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ABSTRACT

In this work, we investigate the value of employing statistical machine learning
in general and deep learning in particular for the task of wireless signal modu-
lation recognition. Recently in|O’Shea & Corgan| (2016), a framework has been
introduced by generating a dataset using GNU radio that mimics the imperfec-
tions in a real wireless channel, and uses 10 different modulation types. Further,
a convolutional neural network (CNN) architecture was developed and shown to
deliver performance that exceeds that of expert-based approaches. We tested the
architecture of |O’Shea & Corgan| (2016) and found it to achieve an accuracy of
approximately 75% of correctly recognizing the modulation type. We find a de-
sign with four convolutional layers and two dense layers that gives an accuracy
of approximately 83.8% at high SNR. We then develop architectures based on the
recently introduced ideas of Residual Networks (ResNet, He et al.| (2015)) and
Densely Connected Networks (DenseNet, |Huang et al.[(2016)) and achieve high
SNR accuracies of approximately 83.5% and 86.6%, respectively. We achieve the
best accuracy of approximately 88.5% at high SNR by applying a Convolutional
Long Short-term Deep Neural Network (CLDNN, [Sainath et al.| (2015))) to the
modulation classification task. We then focus on the modulation types of QAM16
and QAM64 that were not well learned by neural networks and explore different
statistical machine learning methods using expert features to classify them. We
achieve an accuracy of 72 % in classifying QAM16 and QAM®64 signals at high
SNR using the combination of time and a high-order cumulant as expert feature.

1 INTRODUCTION

Signal modulation is an essential process in wireless communication systems. Modulation recogni-
tion tasks are generally used for both signal detection and demodulation. The signal transmission
can be smoothly processed only when the signal receiver demodulates the signal correctly. How-
ever, with the fast development of wireless communication techniques and more high-end require-
ments, the number of modulation methods and parameters used in wireless communication systems
is increasing rapidly. The problem of how to recognize modulation methods accurately is hence
becoming more challenging.

Traditional modulation recognition methods usually require prior knowledge of signal and channel
parameters, which can be inaccurate under mild circumstances and need to be delivered through a
separate control channel. Hence, the need for autonomous modulation recognition arises in wireless
systems, where modulation schemes are expected to change frequently as the environment changes.
This leads to considering new modulation recognition methods using deep neural networks.

Deep Neural Networks (DNN) have played a significant role in the research domain of video, speech
and image processing in the past few years. Recently the idea of deep learning has been introduced
to the area of communications by applying convolutional neural networks (CNN) to the task of
radio modulation recognition |O’Shea & Corgan| (2016). In this paper, we present our experiments
of the deep neural network application on modulation recognition using optimized CNN, Densely
connected network and CLDNN. We also explored a support vector machine method for recognizing
QAM signals which were not well classified by neural networks.
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2 SIMULATION SETUP

We use the RadioML2016.10b dataset generated in |O’Shea & Corgan| (2016) as the input data of
our research. This dataset contains 10 types of modulations: eight digital and two analog modu-
lations. These consist of BPSK, QPSK, 8PSK, QAM16, QAM64, BFSK, CPFSK, and PAM4 for
digital modulations, and WB-FM, and AM-DSB for analog modulations. For digital modulations,
the entire Gutenberg works of Shakespeare in ASCII is used, with whitening randomizers applied
to ensure equiprobable symbols and bits. For analog modulations, a continuous voice signal is
used as input data, which consists primarily of acoustic voice speech with some interludes and off
times. The entire dataset is a 128-sample complex time-domain vector generated in GNU radio.
160,000 samples are segmented into training and testing datasets through 128-samples rectangular
windowing processing, which is similar to the windowed continuous acoustic voice signal in voice
recognition tasks. The training examples - each consisting of 128 samples - are fed into the neural
network in 2*¥128 vectors with real and imaginary parts separated in complex time samples. The
labels in input data include SNR ground truth and the modulation type. The SNR of samples is
uniformly distributed from -20dB to +18dB. All training and testing are done in Keras using Nvidia
M60 GPU. We use Adam Kingma & Ba|(2014) from the deep learning library as optimizer in Keras
and use Theano as back end.

3 RESULTS

We start with a basic two-convolutional-layer neural network, in which two convolutional layers with
256 1x3 filters and 80 2x3 filters, respectively, are followed by two dense layers. We then explore the
effect of different filter settings by exchanging filter settings between the two convolutional layers.
The performances of networks with different filter settings demonstrate that layer architectures with
larger filters in earlier convolutional layers and smaller filters in deeper convolutional layers optimize
the accuracy result at high SNR.
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at lower SNR are similar, the four-convolutional-
layer architecture delivers an accuracy of 83.8% at
high SNR.

