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ABSTRACT

Large language models (LLMs), while transformative for NLP, come with sig-
nificant computational demands, underlining the need for efficient, training-free
compression. Notably, the reliability of perplexity as a benchmark for compressed
model efficacy is in question, as our tests using LLaMA-7B and OPT-6.7b reveal
a significant performance drop in several realistic downstream tasks, underscor-
ing the disparity between perplexity as a performance indicator and real-world
performance. Investigation into the trade-off between resource-intensive post-
compression re-training highlights the prospect of prompt-driven recovery as a
lightweight adaption tool. However, existing studies, confined mainly to per-
plexity evaluations and simple tasks, fail to offer unequivocal confidence in the
scalability and generalizability of prompting. We tackle this uncertainty in two
key ways. First, we uncover the vulnerability of naive prompts in LLM com-
pression as an over-reliance on a singular prompt per input. In response, we pro-
pose inference-time dynamic prompting (IDP), a mechanism that autonomously
chooses from a set of curated prompts based on the context of each individual in-
put. Second, we delve into a scientific understanding of why “prompting might be
all you need post-LLM compression”. Our findings suggest that compression does
not irretrievably erase LLM model knowledge but displace it, necessitating a new
inference path. IDP effectively redirects this path, enabling the model to tap into
its inherent yet displaced knowledge and thereby recover performance. Empirical
tests affirm the value of IDP, demonstrating an average performance improvement
of 1.24% across nine varied tasks spanning multiple knowledge domains.

1 INTRODUCTION

Large language models (LLMs) have demonstrated exceptional proficiency in language generation
and reasoning, rivaling human capabilities. The advent of models like GPT-4 (OpenAl [2023) and
tools such as ChatGPT signifies a major milestone along this trajectory, positioning themselves as
pivotal assets in various industries. However, the escalating size of these models presents critical
computational challenges, impeding efforts towards their widespread adoption (Chen et al., 2023).

In response to the growing requirements and the associated computational loads imposed by large
language models (LLMs), techniques such as quantization and sparsification have garnered signifi-
cant attention and resources. Quantization involves fine-tuning the bit-wise precision of a model to
reduce its size, while sparsification entails eliminating redundant operations by nullifying weight or
activation elements. Traditional methods like pruning and quantization typically necessitate a post-
compression re-training step, be it iterative or one-shot, to restore performance (Han et all [2015).
Regrettably, given the scale of modern LLMs, even a one-shot re-training approach after compres-
sion is becoming prohibitively costly, underscoring the pressing demand for training-free compres-
sion. Recent endeavors, exemplified by works such as GPTQ (Frantar et al.,|2022) and SparseGPT
(Frantar & Alistarh, 2023)), promise nearly unaltered accuracy, often assessed through the perplexity
metric. However, our experiments, as depicted in Figure 2] reveal a noticeable drop in performance
for LLaMA-7B (Touvron et al., 2023) and OPT-6.7b (Zhang et al., 2022)) post-compression in sev-
eral realistic downstream tasks. This underscores the disparity between perplexity as a performance
indicator and real-world performance and strongly indicates a loss of knowledge within compressed
LLMs. Thus, there is still a persisting need for performance recovery post-compression beyond
parameter-tuning.
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In an effort to reconcile the trade-off between the
resource-intensive post-compression re-training
and the observed real-world performance decline
(despite nearly intact perplexity scores), a recent
study by |Xu et al.| (2023) highlighted the poten-
tial of lightweight prompt adaptation to recover
performance of compressed LLMs (either through
direct prompt-tuning or by repurposing prompts
tuned in alternative contexts). While the prospect
of prompt-driven recovery is enticing, the study’s
assessment primarily relies on perplexity evalua-
tions and relatively straightforward datasets. Upon
subjecting their approach to complex downstream
tasks and real-world metrics (as detailed in Sec-
tion 3), we uncover similar performance caveats
like the original GPTQ (Frantar et al) 2022) or
SparseGPT (Frantar & Alistarh} 2023) methodolo-
gies. This performance-to-perplexity gap leaves
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Figure 1: We map the average performance
over nine tasks for various fine-tuning methods
and ours on 3-bit quantized Llama-7b.

room for skepticism regarding the effectiveness of prompting for LLM post-compression perfor-
mance recovery despite its appealing simplicity. Thus, in this paper, we ask: Can prompting scale

and generalize beyond rudimentary cases?

