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ABSTRACT

Control of chaotic partial differential equations is challenging but valuable, with
far-reaching applications in energy systems, economics, fluid dynamics and many
other domains. Realistic engineering applications often only admit partial obser-
vations of the state and the controller must learn to steer the system towards a de-
sired state using incomplete information. We introduce CHAROT, an attention-
based memory architecture designed to augment actor-critic reinforcement learn-
ing algorithms and improve their performance in controlling chaotic PDEs using
only partial observations. We present numerical experiments for control of the
Kuramoto-Sivashinsky equation in chaotic (0.005 ≤ ν ≤ 0.05) and partially ob-
servable regimes. In the most chaotic regime considered, our method outperforms
a memoryless controller by 150% and an LSTM-augmented controller by 206%.

1 INTRODUCTION

Chaotic partial differential equations are ubiquitous in science and engineering, with applications
in weather prediction, aerodynamics and the modeling of superconductors, to name a few. In this
work, we are particularly inspired by the field of closed-loop active flow control, which involves
dynamically manipulating the flow of fluids based on sensor measurements in order to improve the
performance and efficiency of systems, e.g. actuating movable flaps attached to a vehicle to reduce
its energy consumption (Brackston et al., 2016; Giannenas et al., 2022).

A fundamental challenge in flow control is the turbulent and hence chaotic nature of flows and the
associated high-dimensional state space. In addition, for realistic flow control problems, the con-
troller is only able to partially sense the flow field due to engineering constraints. For instance,
pressure sensors might be located on a vehicle’s body instead of in its wake. This partial observabil-
ity leads to significant performance degradation compared to optimal sensor placement (Xia et al.,
2023). There has been a recent surge in using deep reinforcement learning (RL) techniques applied
to flow control (Vignon et al., 2023).

In reinforcement learning, the problem of partial observability is typically addressed by augmenting
the controller with a ‘memory’, which is updated periodically using partial observations with the
aim of inferring missing information about the current state. Methods can be roughly divided along
two lines: memory based on recurrent neural networks such as LSTMs (Wijmans et al., 2023; Peng
et al., 2018) and attention-based methods (Santoro et al., 2018; Parisotto et al., 2020; Pritzel et al.,
2017). Memory-based algorithms are typically benchmarked on navigation problems and game-like
environments (Morad et al., 2023; Oh et al., 2016). However, these benchmarks do not generalise
in an obvious way to the control of chaotic PDEs. Moreover, RL applications in flow control pre-
dominantly assume near-optimal sensor configurations. When sub-optimal sensor placement and
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therefore partial observability of the flow is considered, methods are typically limited to LSTMs and
observation buffers.

In this work we consider the challenge of applying reinforcement learning to control the chaotic
Kuramoto-Sivashinksy (KS) equation 1. The KS equation models a variety of unstable physical
phenomena, such as chemical reaction-diffusion systems (Kuramoto & Tsuzuki, 1976), laminar
flame front instabilities (Ashinsky, 1988) and hydrodynamic turbulence (Dankowicz et al., 1996)
and is widely considered to be a proxy system for turbulence. We bridge the gap between the
active flow control and reinforcement learning communities by introducing a novel attention-based
memory architecture and studying it in the context of controlling a chaotic KS flow using only partial
observations.

2 CONTROLLING THE KURAMOTO–SIVASHINKSY EQUATION

The Kuramoto–Sivashinksy (KS) equation is the fourth-order nonlinear partial differential equation:

L(h) = ht + hxx + νhxxxx +
1

2
(hx)

2 = 0, (1)

where h : [0,∞)× [0, 2π] → R satisfies h(t, 0) = h(t, 2π) for all t ≥ 0, and ν > 0 is a parameter.
For ν < 1, the KS equation exhibits complex spatio-temporal dynamics. As ν decreases, the trivial
zero solution becomes unstable to periodic solutions, traveling wave solutions, oscillatory solutions
and eventually chaotic solutions (Cvitanović et al., 2010; Kalogirou et al., 2015). Solutions are
typically considered to be fully chaotic from about ν ≤ 0.01, for larger ν the periodic boundary
conditions constrain the dynamics and ‘simple’ attractors exist (Wittenberg & Holmes, 1999).

