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ABSTRACT

This work provides an automatic machine learning (AutoML) modelling architec-
ture called Autostacker. Autostacker improves the prediction accuracy of machine
learning baselines by utilizing an innovative hierarchical stacking architecture and
an efficient parameter search algorithm. Neither prior domain knowledge about
the data nor feature preprocessing is needed. We significantly reduce the time
of AutoML with a naturally inspired algorithm - Parallel Hill Climbing (PHC).
By parallelizing PHC, Autostacker can provide candidate pipelines with sufficient
prediction accuracy within a short amount of time. These pipelines can be used as
is or as a starting point for human experts to build on. By focusing on the mod-
elling process, Autostacker breaks the tradition of following fixed order pipelines
by exploring not only single model pipeline but also innovative combinations and
structures. As we will show in the experiment section, Autostacker achieves sig-
nificantly better performance both in terms of test accuracy and time cost compar-
ing with human initial trials and recent popular AutoML system.

1 INTRODUCTION

Machine Learning nowadays is the main approach for people to solve prediction problems by utiliz-
ing the power of data and algorithms. More and more models have been proposed to solve diverse
problems based on the character of these problems. More specifically, different learning targets and
collected data correspond to different modelling problems. To solve them, data scientists not only
need to know the advantages and disadvantages of various models, they also need to manually tune
the hyperparameters within these models. However, understanding thoroughly all of the models and
running experiments to tune the hyperparameters involves a lot of effort and cost. Thus, automating
the modelling procedure is highly desired both in academic areas and industry.

An AutoML system aims at providing an automatically generated baseline with better performance
to support data scientists and experts with specific domain knowledge to solve machine learning
problems with less effort. The input to AutoML is a cleanly formatted dataset and the output is
one or multiple modelling pipelines which enables the data scientists to begin working from a better
starting point. There are some pioneering efforts addressing the challenge of finding appropriate
configurations of modelling pipelines and providing some mechanisms to automate this process.
However, these works often rely on fixed order machine learning pipelines which are obtained by
mimicking the traditional working pipelines of human experts. This initial constraint limits the
potential of machine to find better pipelines which may or may not be straightforward, and may or
may not have been tried by human experts before.

In this work, we present an architecture called Autostacker which borrows the stacking Wolpert
(1992)Breiman (1996) method from ensemble learning, but allows for the discovery of pipelines
made up of simply one model or many models combined in an innovative way. All of the automati-
cally generated pipelines from Autostacker will provide a good enough starting point compared with
initial trials of human experts. However, there are several challenges to accomplish this:

• The quality of the datasets. Even though we are stepping into a big data era, we have to
admit that there are still a lot of problems for which it is hard to collect enough data, espe-
cially data with little noise, such as historical events, medical research, natural disasters and
so on. We tackle this challenge by always using the raw dataset in all of the stacking layers
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Figure 1: This figure describes the pipeline architecture of Autostacker. Autostacker pipelines con-
sists of one or multiple layers and one or multiple nodes inside each layer. Each node represents a
machine learning primitive model, such as SVM, MLP, etc. The number of layers and the number
of nodes per layer can be specified beforehand or they can be changeable as part of the hyperparam-
eters. In the first layer, the raw dataset is used as input. Then in the following layers, the prediction
results from each node will be added to the raw dataset as synthetic features (new colors). The new
dataset generated by each layer will be used as input to the next layer.

while also adding synthetic features in each stacking layer to fully use the information in
the current dataset. More details are provided in the Approach section below.

• The generalization ability of the AutoML framework. As mentioned above, existing Au-
toML frameworks only allow systems to generate an assembly line from data preprocess-
ing and feature engineering to model selection where only a specific single model will be
utilized by plugging in a previous model library. In this paper, depending on the computa-
tional cost and time cost, we make the number of such primitive models a variable which
can be changed dynamically during the pipeline generation process or initialized in the
beginning. This means that the simplest pipeline could be a single model, and the most
complex pipeline could contain hundreds of primitive models as shown in Figure 1

• The large space of variables. The second challenge mentioned above leads to this problem
naturally. Considering the whole AutoML framework, variables include the type of prim-
itive machine learning models, the configuration settings of the framework (for instance,
the number of primitive models in each stacking layer) and the hyperparameters in each
primitive model. One way to address this issue is to treat this as an optimization prob-
lem Feurer et al. (2015). Here in this paper, we instead treat this challenge as a search
problem. We propose to use a naturally inspired algorithm, Parallel Hill Climbing (PHC),
Ovalle-Martı́nez et al. (2004) to effectively search for appropriate candidate pipelines.