1.1 OUR CONTRIBUTIONS

The first part of our work introduces innovative approaches aimed at providing a resounding affir-

mation to the pivotal question posed above:

¢ Identifying Naive Prompt’s Failure Modes in LLM Compression: Our investigation
uncovers a severe limitation in the performance of naive post-compression prompting (Xul
et al. [2023). This limitation arises from an over-reliance on a singular prompt across
diverse input formats and multifaceted knowledge domains, indicating a need for greater
prompt diversity tailored to specific inputs.

* Simple Fix by Dynamic Prompting: To tackle the challenge of prompt diversity without
introducing excessively long and resource-intensive prompts, we introduce inference-time
dynamic prompting (IDP). This strategy empowers a compressed LLM to dynamically and
autonomously select prompts from a curated set based on individual inputs. This dynamic
adaptation allows inputs to incorporate relevant contextual cues without the need for man-
ual intervention. Notably, besides parameters associated with the prompts themselves, IDP
adds no additional parameters to prompting, and the per-instance compute cost remains
nearly unchanged compared to using a fixed prompt for all inputs.

* Strong Downstream Performance with Real-world Metrics and at Scale: Our IDP ap-
proach demonstrates a substantial improvement in the performance of compressed LLMs
on real-world tasks, compared to the original compressed models, the naively prompted
model in|Xu et al.| (2023)), as well as compressed models re-trained using LoRA, all while
requiring no additional training parameters. Figure [T] highlights our competitiveness on
3-bit quantized Llama-7b.

The second part of our work delves into a scientific understanding of why “prompting is all you
need post-LLM compression” and can perform on par with or even surpass re-training. This is an
unexplored question to our best knowledge, and we present two hypotheses:

* Null hypothesis (HO): Compression irreversibly impairs the model’s knowledge, and
prompting/IDP recovers this knowledge from scratch, through downstream data-driven
learning, akin to re-training.

* Alternative hypothesis (HI): Compression does not permanently erase inherent knowledge,
but rather displaces it within the model, rendering the original inference path ineffective.
Prompting/IDP enables the “redirection’ of the inference path to reutilize this existing yet
displaced knowledge in the compressed LLM, resulting in performance recovery. This rep-
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resents a distinct form of recovery compared to re-training, which relies on “re-learning”
the knowledge from data.

Our extensive and meticulously controlled experiments provide strong support for (H1) over (HO).
For instance, utilizing layer-wise cosine similarity (refer to Figure[6), we observe that while prompt-
tuning’s attention patterns diverge from the baseline, the re-trained model exhibits substantially more
similar attention patterns to the baseline, even with consistent outcomes among all three. Addition-
ally, referring to Figure [/| we demonstrate that IDP’s effectiveness remains robust even with low
numbers of tokens per prompt. Collectively, these experiments endorse that prompts excel in redi-
recting token attention, tapping into pre-existing knowledge rather than introducing novel informa-
tion to compressed LLMs.

2  MOTIVATION AND PRIOR WORKS
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Figure 2: This figure presents a comparative analysis of the performance of compressed models
using GPTQ for quantization and SparseGPT for pruning. The models were compressed leveraging
either C4 or Wikitext datasets. Their average performance is depicted across a spectrum of nine
tasks, each representing diverse knowledge domains.

LLM inference bottleneck LLMs such as those presented by |[Zhang et al.| (2022)); Touvron et al.
(2023)) predominantly utilize a decoder-only, autoregressive architecture, where token generation
unfolds sequentially, and the creation of each subsequent token relies on the outputs generated be-
fore it. A significant portion of the computational time in LLM:s is attributed to the decoding phase
(Frantar et al., [2022} [Liu et al., 2023). This phase is memory-constrained, typically operating with
a single batch size. This memory-intensive nature is further corroborated by |Liu et al., highlighting
that generating a sequence is more time-consuming and than processing a sequence of equivalent
length. This discrepancy arises from the I/O latency encountered during the loading of model pa-
rameters. While one might contemplate engineering in-memory solutions tailored for LLMs, as
suggested by [Sheng et al.| (2023), such strategies do not tackle the underlying computational and
memory challenges posed by these models.