To introduce control to the problem, let A be the number of actuators and let x1, . . . xA ∈ [0, 2π] be
equispaced points in the domain. We then define the controlled system

L(h) = f (⃗a), f (⃗a;x) =

A∑
i=1

aie
− 1

2 (
x−xi

σ )
2

. (2)

At each time step, the controller has access only to partial measurements of the solution h(t, ·) from
a limited number S of point sensors in the domain. Let x̄1, . . . x̄S ∈ [0, 2π] denote S equispaced
points and let h̄(t) = (h(t, x̄1), . . . , h(t, x̄S)) be the vector consisting of h(t, ·) evaluated at the
sensor locations.

We aim to steer the system towards the trivial zero solution h = 0, starting from initial data h0 which
are a perturbation of the zero solution. For this, let us define the reward signal r(t) = −∥h(t, ·)∥L2 .
We remark that for each ν < 1, the equation possesses finitely many steady-state solutions, of
which the zero solution is the most unstable with ⌊2ν− 1

2 ⌋ unstable real modes. In line with this, the
Kaplan–Yorke dimension (a measure of the fractal dimension of the chaotic attractor) is conjectured
to grow linearly with ν−

1
2 , a claim supported by numerous numerical studies, e.g. (Collet et al.,

1993b; Edson et al., 2019). Figure 1 provides an overview of the RL feedback loop.

Figure 1: Left: Overview of the RL training loop. A numerical solver takes the mixture weights a⃗(t)
as input and steps equation 2 forward in time. The partial observation h̄(t) and reward r(t) are fed
into the RL controller, which computes a new mixture weight a⃗(t+1) for the next time step. Right:
Uncontrolled solution (left) and solution controlled with CHAROT (right) for ν = 0.05.

Our setup closely mirrors typical practical engineering applications: As an example, consider a
turbulent flow past a bluff body (such as a car), which is equipped with blowing and suction jets at
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the rear. The aim is to actuate the jets in order to reduce turbulence or steer the wake. In a realistic
application, sensors might only be located on the bluff body itself. This resembles our problem
setting: a highly chaotic flow which can only be sensed at a limited number of points in the flow
domain and which must be steered towards an unstable (laminar) flow state.

3 METHODS

To control the KS system, we use an actor-critic RL controller and introduce three variants of its
actor and critic architecture: the original controller (no memory augmentation), the controller aug-
mented with an LSTM and the controller augmented with our novel CHAos-RObust-Transformers
(CHAROT). Figure 2 provides an overview of the agent architectures. The underlying controller
used in this study is TQC, a maximum-entropy actor-critic algorithm (Kuznetsov et al., 2020), al-
though we consider the particular controller architecture to be a black-box which may be replaced
with other choices, e.g. with SAC (Haarnoja et al., 2018) or A3C (Mnih et al., 2016).

Figure 2: Schematic representation of the three controller variants considered. We only depict the
actor part of the controller. At each time step, the actor receives the partial observation h̄(t) as input
and outputs the control a⃗(t + 1) for the next time step. Top left: the original actor architecture.
Top middle: The controller augmented with an LSTM, whose hidden state H(t) is updated each
time step. Bottom left: Our novel architecture. The memory M(t) and observation h̄(t) are mapped
through a modified Transformer (denoted as Transformer*) and a slow-moving update to compute
the updated memory M(t+ 1). Right: The modified Transformer component of CHAROT.

3.1 ATTENTION-BASED MEMORY

Our novel memory augmentation, CHAROT, introduces a time-dependent external memory M(t)
to the actor and critic of the controller. At its heart, the architecture of CHAROT consists of a
modified Transformer (Vaswani et al., 2017) with a slow-moving update, see Figure 2. We limit
ourselves to describing the modified self-attention mechanism and the slow-moving update, denoted
respectively as Self-attention* and L in Figure 2.

The memory M(t) is a n × s matrix, where n is the number of memories and s is the size of
each memory. At the start of each control episode, entries of the memory matrix are independently
sampled from a unit normal distribution. At time t, the self-attention layer then receives as input
the normalised memory M = LayerNorm(M(t)) from the previous time step and the pre-processed
observation x = MLP(h̄(t)). We assume that the MLP has final dimension s, so that x ∈ Rs. We
append x as the last row to M(t), forming the (n+ 1)× s matrix M̃(t). Then we compute:

Q(t) = M(t)Wq, K(t) = M̃(t)Wk, V (t) = M̃(t)Wv, (3)

S(t) = softmax
(
Q(t)K(t)T√

s

)
, O(t) = tanh (S(t)V (t)) , (4)
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where Wq,Wk,Wv are learnable s×s matrices. The n×s matrix O(t) is the output of the modified
self-attention layer and is mapped through residual connections, layer normalisation and MLPs as
indicated in Figure 2. We note that these subsequent layers act per-memory.

