the following agent start at the same random speed and at a
random distance from each other within the communication
range. The leader changes speed arbitrarily by repeatedly
setting random target speeds and accelerating or decelerat-
ing uniformly until achieving them. The episode ends when
the leader arrives at Station B, if both trains collide, or if
they exceed the reliable communication distance. While the
agent is within the communication range, it receives data on
the train in front, particularly the speed and position. Then,
the state representation becomes the following {distance to
the leader, agent’s speed, leader’s speed}. For each possi-
ble state, the agent can take any of the following 3 actions
{slow down, maintain speed, speed up}. A speed limit is set
to prevent excessive acceleration and collisions.

Figure 3: State Representation.

Since the goal is to maintain the same speed for both
agents and assuming both have equal and constant decel-
eration capabilities, the relative braking distance effectively
becomes the safety distance denoted as γ. Let s represent the
position, v velocity, and a deceleration, with subscripts f for
the follower train and l for the leader train. Using the equa-
tion v = v0+at, we set 0 = v0+at to find the stopping time
t = v0

a . Substituting into the equation x = x0 + v0t− 1
2at

2

for stopping distance gives x =
v2
0

2a . Thus, the agent should
be positioned at:

sf = sl +
v2l
2al
−

v2f
2af
− γ (1)

Consequently, the relative braking distance is:

d = |sf − sl| =

∣∣∣∣∣ v2l2al − v2f
2af

∣∣∣∣∣+ γ (2)

When al = af and vl = vf , this simplifies to:

d = γ (3)

The rewards encourage the agent to minimize the distance
to the target coupling distance which is the relative braking
distance. The agent is given a positive reward between 0 and
1 on each timestamp of an episode. The closer it is to the
target distance, the reward is larger as follows in 1− d(f,t)

D . D
is the largest possible gap before leaving the communication
region. A larger positive reward is also given at the end of the
episode to encourage the agent not to collide or get behind
ending the episode early.



Algorithm 1: Reward Function

1: d← |distance to leader− target distance|
2: reward← 1− d

D
3: if |leader pos− end pos| ≤ ϵ then
4: if lower optimal distance < distance to leader <

upper optimal distance then
5: reward← reward + 100
6: else
7: reward← reward + 50
8: end if
9: end if

The continuous state space in this problem makes Q-
Tables (Watkins and Dayan 1992) impractical, so we im-
plemented a Double Deep Q-Network (DDQN) to approxi-
mate Q-values using a neural network. This method also sta-
bilizes learning by reducing the overestimation bias found
in traditional DQNs, making it more effective in complex,
dynamic train platooning. We trained the DDQN for 5000
episodes with a 0.001 learning rate and an epsilon decay of
0.999, promoting exploration initially and exploitation over
time. As shown in 4, total rewards per episode generally
increased, with the 200-episode moving average stabilizing
around 550. Variability in episode rewards arose due to ran-
domized leader speeds, varied initializations, and occasional
extreme starting positions, which sometimes ended episodes
prematurely.

Figure 4: DDQN architecture and total reward plot.

Now that a single agent can follow a leader safely, this
approach scales to a multi-agent platoon. In this setup, each
train receives data only from the train directly in front and
transmits its data to the next train behind it, as shown in Fig-
ure 5. The first agent acts as the platoon leader, indirectly

controlling the other trains. Communication remains min-
imal, as each train independently follows the train ahead,
requiring no central coordination across the entire platoon.

Figure 5: Scaled multi-agent scheme.

During testing of the multi-agent version with five agents,
including the platoon leader, we recorded each agent’s speed
and its distance to the corresponding leader. As shown in
Figure 6, the left graph illustrates how all agents adjusted
their speeds to align with the train ahead, despite the leader’s
random speed changes. However, some irregularities can
be observed throughout the episode, primarily because the
agents were initialized at random distances within the com-
munication range. On the right plot, it is evident that over
time, the agents effectively maintained the relative braking
distance, indicated by the red horizontal line.

Figure 6: Multi-Agent behavior.