Figure 1: Architecture and performance of CNN

Next, we explore the optimal depth of CNN by increasing the number of convolutional layers from
two to five. We find that the best accuracy at high SNR which is approximately 83.8% is obtained
when using the four-convolutional-layer architecture as shown in Figure [I(a)] This is a significant
improvement of 8.8% over the two-convolutional-layer model. Due to the fact that lower loss cor-
responds to higher accuracy, a smoothly decreasing loss indicates that the network is learning well
as it does for the four-convolutional-layer model. When the neural network gets deeper, it becomes
less likely for the validation loss to converge. For the five and six-convolutional-layer models, large
loss vibrations appear early during training, which means that the minimum losses achieved by these
neural networks are larger than that of the four-convolutional-layer model, which leads to the poor
classification performance.
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We find that combining a residual network with the original CNN architecture demonstrates similar
performance as the pure CNN architecture. Similar to the result of CNN, the best performance
of 83.5% is achieved when we combine ResNet with a four convolutional layer neural network.
Recognition accuracy also starts to decrease when we combine ResNet with a network architecture
that has more than four convolutional layers.

Because more densely connected blocks require a deeper neural network, which in our experiments
did result in accuracy degradation, we implement DenseNet on CNN architectures with only one
densely connected block. We start with a three convolutional layer DenseNet and keep adding
convolutional layers into the network until the accuracy result starts to descend. We achieve a best
accuracy of 86.6% at high SNR using the four convolutional layer architecture shown in Figure[T(a)]

We applied the CLDNN architecture and compared the performance of CLDNN with results demon-
strated by ResNet and DenseNet. We added an LSTM unit into the network after the convolutional
part. We believe that the cyclic connections extract relevant temporal features in the signal. The
results of CLDNN - shown in Figure - do outperform other models. The accuracy at high SNR
reaches 88.5% and it is the highest among all tested neural network architectures. In Figure 2(b)l

CLDNN Confusion Matrix (SNR=18)
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Figure 2: The performance of CLDNN

we show the classification results of the highest SNR case in a confusion matrix. There are two
main discrepancies besides the clean diagonal in the matrix, which are WBFM being misclassified
as AM-DSB and QAM16 being misclassified as QAM64. A small portion of 8PSK samples are
misclassified as QPSK and a small portion of WBFM samples are misclassified as GFSK; we ex-
pect that further optimizing the neural network architecture and possibly increasing the depth would
lead to capturing these subtle feature differences. We further notice that QAM16 and QAMG64 are
likely to be misclassified as each other, since their similarities in the constellation diagram make the
differentiation vulnerable to small noise in the signal. We therefore explore different expert features
to classify QAM signals.

We found that the popular cumulant feature used in previous work (|Marchand et al.| (1998) [Dobre
et al.[ (2004) Aslam et al.| (2012)) does not deliver good performance in the GNU radio generated
data used in this work. We believe that this is mainly because in the theoretical models considered
in the aforementioned works, the received signal is assumed to be stationary, which does not hold
for real world data. As a result, we combine the time index with the cumulant as our new expert
feature of each sample, and feed it into a support vector machine. Using this approach, we achieve
a 72% classification accuracy result on QAM signals with SNR=18 dB.

REFERENCES

M. W. Aslam, Z. Zhu, and A. K. Nandi. Automatic modulation classification using combination
of genetic programming and knn. IEEE Transactions on Wireless Communications, 11(8):2742—



Workshop track - ICLR 2018

2750, August 2012. ISSN 1536-1276. doi: 10.1109/TWC.2012.060412.110460.

O. A. Dobre, Y. Bar-Ness, and Wei Su. Robust gam modulation classification algorithm using cyclic
cumulants. In 2004 IEEE Wireless Communications and Networking Conference (IEEE Cat.
No.04TH8733), volume 2, pp. 745-748 Vol.2, March 2004. doi: 10.1109/WCNC.2004.1311279.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. CoRR, abs/1512.03385, 2015.

Gao Huang, Zhuang Liu, and Kilian Q. Weinberger. Densely connected convolutional networks.
CoRR, abs/1608.06993, 2016.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. CoRR,
abs/1412.6980, 2014.

P. Marchand, J. L. Lacoume, and C. Le Martret. Multiple hypothesis modulation classification
based on cyclic cumulants of different orders. In Acoustics, Speech and Signal Processing, 1998.
Proceedings of the 1998 IEEE International Conference on, volume 4, pp. 2157-2160 vol.4, May
1998. doi: 10.1109/ICASSP.1998.681573.

Timothy J. O’Shea and Johnathan Corgan. Convolutional radio modulation recognition networks.
volume abs/1602.04105. 2016.

Tara N. Sainath, Oriol Vinyals, Andrew W. Senior, and Hasim Sak. Convolutional, long short-
term memory, fully connected deep neural networks. 2015 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), pp. 4580-4584, 2015.



	Introduction
	Simulation Setup
	Results