Let us denote the final output of the modified Transformer layer by M̄(t + 1). In order to compute
the updated memory M(t+ 1), we perform a learnable slow-moving memory-wise update:

M(t+ 1) = M̄(t+ 1)W1 +M(t)W2, (5)

where Wi = σ(W̃i) are square s× s matrices with learnable parameters W̃i for i ∈ {1, 2} and σ is
the Sigmoid function. The weights are initialised such that Wi =

1
2Is for i ∈ {1, 2}, where Is is the

s-dimensional identity matrix. The source code is available online1.

4 EXPERIMENTS

Here we present the results of numerical experiments of stabilising the KS equation towards the zero
solution. Initial data h0 are chosen in a neighbourhood of the zero solution by setting h0 to be white
noise with amplitude 1× 10−2. Our experiments are characterised by two key factors:

Fully and ‘weakly’ chaotic regimes. Controllers are trained for ν in the range [0.005, 0.05]. There-
fore, we study both the fully chaotic regime (ν ≤ 0.01) and the ‘weakly’ chaotic regime (ν ≥ 0.01),
where ‘simple’ attractors exist, see Section 2. The number of unstable modes of the zero solution
varies between 28 (for ν = 0.005) and 8 (for ν = 0.05). The maximal Kaplan-Yorke dimension
considered is 20 for ν = 0.005. This is contrast to previous studies applying RL to the KS equation,
which have mostly focused on the weakly chaotic regime, see Appendix C.

Partial observability. For each choice of ν and A, there exists a critical number of sensors Sc(ν,A)
such that the un-modified controller can robustly stabilise the system with S ≥ Sc sensors, and will
fail to stabilise with S < Sc sensors. This is backed up by additional experiments presented in
Appendix A. Therefore, we consider the system to be fully observable when S ≥ Sc, and partially
observable otherwise. Our choice of S = 10 sensors and A = 9 actuators was made such that the
system is fully observable for ν = 0.05, and partially observable for ν ≤ 0.04.

We train for a total of 5× 106 solver steps. We periodically evaluate controller performance during
training; to evaluate at training time T we compute a controlled solution hc(t, x) using the current
model and compute the energy E(T ) = ∥hc∥L1

tL
2
x
. To evaluate the performance of a given training

run, we then compute L = maxT≥2×106 E(T ). This metric emphasises robustness and speed
of convergence. The total number of trainable parameters is approximately 3 × 106 for all three
controllers, see Appendix B.4. Figure 3 summarises the results of our numerical experiments.

In summary, we find that CHAROT outperforms the un-modified controller under partial observ-
ability (ν ≤ 0.04), with the performance gap generally increasing as the system becomes more
chaotic. For the lowest ν value, ν = 0.005, CHAROT’s median performance surpasses the un-
modified controller by 150% and the LSTM by 206%. Augmenting with an LSTM underperforms
compared to the unmodified, memoryless controller and shows high sensitivity to hyperparameter
choices.

Why does CHAROT perform better? In the control of chaotic systems, small changes of the
controller output may incur large changes in dynamics and the resulting observations. These small
errors may accumulate quickly in the hidden state of an LSTM and prevent it from extracting a rele-
vant latent state. The attention mechanism used to update the memory of CHAROT is more robust
to small changes in observations, due to the averaging over past memories and new observations
in the Transformer block. We therefore conclude that attention mechanisms such as Transform-
ers are better suited to the control of chaotic systems than recurrent architectures such as LSTMs
(hence CHAROT = Chaos-Robust-Transformers). This is unexpected as RNNs are typically the
architecture of choice for enhancing controllers with memory.

1https://github.com/maxweissenbacher/charot
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Figure 3: Medians of L = maxT≥2×106 E(T ) over 5 repeated training runs. The filled areas indicate
minimum and maximum values. We used CHAROT with n = 10 memories of size s = 20.
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A FURTHER RESULTS

A.1 SENSOR ABLATION AND PARTIAL OBSERVABILITY

Here we study the dependence of performance on the number of sensors S available to the controller.
Intuitively, reducing the number of sensors (while leaving all other system paramters unchanged)
should make the problem more difficult. We present results here that show that for each choice of ν
and number of Gaussian actuators A, the performance of the un-modified controller decreases as the
number of sensors decreases. This leads us to define a critical number of sensors Sc as the minimal
number of sensors for which unmodified TQC stabilises the system.