LLM compression solutions & caveats Compression techniques directly address the challenges
of size and latency inherent to LLMs by targeting the model’s parameters. Broadly, these techniques
are grouped into two main categories: compression-aware training and post-training compression.
The latter, post-training compression, holds particular appeal for exceptionally large models where
the costs associated with full model training or even fine-tuning can be prohibitive. Given its rel-
evance, we narrow our discussion to this category. Firstly, quantization refers to the process of
reducing the model’s footprint by decreasing the bit precision of its weights (Frantar et al., 2022}
Yao et al., 2022; [Xiao et al.| |2022)). Quantization not only shrinks the model’s size but also accel-
erates inference, as operations over lower-precision weights are computationally less demanding.
Secondly, sparsification, often referred to as pruning, revolves around the concept of selectively re-
moving certain weights elements or masking activation values (Frantar & Alistarhl 2023; [Hubara
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et al.,|2021agb)). The objective behind this is to trim the less salient portions of the model, thereby
reducing computational overhead or enhancing model throughput.

Utilizing GPTQ and SparseGPT for model compression, our evaluations, reflected in Figure 2] indi-
cate a decrease in performance with reduced bit counts or parameters, save for the int8 quantization.
This contrasts with [Frantar et al.[| (2022)’s claim of unaltered accuracy. On closer inspection, their
study heavily leans on perplexity as a primary metric. While they observed some perplexity dif-
ferences between baseline and quantized models, these differences were minimal compared to their
benchmark method Yao et al| (2022). This might explain their understated emphasis on perfor-
mance on real downstream tasks, highlighting the limitations of relying on perplexity as a model’s
performance measure in real-world scenarios. Our chosen tasks are selected to evaluate a model’s
proficiency in fact retrieval, logical understanding, and English language comprehension (elabo-
rated further in Section 3.3). Unlike perplexity, which simply computes the average cross-entropy
across the vocabulary, our benchmarks offer a more insightful and interpretable metric. This not
only gauges a model’s capabilities but also pinpoints deficiencies in specific domains of knowledge.

Parameter-efficient fine-tuning There are two prominent strategies for efficient LLM adapta-
tions: adding adapter layers or optimizing the input layer activation. The first strategy revolves
around introducing adapter layers, as evidenced by works like [Houlsby et al.|(2019)), Rebutfi et al.
(2017), and [Pfeiffer et al.| (2020). A notable recent contribution, [Hu et al.| (2021) introduced LoRA
— a low-rank adapter that functions as a residual linear path within the feed-forward network. The
second strategy, epitomized by studies such as|Li & Liang|(2021) and [Lester et al.|(2021)), act by re-
fining soft input tokens or prompt embeddings. Among the myriad Parameter-Efficient Fine-Tuning
(PEFT) methodologies, our analysis will be primarily on recent innovations like LoRA (Hu et al.,
2021)), along with prompt-tuning (Lester et al.l 2021)) and prefix-tuning (Li & Liang} 2021}).

3 INFERENCE-TIME DYNAMIC PROMPTING

3.1 FAILURE MODES OF COMPRESSED LLMS
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ure [2| emerges when assessing the reliability
of perplexity as a performance metric for com-
pressed models (discussed in Section 2). In-
terestingly, for shorter prompts, we do observe
that for small prompts, there is a generaliza-
tion between perplexity and task accuracy; this

Figure 3: Using a 3-bit quantized Llama-7b model
fine-tuned on C4 dataset, we contrast the average
accuracy across nine tasks against its word’s per-
plexity score across various prompt lengths. A
longer sequence length improves perplexity but
does not always sustain better performance.

aligns with |Xu et al.| (2023)’s assumption. However, for longer sequences, an improved perplex-
ity score does not invariably translate to heightened performance. This divergence elucidates the
potential pitfalls in prompting at a larger scale.

We posit that the underlying reason for the limited success of prompts is the varying flexibility
demands that different inputs necessitate; longer prompts, with their innate rigidity, may struggle to
accommodate such versatility. These findings naturally prompt the inquiry into strategies for a more
efficient prompting scale. One approach proposed by |Lester et al.|(2021) suggests prompt tuning can
be harnessed as a mechanism for model ensembling. By training N prompts on an identical task,
they managed to spawn N distinct models for a task while preserving shared modeling parameters.
Their ensemble strategy necessitated input replication across the batch dimension, with each copy
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appending to a distinct prompt. Subsequent decision-making employed a majority-rule approach to
finalize the output. However, such a technique cannot be scaled efficiently.

Hence, we develop inference-time dynamic prompting, a strategy to allow LLMs to still infer with
one prompt at a time, but chosen instance-wise from a larger prompt pool.

3.2 IDP METHODOLOGY

In prompt tuning, we introduce an additional token sequence, termed as P, preceding the input
sequence to improve the predicted output likelihood, Pry(Y|[P; X]), where 6 are the static param-
eters. The sequence P = py,p2, ...p, is defined by its learnable parameters, 6, € R"*¢, with n
being the prompt tokens count and e as their embedding size.