Coupling and Uncoupling
With agents now capable of platooning, the next challenge is
to determine the optimal timing and approach for coupling
and uncoupling. To explore this, we developed a new envi-
ronment where a number of agents are initialized on a track,
each positioned at a safe distance from the others. Farther
down the track, there is a fork where trains can proceed to
either Station B or Station C.

Figure 7: Coupling and uncoupling environment.

Each agent is randomly assigned a destination, and the
first agent in the sequence is designated as the leader. The



leader sets a target speed—the speed limit—and accelerates
until it reaches this goal, while the following agents maintain
a safe braking distance, tracking the leader’s speed using the
model outlined above.

As the platoon approaches a fork in the track, the leader
chooses the direction based on its assigned destination.
Agents destined for the other station must then separate from
the platoon. Communication with the track’s switching in-
frastructure enables a seamless transition. When a platoon
member reaches the fork, it checks whether the next train
will follow the same path. If so, no change is made. How-
ever, if the next agent won’t follow the same path, the pla-
toon splits, with the following agent becoming the leader
of the new rear platoon. The new leader can adjust speed
and slow down if necessary, ensuring a smooth transition
through the fork. This approach is flexible and adaptable to
various situations, as demonstrated in Figure 8.

Figure 8: Deviation cases.

Periodically, each leader assesses the position of the pla-
toon ahead and sends a request to join. The leader of the
front platoon, based on certain criteria, can decide to wait
for the trailing platoon. In a real-world scenario, factors like
energy efficiency, the length of the shared route, speed ca-
pabilities, and estimated arrival times could influence this
decision. For simplicity, in this simulation, leaders allow a
joining maneuver if the trailing platoon is within a specified
distance and is sharing the same route. In these situations,
the front platoon slows its speed until the leader of the rear
platoon is within a reliable communication range, allowing
coupling to begin. At that point, the rear leader adopts the
safe braking distance model trained previously and no longer
acts as a leader. Once coupled, the leader is notified and it
can speed up to its original target speed. The episode ends
when all the platoons arrive at their destination.

Figure 9 shows the velocities of agents during an episode.
Initially, all agents are part of a single platoon, with Agents
1, 2, and 4 heading toward Station B, while Agents 3, 5,
and 6 are heading to Station C. When Agent 2 reaches the

intersection, Agent 3 becomes the leader of a new platoon,
as it will not follow the same direction as Agents 1 and 2.
When Agent 3 reaches the fork Agent 4 will take a differ-
ent path, becoming the leader of another new platoon. At
this point, Agent 3 forms a single-agent platoon, and three
platoons exist in total. However, Agent 4 requests to merge
with the platoon of Agents 1 and 2. Upon approval, Agent
1, as the leader, slows down to allow Agent 4 to join. When
Agent 4 reaches the fork, Agents 5 and 6, bound for Sta-
tion C, split and form a new platoon with Agent 5 as the
leader. They then request to merge with Agent 3’s platoon.
As the leader, Agent 3 allows the merge by reducing speed.
After both mergers, the agents maintain a safe braking dis-
tance and continue at their target speeds as newly formed
platoons.

Figure 9: Coupling and uncoupling velocities.

Conclusion and Future Work

This research presents a decentralized train platooning ap-
proach using an off-policy RL model that learns from data,
enabling each train to autonomously maintain safe distances
and dynamically join or leave platoons. The results demon-
strate the potential to enhance rail efficiency and increase
capacity through autonomous, close-following operations.

Future work will focus on optimizing the decision-
making processes for platoon formation, particularly re-
garding whether the platoon leader should wait for follow-
ing trains or continue without them. Research will explore
strategies to improve coordination when trains are waiting
to join a platoon, ensuring smoother merging and reducing
delays. Enhancing safety protocols will also be crucial for
reliable operations under various conditions. Additionally,
SIM-to-REAL techniques could be explored to train the pol-
icy in simulation and apply it to real trains with the neces-
sary computing and networking hardware. Lastly, refining
the reinforcement learning model will be key to improving
scalability and performance at higher speeds.
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