To make the definition of the problem clear, we will use the terminology listed below throughout
this paper:

• Primitive and Pipeline: primitive denotes an existed single machine learning model, for ex-
ample, a DecisionTree. In addition, these also include traditional ensemble learning mod-
els, such as Adaboost and Bagging. The pipeline is the form of the output of Autostacker,
which is a single primitive or a combination of primitives.

• Layer and Node: Figure 1 shows the architecture of Autostacker which is formed by mul-
tiple stacking layers and multiple nodes in each layers. Each node represents a machine
learning primitive model.

2 RELATED WORK

Automated Machine Learning has recently gained more attention and there are a variety of related
research programs underway and tools coming out. In this section, we first describe recent work
in this field and then explain where our work fits in. The current focus in AutoML mainly con-
sists of two parts: machine learning pipeline building and intelligent model hyperparameter search.
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Thornton et al. (2013)Kotthoff et al. (2016) provides a software which enables automatic modelling
called Auto-Weka. Auto-Weka is built on top of Weka Hall et al. (2009) software and uses Bayesian
Optimization (Sequential model-based optimization) to search for optimal hyperparameter settings
of the pipeline. The pipeline here follows the traditional machine learning work process: from data
preprocessing, feature engineering to single model prediction. However, fixed order pipelines, es-
pecially with a single model prediction, are not suitable for complicated problems or small sample
datasets. Following the same pipeline, Auto-sklearn Feurer et al. (2015) utilizes the sklearn Pe-
dregosa et al. (2011) machine learning library as a toolbox and searches for the hyperparameter of
models with Bayesian Optimization. There are also several works on Bayesian Optimization which
are designed specifically for large scale parameter configuration problems like AutoML. For ex-
ample, RoBO Springenberg et al. (2016) includes multiple implementations of different Bayesian
Optimization algorithms with the flexibility of changing the components of this process. Hyper-
optBergstra et al. (2013) takes advantage of Sequential model-based optimization and considers the
choice of classification models and preprocessing models together as an integral optimization prob-
lem. Other approaches for large scale parameter search are also included in SMACHutter et al.
(2011) and SpearmintSnoek et al. (2012).

By extending the fixed pipeline used in works mentioned above, such as Auto-Weka and Auto-
sklearn, one of the most recent and popular framework called TPOT Olson et al. (2016) allows for
parallel feature engineering which happens before model prediction. However, all of the works men-
tioned above follow the same machine learning pipeline. TPOT also uses Evolutionary Algorithms
to treat the parameter configuration problem as a search problem. In this work, we use TPOT as one
of our baselines.

As described above, there is very little work trying to discover innovative pipelines, even with tra-
ditional building blocks, such as sklearn. Pushing the ability of machines to be able to discover
innovative machine learning building pipelines, such as new combinations or new arrangements, is
necessary to cover a larger space of possible architectures. In this work, we encourage Autostacker
to fulfill this requirement in two ways: 1. generating models with new combinations and 2. generat-
ing models with completely innovative architectures. In terms of the optimization methods, we offer
an alternative solution to search for the settings with Parallel Hill Climbing which is very effective,
especially when we are faced with a giant possible search space. The success of using this kind of
strategy on large scale AutoML is also proved in TPOT.

3 APPROACH

3.1 SYSTEM ARCHITECTURE

The working process of Autostacker is shown in Figure 2 and the overview of pipeline architecture
built by Autostacker is hown in Figure 1. The whole pipeline consists of multiple layers, where each
layer contains multiple nodes. These nodes are the primitive machine learning models. The ith layer
takes in the dataset Xi, and outputs the prediction result Yi,j , where Yi,j denotes the prediction result
of the jth node in the ith layer (i = 0, 1, 2, ..., I , j = 0, 1, 2, ..., J). After each layer’s prediction, we
add these prediction results back to the dataset used as input to the layer as synthetic features, and
then use this newly generated dataset as the input of the next layer. With each new layer, the dataset
gets more and more synthetic features until the last layer which only consists of a single node. We
take the output of the last layer as the final output of this machine learning problem.