When we extend to a collection of m prompts, represented as Z = P, P, ..., P,,, each prompt
has distinct trained parameters. Thus, the modified likelihood of Y becomes Pr(Y|[Z; X]). Let’s
consider the layer-wise token attention as A € R?*">tkxtk \where ¢k stands for the combined token
count of Z and X. For simplicity, we’ll take b and h as one.

To facilitate inference-time dynamic prompting, we introduce two modifications to A: Firstly, we
prevent interactions among the prompts in Z by setting their inter-attention, A(z,.7;), to —oc. This
constraint is twofold: Individual prompts have distinct training and do not share contextual rele-
vance. Mixing them during inference can alter their inherent definitions, affecting the performance.
Additionally, by eliminating inter-prompt attention, we can pre-cache the KV (Key, Value) for the
prompts, offering dynamic prompt combination capabilities. Secondly, for dynamic prompt se-
lection, we measure the mean attention from input-to-prompt and select the prompt attracting the
maximum overall input attention: arg max({A[z,.x]|Vi € [1,m]). In the final phase of the self-
attention mechanism, we use an attention mask to discard any unintended prompts, ensuring they do
not modify the main input sequence. The entire process is depicted in Figure[d]
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Figure 4: This figure underscores the key advantage of inference-time dynamic prompting (IDP):
its minimalistic yet effective design. By making straightforward alterations to the existing weighted
sum operation and using the existing attention matrix for prompt selection, IDP accomplishes its
objectives without incurring any additional parameter costs.
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3.3 EXPERIMENTS

Setup To facilitate our experimental framework, we employ OPT-6.7b (Zhang et al.l [2022)) and
Llama-7b (Touvron et al.| 2023 as foundation models. We subsequently use GPTQ (Frantar et al.|
[2022) for 3-bit quantization and implement SparseGPT (Frantar & Alistarh| 2023) to prune 50%
of the total parameters. We chose these two settings because in our empirical evaluation, as illus-
trated in Figure 2} they are configurations that impair the model enough to expose the benefit of
parameter-efficient fine-tuning. From here, we derive two distinct configurations for each compres-
sion technique, each optimized on one of the large-scale text datasets: C4 (Raffel et al.| [2020) and
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Table 1: This table summarizes the results for 3-bit GPTQ across all nine tasks for multiple fine-
tuning baselines and our IDP. World, Common, and Language are performance averages across tasks
within those knowledge domains. Average is the average performance across all nine tasks.

