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ABSTRACT

The standard interpretation of importance-weighted autoencoders is that they
maximize a tighter lower bound on the marginal likelihood. We give an alternate
interpretation of this procedure: that it optimizes the standard variational lower
bound, but using a more complex distribution. We formally derive this result, and
visualize the implicit importance-weighted approximate posterior.

1 BACKGROUND

The importance-weighted autoencoder (IWAE; Burda et al. (2016)) maximizes the following multi-
sample evidence lower bound (ELBO):

log(p(x)) ≥ Ez1...zk∼q(z|x)

[
log

(
1

k

k∑
i=1

p(x, zi)

q(zi|x)

)]
(IWAE ELBO)

which is a tighter lower bound than the ELBO maximized by the variational autoencoder (VAE;
Kingma & Welling (2014)):

log(p(x)) ≥ Ez1...zk∼q(z|x)

[
1

k

k∑
i=1

log

(
p(x, zi)

q(zi|x)

)]
. (VAE ELBO)

Here we’ve written the VAE bound as a multisample lower bound to compare it the IWAE bound.
The following equations are the gradients of the VAE ELBO and the IWAE ELBO, respectively:

∇ΘLV AE(x) = Ez1...zk∼q(z|x)

[
k∑
i=1

1

k
∇Θlog

(
p(x, zi)

q(zi|x)

)]
(1)

∇ΘLIWAE(x) = Ez1...zk∼q(z|x)

[
k∑
i=1

w̃i∇Θlog

(
p(x, zi)

q(zi|x)

)]
(2)

True posterior qIW with k = 1 qIW with k = 10 qIW with k = 100

Figure 1: Approximations to a complex true distribution, defined via sampling-importance-
resampling. As k grows, this approximation approaches the true distribution.
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where

w̃i =

p(x,zi)
q(zi|x)∑k
j=1

p(x,zj)
q(zj |x)

.

From equations 1 and 2, we see that the gradient of the VAE ELBO evenly weights the samples,
whereas the IWAE gradient weights the samples based on their relative importance w̃i.

2 DEFINING THE IMPLICIT DISTRIBUTION QIW

In this section, we derive the implicit distribution that arises from importance sampling from a
distribution p using q as a proposal distribution.

Given a batch of samples z1...zk from q(z|x), the following is the importance weighted qIW distri-
bution as a function of one of the samples, zi:

qIW (zi|x, z\i) = kw̃iq(zi|x) =

 p(x,zi)
q(zi|x)

1
k

∑k
j=1

p(x,zj)
q(zj |x)

 q(zi|x) =
p(x, zi)

1
k

∑k
j=1

p(x,zj)
q(zj |x)

(3)

The marginal distribution qIW (z|x) is given by:

qIW (z|x) = Ez1...zk∼q(z|x)

[
qIW (zi|x, z\i)

]
for any i. (4)

When k = 1, then qIW = q(z|x). As soon as k > 1, we see that the form of qIW depends on the
true posterior p. When k = ∞, qIW (z|x) becomes the true posterior p(z|x). See the Appendix for
details.

Figure 1 visualizes qIW on a 2D distribution approximation problem. The base distribution q is a
Gaussian. As we increase the number of samples k used for the sampling-resampling, the approxi-
mation approaches the true distribution. This distribution is nonparametric in the sense that, as the
true posterior grows more complex, so does the shape of qIW .

2.1 RECOVERING THE IWAE BOUND FROM THE VAE BOUND

Here we show that the IWAE ELBO is equivalent to the VAE ELBO, but with a more flexible q(z|x)
distribution, implicitly defined by importance reweighting. First, we start by writing the VAE ELBO
in its minibatch form, as an average over k samples:

log p(x) ≥ LV AE [q] = Ez∼q(z|x)

[
log

(
p(x, z)

q(z|x)

)]
= Ez1...zk∼q(z|x)

[
1

k

k∑
i=1

log

(
p(x, zi)

q(z|x)

)]
(5)

If we now set q(z) = qIW (z), then we recover the IWAE ELBO:

LV AE [qIW ] = Ez1...zk∼qIW (z|x)

[
1

k

k∑
i=1

log

(
p(x, zi)

qIW (zi|x, z\i)

)]
(6)

= Ez1...zk∼q(z|x)

 k∑
l=1

w̃l
1

k

k∑
i=1

log

 p(x, zi)
p(x,zi)

1
k

∑k
j=1

p(x,zj)

q(zj |x)


 (7)

= Ez1...zk∼q(z|x)

log
1

k

k∑
j=1

p(x, zj)

q(zj |x)

 = LIWAE (8)

Thus we see that VAE with qIW is equivalent to the IWAE ELBO. For a more detailed derivation,
see the Appendix.

3 SAMPLING QIW

The procedure to sample from qIW (z|x) is shown in Algorithm 1. It is equivalent to sampling-
importance-resampling (SIR).
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Algorithm 1 Sampling from qIW
1: k← number of samples
2: q(z|x) = fφ(x)
3: for i in 1 . . . k do
4: zi ∼ q(z|x)
5: wi =

p(x,zi)
q(zi|x)

6: Each w̃ = wi/
∑k
i=1 wi

7: j ∼ Cat(w̃)
8: Return zj

Figure 2: Algorithm 1 defines the procedure to sample from qIW .

4 RESAMPLING FOR PREDICTION

During training, we sample the q distribution and implicitly weight them with the IWAE ELBO.
After training, we need to explicitly reweight samples from q.

Figure 3: Reconstructions of MNIST samples from q(z|x) and qIW . The model was trained by
maximizing the IWAE ELBO with K=50 and 2 latent dimensions. The reconstructions from q(z|x)
are greatly improved with the sampling-resampling step of qIW .

In Fig. 3, we demonstrate the need to sample from qIW rather than q(z|x) for reconstructing MNIST
digits. We trained the model to maximize the IWAE ELBO with K=50 and 2 latent dimensions,
similar to Appendix C in Burda et al. (2016). When we sample from q(z|x) and reconstruct the
samples, we see a number of anomalies. However, if we perform the sampling-resampling step
(Algo. 1), then the reconstructions are much more accurate. The intuition here is that we trained
the model with qIW with K = 50 then sampled from q(z|x) (qIW with K = 1), which are very
different distributions, as seen in Fig. 1.

5 DISCUSSION

Bachman & Precup (2015) also showed that the IWAE objective is equivalent to stochastic vari-
ational inference with a proposal distribution corrected towards the true posterior via normalized
importance sampling. In other words, the IWAE lower bound can be interpreted as the standard
VAE lower bound with an implicit qIW distribution. We build on this idea by further examining
qIW and by providing visualizations to help better grasp the interpretation. In light of this, IWAE
can be seen as increasing the complexity of the approximate distribution q, similar to other meth-
ods that increase the complexity of q, such as Normalizing Flows (Jimenez Rezende & Mohamed
(2015)), Variational Boosting (Miller et al. (2016)) or Hamiltonian variational inference (Salimans
et al. (2015)).

3



Workshop track - ICLR 2017

REFERENCES

Philip Bachman and Doina Precup. Training Deep Generative Models: Variations on a Theme. NIPS
Approximate Inference Workshop, 2015.

Yuri Burda, Roger Grosse, and Ruslan Salakhutdinov. Importance weighted autoencoders. In ICLR,
2016.

Danilo Jimenez Rezende and Shakir Mohamed. Variational Inference with Normalizing Flows. In
ICML, 2015.

Diederik P. Kingma and Max Welling. Auto-Encoding Variational Bayes. In ICLR, 2014.

Andrew C. Miller, Nicholas Foti, and Ryan P. Adams. Variational Boosting: Iteratively Refining
Posterior Approximations. Advances in Approximate Bayesian Inference, NIPS Workshop, 2016.

Tim Salimans, Diederik P. Kingma, Max Welling, et al. Markov chain monte carlo and variational
inference: Bridging the gap. In ICML, 2015.