Again, if we use fk to denote the kth (k = 0, 1, 2, ...,K) feature in the dataset, the final dataset will
contain

(K + 1) +

I−1∑
i=0

(Ni + 1) (1)

features in total and this new dataset will be used in the last layer prediction. Ni (0,1,2,...) is the
number of nodes in the ith layer. The total number of features in the dataset before the last layer can
be specified by users.

Unlike the traditional stacking algorithm in ensemble learning, which only feeds the prediction
results into next layer as inputs, this proposed architecture always keeps the information directly
from the raw dataset. Here are the considerations:
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Figure 2: The overview process of Autostacker and its usage is shown here. First, we start to
build the model pipelines by generating initial pipelines with dynamic configurations of architecture
and hyperparameters, feeding into PHC algorithm, and looping the process to generate winning
pipelines. Then the winning pipelines can be used as better baselines for data scientists, or we can
analyze the pattern in the winning pipeline sets for further meta-learning usage.

• The number of items in the dataset could be very small. If so, the prediction result from
each layer could contain very little information about the problem and it is very likely that
the primitives bias the outcomes a lot. Accordingly, throwing away the raw dataset could
lead to high-biased prediction results which is not suitable for generalization, especially for
situations where we could have more training data in the future.

• Moreover, by combining the new synthetic features with the raw dataset, we implicitly give
some features more weight when these features are important for prediction accuracy. Yet
we do not delete the raw dataset because we do not fully trust the primitives in individual
layers. We can consequently reduce the influences of bias coming from individual primitive
and noise coming from the raw dataset.

There are multiple hyperparameters within this architecture:

• I and J : the maximum number of layers and the maximum number of nodes corresponding
to each layer.

• H: the hyperparameters in each primitive.
• The types of the primitives. Here we provide a dictionary of primitives which only serves

as a search space.

Note that Autostacker provides two specifications for I and J . The default mode is to let users
simply specify the maximum range of I and J . Only two positive integers are needed to enable
Autostacker to explore different configurations. There are two advantages here: 1. This mode frees
the system of constraints and allows for the discover of further possible innovative pipelines. 2. This
speed up the whole process significantly. We will illustrate this point in the Experiment section later.
Another choice is to explicitly denote the value of I and J . This allows systems to build pipelines
with a specific number of layers and number of nodes per layer based on allowed computational
power and time.

The search algorithm for finding the appropriate hyperparameters is described in the next section.

3.2 SEARCH ALGORITHM

In this paper, the Parallel Hill Climber (PHC) Algorithm has been chosen as the search algorithm
to find the group of hyperparameters which can lead to better baseline model pipelines. PHC is
commonly used as baseline algorithm in the development of Evolutionary Algorithm. As we will
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show later, our system can already achieve significantly better performance with this straightforward
baseline algorithm. Algorithm 1 provides the details of this algorithm in our system.

First, we generate N completed pipelines by randomly selecting the hyperparameters. Then we
run a one step Hill Climber on top of these N pipelines to get another N pipelines. The one-step
Hill Climber essentially just randomly changes one of the hyperparameters, for example the number
of estimators in a Random Forest Classifier. Now we train these 2N pipelines and evaluate them
through cross validation. Then N pipelines with the highest validation accuracies are selected as the
seed pipelines for the next generation of Parallel Hill Climber. Once the seed pipelines are ready,
another one step Hill Climber will be applied on them and another round of evaluation and selection
will be executed afterwards. The same loop continues until the end of all the iterations, where the
number of iterations M can be specified by users.

Algorithm 1 Autostacker Parallel Hill Climber

1: N = 200
2: M = 10
3: iter init = Random(N)
4: for iter in M do
5: new gen = HILLCLIMBER(iter init)
6: eva pip = iter init ∪ new gen
7: eva result = EV ALUATE(eva pip)
8: sel pip = SELECT (eva pip, eva result,N)
9: iter init = sel pip

10: end for
11: Return sel pip
12: function HILLCLIMBER(list pip)
13: for each integer i in length of list pip do
14: list pip[i] = list pip[i] with one change
15: end for
16: Return list pip
17: end function
18: function EVALUATE(list pip)
19: Train the list pip
20: for each integer i in length of list pip do
21: eva result[i] = CV (list pip[i])
22: end for
23: Return eva result
24: end function
25: function SELECT(eva pip, eva result,N )
26: Choose the Npips with highest eva result
27: Return sel pip
28: end function

3.3 TRAINING AND TESTING PROCESS

This section presents the training and testing procedure. The training process happens in the eval-
uation step as shown above. Corresponding to our hierarchical framework, the pipeline is trained
layer by layer. Inside each layer, each primitive is also trained independently with the same dataset.
The next layer will be trained after integrating the previous dataset with with prediction results
from the previous trained layer. Similarly, the validation process and testing process share the same
mechanism but with validation set and test set respectively.