Model Type Param arcE  arcC sciq webqgs triviaga World piga. Common hellaswag lambada winogrande Language  Average
Llama-7b  — — 7146 3771 92.60 17.96 33.02 | 50.55 | 76.01 76.01 53.11 68.58 67.48 63.06 57.55
Llama-7b  lora 44M | 70.08 37.12 17.67 34.11 | 50.50 || 77.04 77.04 54.47 67.40 57.99
Llama-7b  lora 6.7M | 71.09 36.69 93.00 17.47 34.73 | 50.60 || 76.44 76.44 70.23 67.09 63.96 57.92
Llama-7b  lora 89M | 70.62 37.12 9330 17.86 34.86 | 50.75 | 76.77 [NICSTTNN 70.33 67.40 64.00 58.06
Llama-7b  prompt 0.IM | 71.97 3840 9290 20.47 33.20 | 51.39 || 75.84 75.84 53.75 69.45 67.17 63.46 58.13
Llama-7b  prompt 02M | 71.51 38.31 92.10 2N 34.56 | 51.52 | 75.84 75.84 53.92 69.69 NGS5 64.12 58.42
Llama-7b  prompt 04M | 7201 39.16 91.80  21.60 3443 | 51.80 || 75.95 75.95 54.33 69.49 67.01 63.61 58.42
Llama-7b  ptune 3.AM | 7024 3677 9140 14.42 30.42 | 48.65 || 75.73 75.73 53.40 66.49 63.77 61.22 55.85
Llama-7b  ptune  6.5M | 69.57 34.81 91.30 15.55 30.65 | 48.38 || 75.30 75.30 52.98 64.84 63.22 60.35 55.36
Llama-7b_ ptune 13.1M | 69.32 3473 8870 16.14 27.84 | 4735 || 74.59 74.59 52.01 64.35 64.17 60.18 54.65
" Llama-7b" IDP ~ ~ 038M 9250 ~ "19.83 764477 7644 T |7 T 5396~ 7025 T 6756 |~ 63.927 ~
OPT-6.7b — — 64.77 29.01 89.40 9.50 17.90 | 42.12 | 75.24 75.24 48.57 65.34 63.54 59.15 51.47
OPT-6.7b  lora 47M | 63.55 2875 8850 1142 18.84 | 4221 | 76.22 |WNT6R2200 [49m4N  66.16 63.46 59.59 5178
OPT-6.7b  lora 7.M | 6427 29.01 89.20 11.07 18.95 | 42.50 | 75.90 75.90 48.89 66.50 [IN6AA0N S993||  52.02
OPT-6.7b  lora 9.4M | 64.06 88.20 13.24 18.90 | 42.75 | 76.01 76.01 49.12 66.64 63.93 59.90 52.16
OPT-6.7b  prompt 0.1M 2841 89.80 10.73 1822 | 4250 | 76.01 76.01 49.05 65.34 63.22 59.20 51.79
OPT-6.7b prompt 02M | 64.94 28.84 89.90 10.88 18.80 | 42.67 | 75.63 75.63 49.13 65.96 63.77 59.62 51.98
OPT-6.7b prompt 0.4M | 64.60 2850 89.70 11.52 18.76 | 42.62 | 76.12 76.12 48.82 65.90 63.54 59.42 51.94
OPT-6.7b ptune  3.1IM | 63.05 28.84 89.00 10.73 18.39 | 42.00 | 75.95 75.95 48.38 64.68 60.85 57.97 51.10
OPT-6.7b ptune  6.5M | 62.88 28.58 88.80 1043 18.34 | 41.81 | 75.79 75.79 48.54 65.17 60.93 58.21 51.05
OPT-6.7b  ptune 13.1M | 62.54 29.18 88.60 10.43 18.37 | 41.82 | 75.52 75.52 48.72 65.32 63.38 59.14 51.34
"OPT6.7b” IDP ~ ~ 0.6M | 64.18° 28.67 5 7607|7617 T || T 49.03 66820 6322 |  59.69 _

Table 2: This table summarizes the results for 50% unstructured sprase using SparseGPT across all
nine tasks for multiple fine-tuning baselines and our IDP. World, Common, and Language are perfor-
mance averages across tasks within those knowledge domains. Average is the average performance
across all nine tasks.

Model Type Param arcE  arcC sciq webgs triviaga World piga. Common hellaswag lambada winogrande Language  Average
Llama-7b  — — 7033 37.03 98B0 14.07 28.88 | 48.76 | 77.04 77.04 51.68 [TASANNGs03n eS| 57.23
Llama-7b  lora 44M | 71.04 3763 91.90 1447 49.66 | 76.99 76.99 53.98 70.95 67.17 64.03 57.49
Llama-7b  lora 6.7M | 70.79 36.69 9240 15.85 33.02 | 49.75 | 76.71 76.71 5391 71.03 68.03 64.32 57.60
Llama-7b  lora 89M | 71.04 37.88 92.10 [NIABEN 32.85 | 49.75 | 77.20 [NI72000 sS40l 70.70 68.03 64.25

Llama-7b  prompt 0.IM | 71.59 38.74 93.10 15.21 29.66 | 49.66 | 77.04 77.04 5348 71.24 67.48 64.07 57.50
Llama-7b  prompt 0.2M | 71.38 3857 9220 14.86 30.48 | 49.50 || 77.15 7115 53.75 71.76 67.09 64.20 57.47
Llama-7b  prompt 04M | 71.38 3831 9260 14.86 30.86 | 49.60 | 77.31 7131 53.97 70.99 67.17 64.04 57.49
Llama-7b  ptune 3.IM | 63.17 3259 8820 11.81 24.60 | 44.07 | 72.63 72.63 50.18 64.97 56.91 57.35 51.67
Llama-7b  ptune  6.5M | 67.17 3490 8870 12.11 24774 | 4552 | 7476 74.76 50.36 65.59 59.12 58.36 53.05
Llama-7b_ ptune 13.1M | 65.78 31.40 8720 11.61 2197 | 4359 | 7421 74.21 49.77 63.87 59.43 57.69 51.69