6 APPENDIX

6.1 DETAILED DERIVATION OF EQUIVALENCE OF VAE AND IWAE BOUND.

First, we start by writing the VAE ELBO in its minibatch form, as an average over k samples:

log p(x) ≥ LV AE = Ez∼q(z|x)

[
log

(
p(x, z)

q(z|x)

)]
= Ez1...zk∼q(z|x)

[
1

k

k∑
i=1

log

(
p(x, zi)

q(z|x)

)]
(9)

If we now set q(z) = qIW (z), then we recover the IWAE ELBO:

= Ez1...zk∼qIW (z|x)

[
1

k

k∑
i=1

log

(
p(x, zi)

qIW (zi|x, z\i)

)]
(10)

= Ez1...zk∼qIW (z|x)

1
k

k∑
i=1

log

 p(x, zi)
p(x,zi)

1
k

∑k
j=1

p(x,zj)

q(zj |x)


 (11)

= Ez1...zk∼qIW (z|x)

1
k

k∑
i=1

log

1

k

k∑
j=1

p(x, zj)

q(zj |x)

 (12)

= Ez1...zk∼qIW (z|x)

log
1

k

k∑
j=1

p(x, zj)

q(zj |x)

 (13)

= Ez1...zk∼q(z|x)

 k∑
l=1

w̃l

log

1

k

k∑
j=1

p(x, zj)

q(zj |x)

 (14)

= Ez1...zk∼q(z|x)

log
1

k

k∑
j=1

p(x, zj)

q(zj |x)

 = LIWAE (15)

Eqn. 13 follows Eqn. 12 since index i is not present within the sum over i. Similarly, from Eqn. 14
to Eqn. 15, index l is not present within the sum over l and

∑k
l=1 w̃l sums to one. Eqn. 15 is the

IWAE ELBO, thus we see that VAE with qIW is equivalent to the IWAE ELBO.
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6.2 k = ∞

Recall that the marginal likehood can be approximated by:

p(x) = Eq(z|x)

[
p(x, z)

q(z|x)

]
≈ 1

k

k∑
i

p(x, zi)

q(zi|x)
(16)

where zi is sampled from q(zi|x). Thus, when k =∞:

qIW (z|x) = p(x, z)

Eq(z|x)

[
p(x,z)
q(z|x)

] =
p(x, z)

p(x)
= p(z|x) (17)

Thus qIW (z) is equal to the true posterior p(z|x) when k =∞, as expected.

6.3 PROOF THAT qIW IS CLOSER TO TRUE POSTERIOR THAN q

Section 6.2 showed that LIWAE(q) = LV AE(qIW ). That is, the IWAE ELBO with the base q is
equivalent to the VAE ELBO with the importance weighted qIW .

Due to Jensen's Inequality and as shown in Burda et al. (2016), we know that the IWAE ELBO is an
upper bound of the VAE ELBO: LIWAE(q) ≥ LV AE(q).

Finally, the log marginal likelihood can be factorized into: log(p(x)) = LV AE(q) +KL(q||p), and
rearranged to: KL(q||p) = log(p(x))− LV AE(q).

Following the observations above and substituting q for qIW :

KL(qIW ||p) = log(p(x))− LV AE(qIW ) (18)
= log(p(x))− LIWAE(q) (19)
≤ log(p(x))− LV AE(q) = KL(q||p) (20)

Thus, KL(qIW ||p) ≤ KL(q||p), meaning qIW is closer to the true posterior than q in terms of KL
divergence.

7 VISUALIZING QIW IN 1D

We can look at the intermediate variational distributions with different numbers of samples k in 1
dimension. Fig. 4 demonstrates how the approximate posterior approaches the true posterior as k
increases.

5



Workshop track - ICLR 2017

Figure 4: Visualization of the importance weighted posterior. The blue distribution is the intractable
distribution that we are trying to approximate. The green distribution is the variational distribution.
The variational distributions of a, b, and c were optimized via SVI, whereas d, e, and f were opti-
mized with SVI with the IWAE ELBO. The red histograms are importance weighted samples from
the variational distribution.
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