We note that Sc depends on the parameter ν of the KS equation, the number of Gaussian actuators A
and their width σ, a notion of what ‘stabilising the system’ means precisely, as well as the baseline
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controller used. (For instance, replacing TQC with SAC will lead to slightly different results.) Thus
Sc denotes the point at which a particular (memoryless) algorithm fails to stabilise the system.

Figure 4 contains the results of repeated training runs of the un-modified TQC controller, using
different numbers of sensors and various choices of ν. As expected, the performance degrades as
the number of sensors reduces. While we refrain from computing Sc explicitly here, we note that
for S = 10 sensors, the unmodified TQC algorithm stabilises the system successfully for ν = 0.05,
but fails to stabilise it for ν ≤ 0.04, so that certainly Sc(ν) > 10 for ν ≤ 0.04. We note that other
than varying the number of sensors, we used the same parameters as in the main body of the text to
create Figure 4.

Figure 4: The final energy E as a function of varying numbers of sensors for the un-modified TQC
controller. For S = 10 sensors, performance is poor for ν ≤ 0.04, hence we refer to this setting as
‘partially observable’. On the other hand, the system is stabilised by the unmodified controller using
S ≥ 9 sensors for ν = 0.05, hence we refer to this setting as ‘fully observable’.

A.2 THE EFFECT OF SYSTEM PARAMETERS ON PROBLEM DIFFICULTY

While the dynamics of the (uncontrolled) KS equation are completely determined by a choice of ν
and initial condition h0, the control problem depends on a number of further parameters. In order to
fully specify the control problem, one must choose the number of actuators A, the number of sensors
S, the positions of the actuators and sensors in the domain, the width (or standard deviation) σ of
each Gaussian actuator, as well as the frequency at which the controller interacts with the system
(‘frame skip’). Intuitively, the difficulty of controlling the system depends on these parameters (e.g.,
allowing less frequent interactions or a lower number of sensors is likely to make the problem more
difficult). In practice, we have found that the performance of both un-augmented TQC and the
controller augmented with CHAROT depends in a complex way on these system parameters.

A.3 ARCHITECTURAL CHOICES

We explored a variety of architectural choices throughout the development process. While we do
not have quantitative data to present a precise comparison of the effect on performance of all the
architectural choices we considered, we include here some qualitative remarks.

Separate memories. We found using separate memories for actor and critic necessary to achieve
convergence. Sharing the memory between the actor and critic network led to a complete breakdown
of convergence. We tested sharing the the memory between actor and critic, and allowed both the
actor and critic loss to update the memory component’s parameters. We did not explore using a stop
gradient on either the actor or critic loss to prevent the memory from being updated by both actor
and critic.
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Two memories are better than one. We found that using a memory only for the actor (and not
the critic) decreased performance by a large margin. The authors have not tested using a memory
only for the critic and not the actor. We leave a more precise investigation of how the actor and critic
networks use the memory to future work.

Size of the memory matrix. In our numerical experiments, we used a memory matrix M of size
n× s, where n = 10 and s = 20. We found this to work well across several values of ν. However,
we point out here that there is potential for tuning the size of the memory matrix depending on the
degree of chaos in the system (i.e. the choice of ν). We leave this for future investigations.

Reordered Transformers. Parisotto et al. (2020) report that a reordering of the Transformer lay-
ers, known as ”identity reordered Transformer” performs significantly better on the DMLab-30
benchmark (Beattie et al., 2016) than the standard ordering of Transformer layers. We use this
Transformer architecture in our experiments. However, we did not observe a significant difference
in performance between the ‘original’ Transformer (Vaswani et al., 2017) and the reordered Trans-
former from (Parisotto et al., 2020). Just like for regular Transformers, one could make use of several
Transformer layers and attention heads. We have found that using only one Transformer layer and
one attention head performed better than several.

Design of the reward function. Commonly in the control of PDEs, the reward function includes
a term which penalises the size of the actuations. This essentially amounts to limiting or minimising
the total amount of energy the controller expends and often has a regularising effect on training
performance. Our experiments have shown that adding a term of the form α∥a⃗(t)∥ or of the form
α∥∂ta⃗(t)∥, for some hyperparameter α > 0 to the reward function r(h) = −∥h(t, ·)∥L2 did not
have a positive impact on performance. We leave this subject for future investigations.