After training and validating the pipelines, we pick the first 10 pipelines with the highest validation
accuracies as the final output of Autostacker. We believe that these 10 pipelines can provide better
baselines for human experts to get started with the problem. Here choosing the top 10 pipelines
instead of the first one pipeline directly is based on the consideration that the input might be a small
amount of data which is more likely to be unbalanced. Yet unbalanced data cannot guarantee that the
performance on the validation process can fully represent that on the testing process. For example,
two pipelines with the same validation results might behave very differently on the same test dataset.
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Hence, it is necessary to provide a set of candidates which can be guaranteed to do better on average
so that human experts can fine tune the pipelines subsequently.

3.4 SCALING AND PARALLELIZATION

Another significant advantage of our approach is that the system is very flexible to scale up and
parallelize. Starting from the initial generation, one-step hill climbing, training, validation to eval-
uation, each pipeline runs independently, which means that each worker can work on one pipeline
alone. There is no frequent communication or sequential decision making among all the workers
and each worker can run through the pipeline separately. They only need to share the validation
result to be ranked by the end of each iteration. Then one shot selection based on the validation
accuracy will be applied on the outputs of the parallel workers. More specifically, in terms of the
Algorithm 1 we show above, Random(), HILLCLIMBER(), and EVALUATE() function are all very
easily parallelized when the system runs.

4 EXPERIMENTS

4.1 DATASET AND PREPROCESSING

To show the performance of our system, we selected 15 datasets from the benchmark dataset pro-
vided in Olson et al. (2017) which collects and cleans datasets from public data resources, such as
OpenMLVanschoren et al. (2013) and UCILichman (2013) etc., as the sample experimental data.
According to the result published in TPOT, we arbitrarily choose 9 datasets claimed to have bet-
ter results in TPOT comparing with Random Forest Classifier, 4 datasets with worse performance
in TPOT and 2 datasets with same performance with Random Forest Classifier in TPOT. We limit
the total number of datasets to be 15 to show here to cover all cases of datasets in TPOT. These
datasets come from different problem domains and target different machine learning tasks including
binary classification and multi-class classification. Autostacker is also compatible with regression
problems. We will release results on more benchmark datasets as well as the code base.

The data is cleaned in terms of filling in the missing values with large negative values or deleting
the data points with missing values. Other than that, there is no other data preprocessing or feature
preprocessing in Autostacker. It would certainly be possible to use preprocessing on the dataset
and features as another building block or hyperparameter in Autostacker, and we also provide this
flexibility in our system. Nevertheless, in this paper we focus only on the modelling process to show
our contribution to the architecture and automation process. Before each round of the experiment,
we shuffle and partition the dataset to 80%/20% as training/testing data.

4.2 BASELINE COMPARISON

The goal of Autostacker is to provide a better baseline pipeline for data scientists in an automatic
way. Thus, the baseline we choose to compare with should be able to represent the prediction ability
of pipelines coming from the initial trials of data scientists. The baseline pipeline that we compare
with is chosen to be Random Forest Classifier / Regressor with the number of estimators being
500 as ensemble learning models like Random Forest have been shown to work well on average
in practice when considering multi-model predictions. We also compare our results to those of the
TPOT model from Olson et al. (2016) which is one of the most recent and popular AutoML systems.