" Llama-7b" IDP ~ ~ 0.6M_ 9290 ~ 1491 ~ ~30.35 [WA9B6N| 77.09 | "77.09 " || " 5390 ~ 7035 T 6717 | ~ 6381 ||~ 5753~
OPT-6.7b — — 63.01 2841 89.40 9.69 17.79 | 41.66 | 75.19 75.19 47.67 [NI0560 63.93 51.74
OPT-6.7b  lora 47™M 29.61 88.60 10.58 1826 | 42.22 | 75.57 75.57 48.52 66.60 64.33 59.82 51.79
OPT-6.7b  lora 7.M | 6393 29.78 8820 10.14 1848 | 42.11 || 75.90 [NN759000 48.58 66.45 [IN6AS6N  59.86 51.78
OPT-6.7b  lora 9.4M | 62.84 88.30 1033 18.79 | 42.02 | 75.41 75.41 66.49 65.19 60.15 51.77
OPT-6.7b prompt 0.IM | 63.09 %_ 12.30 1875 | 42.68 | 75.14 75.14 48.40 68.78 63.69 60.29 52.16
OPT-6.7b prompt 0.2M | 63.68 29.44 90.60 12.40 18.36 | 42.90 | 75.24 75.24 48.58 67.86 63.22 59.89 52.15
OPT-6.7b prompt 0.4M | 64.06 2927 89.60 12.80 19.12 | 4297 | 75.19 75.19 48.49 67.49 63.61 59.86 52.18
OPT-6.7b  ptune 3.IM | 61.03 2850 8690 13.09 19.46 | 41.80 | 72.74 7274 46.44 62.08 59.67 56.06 49.99
OPT-6.7b ptune  6.5M | 63.01 [129586] 88.00 9.40 17.10 | 4147 | 75.08 75.08 47.84 64.89 61.80 58.18 50.78
OPT-6.7b _ ptune 13.1M | 60.94 29.10 88.60 4242 | 73.39 73.39 46.93 62.68 62.19 5727 50.81
“OPT-6.7b” IDP ~~ 0.6M 72927 "89.60 1280  19.12 750977 7519 || 4849 T 6749 T 6361 [~ 5986 | [ISZBAN

Wikitext (Merity et all,[2016). To maintain a controlled experimental space, our fine-tuning of var-
ious baseline techniques is restricted to the identical dataset originally used to calibrate our model
compression. Subsequently, we report the best results from either configuration.

Evaluation Tasks To gauge the genuine comprehensive performance of LLMs, we identify a suite
of evaluation tasks that encapsulate three fundamental domains of cognition: world knowledge,
common reasoning, and language understanding. Among the many available tasks, we distilled our
focus to a curated list of nine that we deemed most representative.

For the domain of world knowledge, our chosen evaluative tasks were ARC-challenge & ARC-
easy (Clark et al, 2018), SCIQ (WelblI et all, 2017), WebQS (Berant et al.} 2013)), and TriviaQA
(Joshi et al, 2017). Tapping into the breadth of language understanding benchmarks, we centered
our attention on Hellaswag (Zellers et al., 2019), Lambada (Paperno et al., 2016)), and WinoGrande
(Sakaguchi et al.,[2019). Lastly, for common reasoning, we identified PIQA (Bisk et al., [2019) as

our touchstone.

Notably, all the tasks we adopted are structured in a multiple-choice format. Through meticulous
internal evaluations, we discerned that the cumulative results procured from these nine tasks are
roughly proportional to the model’s total parameter count.
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Table 3: This table includes results for our Inference-time Dynamic Prompting strategy. To illustrate
its effectiveness, we also include the results of the individual prompts used along with naive soft-
prompts concatenation

Model arcE arcC sciq  webqs triviaga World piga.  Common hellaswag lambada winogrande Language  Average
OPT-6.7b/Small | 64.94 2884 8990 10.88 18.80 | 42.67 || 75.63 75.63 49.13 65.96 63.77 59.62 51.98
OPT-6.7b/Large | 64.02 27.90 89.50 11.32 18.37 | 42.22 || 76.39 76.39 48.81 65.42 63.22 59.15 51.66
OPT-6.7b/Concat | 63.80 28.50 89.40  12.30 19.55 | 42.71 || 75.79 75.79 48.92 64.72 63.85 59.16 51.87
OPT-6.7b/IDP 64.18 28.67 90.40 11.96 19.05 [T42:857 76.17 76.17 49.03 66.82 63.22 59.69 52.17
Llama-7b/Small | 71.97 38.40 9290 2047 3320 | 51.39 || 75.84 75.84 53.75 69.45 67.17 63.46 58.13
Llama-7b/Large | 71.51 3831 92.10 21.11 34.56 | 51.52 || 75.84 75.84 53.92 69.69 68.75 64.12 58.42
Llama-7b/Concat | 71.17 37.80 92.30  16.88 33.84 | 50.40 || 74.92 74.92 53.34 67.18 66.46 62.33 57.10
Llama-7b/IDP 71.63  38.65 92.60 21.60 33.84 |WS166M|| 76.01 76.01 53.97 69.67 68.98 64.21 58.55