B IMPLEMENTATION DETAILS

B.1 DIFFERENCES BETWEEN ACTOR AND CRITIC MEMORY

Our architecture is designed to augment both the actor and the critic components of the underlying
RL controller. In Section 3 above we described in some detail the structure of the augmentation for
the actor. We note here that the augmentation for the critic is virtually identical, the only difference
being that in addition to receiving the latest partial observation h̄(t) as input, the critic also receives
the action a⃗(t + 1) computed by the actor in this timestep as an additional input. These two inputs
are then concatenated and mapped through an MLP together, x = MLP(h̄(t), a⃗(t+ 1). This vector
x ∈ Rs is then used in an identical manner to the actor critic to compute the updated memory
M(t + 1). In addition, the final output of the critic is computed by feeding h̄(t), a⃗(t + 1) and the
updated memory M(t+ 1) into the final MLP layer.

B.2 SIMULATION ENVIRONMENT

We solve the KS equation using a third-order Runge–Kutta scheme. The numerical solver was
adapted from the pyks solver (Whitaker, 2015) and modified to work with PyTorch. Note that we are
using the integral form of the KS equation, its derivative form (obtained by taking an x-derivative
of h) is also commonly studied. We used a timestep of dt = 0.005 to propagate the equation
forward in time and chose N = 64 Fourier nodes, which was sufficient to resolve the system for
0.005 ≤ ν ≤ 0.05.

To the reader interested in well-posedness, we note that the Cauchy problem for the KS equation is
well-posed (Tadmor, 1986) for periodic initial data h(0, x) = h0(x). Moreover, the KS equation
possesses a smoothing property similar to the heat equation: periodic initial data h0 ∈ L2([0, 2π])
give rise to solutions which are real analytic for all positive times (Collet et al., 1993a). By choosing
white noise initial data (on the discretised domain) we are therefore ensuring existence, uniqueness
and smoothness of the solution for all times.

The RL controller interacts with the KS equation every F steps, where F is an integer. We refer to
F as the ‘frame skip’, a term commonly used in the RL literature. In between interactions with the
RL controller, the action which is actually executed is a linear interpolation from the last action used
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to the new action chosen by the controller. Therefore, the actions are being executed in a ‘slow-
moving’ or smooth manner and it takes F steps until the action chosen by the controller is fully
executed. This mimics the way in which real-world engineering systems function, where physical
actuators exhibit inertia and cannot be changed or moved suddenly to prevent damage.

The actor component of the RL controller (in all three variants) is probabilistic in the following
sense: During training time, instead of computing a value for each mixture weight ai directly, the
actor network outputs a mean mi and standard deviation σi. We then sample ãi ∼ N (mi, σi)
and finally compute ai = tanh(ãi). This serves to enhance the controller’s exploration of the action
space during train time. During evaluation time, the controller becomes deterministic and we choose
ai = mi.

B.3 COMPUTATIONAL ENVIRONMENT

The numerical experiments were carried out on the Edinburgh EIDF cluster, using Nvidia A100
GPUs and on the Imperial College high performance computing service, using Nvidia Quadro rTX
6000s. Our code is implemented in the torchrl package (Bou et al., 2023) and is available online.
For a frameskip parameter between 10 and 20, training takes between 4 and 6 hours for 5×106 time
steps in total on a single GPU.

B.4 TRAINING DETAILS AND HYPERPARAMETERS

Training is carried out in an episodic manner. After each episode, the parameters of the model
are updated with G gradient updates using the ADAM optimiser, where G is the episode length
divided by the frameskip. Before training commences, we take 2.5 × 105 random actions without
updating model parameters. This serves to increase the controller’s exploration of the action space.
Each model is trained for a total number of 5 × 106 time steps. We summarise the most important
hyperparameters in Table 1. Note that all hyperparameters concerning the TQC algorithm are exactly
as in the original publication (Kuznetsov et al., 2020), so that we do not include these in Table 1.

In the table, we refer to ‘pre-processing MLPs’. These refer to the MLP located before the LSTM
respectively the modified Transformer, see Figure 2. We note carefully that in each of the three
variants (unmodified, LSTM, CHAROT), there is a final MLP layer which computes the final output
of the actor respectively critic. This final MLP layer is identical in all three cases, and is in fact
identical with the MLP layers used in the un-modified TQC algorithm (Kuznetsov et al., 2020).
Therefore, we refrain from providing details on the final MLP layers. All activation functions used
are ReLU. We summarise the total number of trainable parameters for each model used in Table 2.