Currently, our primitives are from the scikit-learn library Pedregosa et al. (2011) and XGboost
libaray Chen & Guestrin (2016) The full list is in Table 1 in the appendix. In Autostacker, users
are allowed to plug in any primitives they like as long as the function signatures are consistent with
our current code base. In terms of the basic structure (number of layers and number of nodes per
layer) of the candidate pipelines, as we mentioned above, there are two types of settings provided in
Autostacker. In this section, we show the performance of the default mode of Autostacker: dynamic
configurations. We specify the maximum range of number of layers to be 5 and the maximum range
of number of nodes per layer to be 3.
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4.2.1 RESULTS

In this section, we will show the results of the test accuracy and time cost of Autostacker as well
as comparisons with the Random Forest and TPOT baselines. The test accuracy is calculated using
balanced accuracy Velez et al. (2007). We refer to them as test accuracy in the rest of this paper.
We ran 10 rounds of experiments for Random Forest Classifier and 3 to 10 rounds of experiment
for TPOT based on the computation and time cost. For Autostacker, 3 rounds of experiments are
executed on each dataset and the datasets get shuffled before each round. Thus, the figure contains
30 test results in total where each 10 of them come from 1 round experiment. The notches in the box
plot represent the 95% confidence intervals of median values. We use one machine with 24 CPUs to
parallelize each experiment for each architecture.

As shown in Figure 3, all the left side columns shows the test accuracy comparisons on the 15 sample
datasets. From the comparisons, we can tell several things:

• Autostacker achieves 100% better test accuracy compared with Random Forest Base-
lines, and 13 out of 15 better accuracy compared with TPOT, while the rest
Hill Valley with noise and vehicle datasets achieve extremely similar or slight lower ac-
curacy according to median values.

• Autostacker is much more robust. Autostakcer can always provide better baselines to speed
up further work, while Random Forest fails to give any better results on the parity5 dataset,
and TPOT fails to provide better baselines than Random Forest Classifier on the breast-
cancer, pima, ecoli, wine-recognition and cars datasets after spending a couple of hours
searching. This kind of guarantee of not being worse on average comes from the character-
istic of Autostacker: the innovative stacking architecture which fully utilizes the predictions
coming from different primitive models as well as the whole information of the raw dataset.
In the meantime, Autostacker does not give up the single model case if it is better than a
stacking architecture. Hence, Autostacker essentially contains the Random Forst Baseline
we are using here.

All the right side columns in Figure 3 show the time cost among comparisons. Autostacker largely
reduce the time usage up to 6 times comparing with TPOT on all the sample datasets.

In conclusion of the experiment result, the output of Autostacker can improve the baseline pipeline
sufficiently enough for human experts to start with better pipelines within a short mount of time, and
Autostacker achieves significantly better performance on sample datasets than all baseline compar-
isons.

5 DISCUSSION

During the experiments and research process, we noticed that Autostacker still has several limita-
tions. Here we will describe these limitations and possible future solutions:

• The ability to automate the machine learning process for large scale datasets is limited.
Nowadays, there are more sophisticated models or deep learning approaches which achieve
very good results on large scale datasets and multi-task problems. Our current primitive
library and modelling structure is very limited at solving these problems. One of the future
solutions could be to incorporate more advanced primitives and to choose to use them when
necessary.

• Autostacker can be made more efficient with better search algorithms. There are a lot of
modern evolutionary algorithms, and some of them are based on the Parallel Hill Climber
that we use in this work. We believe that Autostacker could be made faster by incorporating
them. We also believe traditional methods and knowledge from statistics and probability
will be very helpful to better understand the output of Autostacker, such as by answer-
ing questions like: why do was a particular pipeline chosen as one of the final candidate
pipelines?
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Figure 3: Test Accuracy and Time Cost Comparision.

6 CONCLUSION

In this work, we contribute to automating the machine learning modelling process by proposing Au-
tostacker, a machine learning system with an innovative architecture for automatic modelling and
a well-behaved efficient search algorithm. We show how this system works and what the perfor-
mance of this system is, comparing with human initial trails and related state of art techniques. We
also demonstrate the scaling and parallelization ability of our system. In conclusion, we automate
the machine learning modelling process by providing an efficient, flexible and well-behaved system
which provides the potential to be generalized into complicated problems and is able to be integrated
with data and feature processing modules.
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7 APPENDIX

Table 1: Primitive List in Autostacker

Perceptron AdaBoostClassifier
LogisticRegression XGBClassifier
SVC MLPClassifier
DecisionTreeClassifier BernoulliNB
KNeighborsClassifier MultinomialNB
RandomForestClassifier GradientBoostingClassifier
BaggingClassifier ExtraTreesClassifier
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