Baseline methods We gravitated toward three methodologies that stood out in the literature.
Specifically, we earmarked Prompt-tuning (Lester et al., [2021)), prefix-tuning (Li & Liang, [2021)),
and LoRA (Hu et al., 2021) as our representative candidates. For the sake of consistent benchmarks
across these techniques, we establish the following criteria: 1) The aggregate count of training tokens
is standardized at 40,960,000 tokens. Our decision on the total token count draws inspiration from
Xu et al.| (2023). 2) In alignment with Frantar et al.| (2022), we adopt AdamW as our optimization
algorithm. Our chosen learning rate stands at 2e-4 with a weight decay set at le-5.

Opt-6.7b Llama-7b

-e-Ours
o~ large-prompt

hellaswag hellaswag
e~ small-prompt

lambada_openai lambada_openai

arc_easy arc_easy
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winogrande winogrande

triviaga triviaga

webgs webgs

Figure 5: This graph shows the percentage performance improvement using two prompts at various
lengths compared to a 3-bit quantized baseline for the OPT and LLama models. We’ve also show-
cased results from our IDP method, which selects prompts dynamically using the same two prompts.

3.3.1 IDP RESULTS

For the present study, we used the IDP strategy with two distinct prompts of differing lengths,
both trained using the same dataset to streamline our experimental parameters. We subsequently
evaluated against our task benchmark, with the comprehensive findings cataloged in Table[3] In a
complementary visual aid, Figure[5|highlights the percentage differences in performance against the
baseline quantized models, providing an at-a-glance understanding of the performance gains across
individual tasks.

Our analysis showed that IDP can bolster average accuracy against other prompting strategies to
a notable 0.5% for OPT models and .42% for the Llama models. In contrast, juxtaposing these
numbers with the naive prompt concatenation’s yield of 0.16% and a decrement of —1.03% un-
derscores the palpable advancement offered by IDP. Elaborating further, Table [3] sheds light on the
performance averaged over the different domains of knowledge we previously delineated. Barring
the domain of common reasoning for the OPT model, IDP consistently outstripped its counterparts
across all knowledge domains.

When pitted against the quantized foundation models, Figure [5] underscores the tasks where IDP
manifests superior proficiency. Note that OPT models particularly shine in tasks such as Sciq,
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Triviga, and Webgs, all of which nestle under the world knowledge domain. Conversely, the Llama
models evidenced an uptick in tasks like Webgs, Arc, and Winogrand, with gains between 1%-1.5%.

12 Attentions with OPT-6.7b model 11 Activations with OPT-6.7b model

2 g'g 10
3
5 0.
=2 0.9
E 06
» 04 0.8
(0]
£ 0.2 07
2 00
O g2 0.6

-0.4 05 lora

. . - . prompt
Attentions with Llama-7b model Activations with Llama-7b model
1.2 1.05 ptune

> 10 1.00 Ours
5 08 0.95
£ 06 0.90
D 0.85
g 0.80
2 0.2 0.75
O 00 0.70

-0.2 0.65

0 5 10 15 20 25 30 0 5 10 15 20 25 30
Layers Layers

Figure 6: Cosine similarity compares the self-attention and token activation at each layer to an
uncompressed baseline using different fine-tuning techniques. A higher cosine score means it’s
closer to the baseline.

3.3.2 MORE COMPARISIONS AND ABLATION STUDIES

We assessed several parameter-efficient fine-tuning baseline methods at diverse size configurations,
comparing them with IDP. The findings of our experiments are succinctly captured in Table [1| and
Table[2] Based on our analysis, we draw the following insights:

Performance Recovery: In the realm of quantization, we observed a clear trend when com-
pared to baseline quantized models: with the exception of prefix-tuning, all other methods—LoRA,
prompt, and IDP—uniformly restored performance across our comprehensive set of nine tasks. No-
tably, the highest average performance increase over the baseline 3-bit models reached 1.24%. Con-
versely, in the context of sparse models, baseline configurations outperformed all efficient fine-
tuning methods in three out of the nine tasks, most prominently in language understanding domains.
Nonetheless, the majority of adaptation strategies did achieve above-average task performance, al-
beit with modest gains over the baseline.