Table 1: Hyperparameters

General hyperparameters
Frameskip 20 steps
Width σ of Gaussian actuators 0.3
Episode length 104 steps
Batch size 2048
Gradient updates (per episode) 5× 103

Total training time steps 5× 106 steps
Frequency of model evaluation 2.5× 105 steps

CHAROT parameters
Number of memories n 10
Memory size s 20
Weight decay of ADAM optimiser 0
Preprocessing MLP hidden size 128 (single hidden layer)
Transformer MLP hidden sizes [20, 20] (two hidden layers)

LSTM parameters
LSTM hidden size 256
Weight decay of ADAM optimiser 1× 10−6

Preprocessing MLP hidden size 128 (single hidden layer)
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Table 2: Total number of trainable model parameters of TQC augmentations

No memory 2 815 119 parameters
LSTM 2 964 495 parameters
CHAROT 3 398 167 parameters

C RELATED WORK

Bucci et al. (2019) control the KS equation towards non-trivial steady state solutions using the Deep
Deterministic Policy Gradient (DDPG) algorithm (Lillicrap et al., 2015). The authors study the
KS equation on a domain of length L = 22, which corresponds in our setting to a fixed choice of
ν = 0.08156 (rounded). For this value of ν, the dynamics of the system are confined to oscillations
between a set of six steady state and travelling wave solutions and can therefore not be considered
to be truly chaotic.

Gomes et al. (2017) apply optimal control to a generalised KS equation including an electric field
and dispersion. Their method proceeds by considering the Galerkin decomposition of the solution
and proving that there exists a linear combination of a finite number of Galerkin coefficients which
stabilizes the system. They demonstrate that their linear feedback control can stabilise the KS equa-
tion to arbitrary steady state, travelling wave, and the zero solution. By nature of their method, the
feedback controller must have access to the full solution at all times to compute the control. The au-
thors also show that the number of actuators required to control the system (in their optimal control
setup) is proportional to the number of unstable modes of the target solution. The authors conduct
numerical experiments for certain choices of ν ≥ 0.01.

Zeng et al. (2022) combine a reduced-order model, trained on simulations of the KS system with
random actuations, with an RL controller. The authors consider a domain of length L = 22 (or
ν = 0.08156...), which is characterised by oscillatory dynamics. The RL controller used is DDPG
and it is trained using only the reduced-order model, which is comprised of an autoencoder and a
neural ODE. The combination of reduced-order modeling with reinforcement learning holds great
promise especially for more complex systems in active flow control, since it can potentially increase
sample efficiency and eliminate demands for costly simulations. We remark that in order to learn
the reduced-order model in (Zeng et al., 2022), access to the full solution is necessary. In a similar
vein, Zeng & Graham (2021) apply a DDPG controller to the KS equation and show that using a
symmetry reduction method improves performance. The authors consider the equation on a domain
of length L = 22 (or ν = 0.08156..., see above).

Özalp et al. (2023) demonstrate that a reduced order model for the KS equation in a fully chaotic
regime (ν = 0.01) can be learned using only partial observations and a physics-informed loss. The
authors show that the time dynamics can be captured with an LSTM, which are typically simple and
robust to train. We remark here that the use of LSTMs in this work differs somewhat from the way
in which LSTMs are typically used in reinforcement learning: in order to predict the solution at time
t + 1 from previous data, Özalp et al. (2023) use a time window of partial observations and map
this sequence of observations through the LSTM, initialising the hidden state to zero. By contrast,
in reinforcement learning, the hidden state of the LSTM is typically remembered across timesteps.
Thus to compute an output at time t + 1, the hidden state from the previous time state is combined
with one observation and mapped through the LSTM to update the hidden state, see Figure 2.

Xu & Zhang (2023) apply deep reinforcement learning to the control of the linearised KS equation,
which models a convectively unstable flat-plate boundary layer flow in the vicinity of the boundary.

Finally, we point the reader to further literature on numerical studies of the KS equation, analysing
bifurcation behaviour, long-term dynamics, chaotic attractor dimension and other quantities of in-
terest, see for instance (Nicolaenko et al., 1985; Papageorgiou & Smyrlis, 1991; Linot & Graham,
2020). For the vast literature on analytical results for the KS equation, see for instance (Giacomelli
& Otto, 2005; Otto, 2009; Foias et al., 1986).
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