60 Llama-7b
IDP’s Robustness: We found that IDP con-
sistently outperformed other prompting tech- 59 5855 5848 209
niques, demonstrating robust average perfor- 58 | 57.88

mance across various settings. Specifically, in
quantization scenarios, IDP achieved the high-
est average performance, equalling or even ex-
ceeding its counterparts, including more com-
plex fine-tuning methods like LoRA and prefix-
tuning. In additional settings, IDP exhibited
performance on par with LoRA, and the set
of prompts we used incurred a significantly
smaller parameter footprint — being 10x more
compact. Further highlighting IDP’s capability, 20.0 38.0 63.0 1000
Figure [7]underscores its ability to maintain rel- Average Prompt Size
atively stable high performance at various aver-
age prompting sizes. Figure 7: This figure illustrates the average
performance over nine tasks using IDP. Results

Knowledge Domain Adaptation: Further- show IDP maintains relatively stable performance
more, results from our study reveal a nuanced working with various average prompt sizes.
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improvement landscape. IDP, for instance, exhibits a marked propensity for ameliorating perfor-
mance on tasks within the domain of world knowledge. However, considering the broader picture,
the average-performance distinctions between IDP and the best-performing LoRA model on other
domains are minute, averaging less than 0.2%. This, coupled with our parameter advantage, makes
our performance similar to LoRA’s.

4 KNOWLEDGE RECOVERING WITH PROMPTING

Earlier, we postulated two conjectures on how prompting recovers performance:

e HO (Null Hypothesis): Compression culminates in substantial data attrition. In such a
scenario, prompt-tuning compensates by incorporating new data sources.

» H1 (Alternative Hypothesis): Compression rechannels, rather than expunges, innate knowl-
edge. This dynamic permits prompt-tuning to spotlight and harness pre-existing acumen.

To test our hypotheses, we visualized the layer-wise attention and activation matrices. We refrained
from using magnitude differences and instead used cosine similarity primarily because it allows us
to more easily compare differences across layers and provides clearer insights into the true impact
of compression on model knowledge. Our elucidations are encapsulated in Figures [6] and [7] from
which we deduce the following insights:

* When compared to LoRA, the attention mechanism of both prompting/IDP markedly di-
verges from the baseline, hinting at a potential contextual redirection. Conversely, the
activation patterns echo similarities with LoRA. Given that LoRA incorporates a residual
network at every layer to maintain congruity and prompting only at the self-attention, this
semblance is unexpected.

* The aforementioned points allude to the capability of prompting/IDP to unearth latent
knowledge. Prompting/IDP’s ability to unearth extant information is further evidenced by
results summarized in Table[T)and Table[2] wherein prompting/IDP manifests a predilection
for world knowledge tasks. These tasks, predicated on internalized knowledge repositories
within the model, provide further testament to our observation.

* Moreover, IDP exhibits a remarkable consistency in retrieving information. As demon-
strated in Figure [/} IDP maintains steady performance across varying average prompt sizes.
This consistency suggests that knowledge rerouting can still be effective with fewer tokens,
further highlighting potential future optimization and refinements in the deployment of IDP.

* Lastly, our examination of prefix-tuning reveals its inclination to resonate with the original
attention patterns. However, its activation patterns deviated significantly, as illustrated in
Figure[6] insinuating its inability to redirect knowledge.

Collectively, the evidence heavily suggests H1 as the explanation.

5 CONCLUSION

In this study, we delve into prompt tuning as an efficient means of rejuvenating the efficacy of com-
pressed models. Our exploration surfaces certain shortcomings in prior compression-aware prompt-
ing endeavors, particularly their inadequacies in effectively catering to complex tasks when scaled
up. To address this, we introduce inference-time dynamic prompting (IDP) — a novel approach that
facilitates instance-specific prompt selection at inference, all the while abstaining from incurring any
additional parameter overheads. From our empirical results, IDP stands out as being significantly
more resilient than conventional prompting and LoRA when it comes to recouping performance
across diverse knowledge domains. Peeling back the layers on the mechanics of prompting/IDP, we
discern that they excel in re-calibrating token attention, effectively harnessing the latent knowledge
reservoirs within the models rather than injecting new informational constituents. Our findings ar-
gue in favor of the synergy between prompt-tuning and IDP, underscoring their collective capability
to restore the performance of models, especially when confronted with complex tasks.
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