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Abstract

We present a general plug-and-play contrastive
learning framework that improves existing
neural topic models (NTMs) by incorporating
the knowledge distilled from pre-trained lan-
guage models. Recent NTMs have been ap-
plied to many applications and shown promis-
ing improvement on text analysis. How-
ever, they mainly focus on word-occurrences
and are often optimized by maximizing the
likelihood-based objective, which could lead
to suboptimal topic coherence and document
representation. To overcome the above bottle-
neck, we introduce an additional contrastive
loss that pushes the topical representation of
a document learned by an NTM close to the
semantic representation of the document ob-
tained from pre-trained language models. In
this way, the prior knowledge of the pre-
trained language models can enrich the contex-
tual information of the target corpus for NTMs.
Comprehensive experiments show that the pro-
posed framework achieve the state-of-the-art
performance. Importantly, our framework is
general approach to improve most of the exist-
ing NTMs.

1 Introduction

A topic model (TM) discovers a set of interpretable
topics from a target corpus, which can be used to
derive topical representations of documents. TMs
have been successfully applied in a wide range
of applications such as document classification,
keyphrase extraction, e-commerce recommenda-
tions, and clinical-admission analysis (Nan et al.,
2019; Peinelt et al., 2020; Wang et al., 2019; Jin
etal., 2018; Xu et al., 2018).

Recently, neural topic models (NTMs) (Miao
et al., 2017; Srivastava and Sutton, 2017; Zhao
et al., 2021b; Duan et al., 2021) have been a popu-
lar research direction in topic modeling due to their
better flexibility and scalability than conventional
TMs. Most of NTMs are inspired by the varia-
tional autoencoders (VAEs) (Kingma and Welling,

2014). Specifically, an NTM uses an encoder to
derive the document’s topic representation, indicat-
ing the topic proportion over the topics, and then
feeds it into a decoder to reconstruct the document.
Generally, the NTM is trained by maximizing the
evidence lower bound (ELBO) of the likelihood
of the observed documents. While, most of con-
ventional TMs or NTMs purely learn from the sta-
tistical information of the target corpus, they may
suffer from downgraded performance when there
is less contextual information in the target corpus
(Miao et al., 2017), such as short texts like tweets
and news headlines. To tackle this issue, various
approaches have been proposed, most of which
use metadata such as pretrained word embeddings
(Zhao et al., 2017; Inoue et al., 2021) and docu-
ment labels (Card et al., 2018a) to complement to
the contexts in the target corpus.

Recently, pre-trained language models (PLMs)
such as BERT (Devlin et al., 2019; Reimers and
Gurevych, 2019), and GPT (Brown et al., 2020)
have been widely used various natural language
processing (NLP) tasks. Trained on extremely
large-scale corpora, PLMs can capture the seman-
tic and syntactic information of natural languages.
Given a document, a PLM can derive its semantic
representation encoded by the CLS token (Adhikari
et al., 2019). For the same document, the topical
representation discovered from an NTM and the se-
mantic representation discovered from a PLM are
expected to be highly related. Therefore, PLMs can
naturally serve as the sources of complementary
contextual information for the training of NTMs.

Following this general idea, we introduce a new
method that distills knowledge from PLMs to help
learn NTMs better. The basic idea of our approach
is very straightforward and intuitive: Given a PLM
(pre-trained and fixed), we expect the topical rep-
resentation of a document derived from a to-be-
learned NTM to be close to the document’s seman-
tic representation derived from the PLM. In this



way, the prior knowledge of the PLM, pre-trained
on large global corpora, can enrich the contextual
information of the target corpus for learning NTM.
To implement this idea, we are inspired by con-
trastive learning (CL) (Chopra et al., 2005; Robin-
son et al., 2021; Ma et al., 2021), which is a popu-
lar and successful self-learning approach originally
proposed for image feature learning. In CL, the fea-
ture of an anchor image is expected to be closer to
its positive samples’ (e.g., the anchor image’s aug-
mentations) than its negative samples’ (e.g., other
images) (Saunshi et al., 2019; Tian et al., 2020). In
our case, we propose a novel contrastive loss for
training NTMs. Specifically, for an anchor docu-
ment’s topical representation learned by an NTM,
we define its positive samples as the semantic rep-
resentations generated from a PLM and push the
topical representation close to them. Importantly,
the proposed contrastive loss serves as an addi-
tional training objective to the original maximum
likelihood estimation loss (e.g., ELBO) of existing
NTMs without changing the model architectures
of NTMs. That is to say, we propose a general
plug-and-play technique that is flexible enough to
improve on many existing NTMs. Our contribu-
tions are summarized as follows: (1) We propose
a novel contrastive method that helps learn better
NTMs by distilling knowledge from pre-trained
language models, which tackles the issue of insuf-
ficient information in the target corpus for training
NTMs. (2) The proposed approach is model agnos-
tic and can be used to improve an arbitrary NTM.
(3) Extensive experiments show that our proposed
model achieves better document classification ac-
curacy while discovering high-quality topics.

2 Background

2.1 Topic modeling and neural topic models

Suppose that D = {d;} is the corpora including J
documents and we can represent each document d;
as a BoW count vector ; € N Vi Here V; denotes
the size of the vocabulary in topic modelling and
Z,; is the number of times the v-th word occurs in
the j-th document. In general, the goal of TM is to
learn K shared topics {¢;, }*=¥ from the corpora
and the representation z; € RX for document j,
which indicates the document’s topic proportions
over K topics.

Most of existing NTMs follow the framework
of VAEs (Kingma and Welling, 2014). A typi-
cal NTM consists of an encoder, which maps the

BoW input x to its topic proportion z, denoted
as qgp(z|x) for approximating the posterior p(z|x),
and a decoder that generates x conditioned on the
topic proportion z, expressed as py(x|z), where
we omit the subscript j for simplicity. Therefore,
one can learn an NTM by maximising the ELBO of
the marginal likelihood of BoW vector « in terms
of 6,1, formulated as

Lvag(x,0,v) = ) [log(py (z|2))]—

1
KL(go(zl)lp(2)),

where py(x|z) denotes the likelihood about the
BoW vector « and the second term is the Kullback-
Leibler (KL) divergence that regularises gy (z|x)
to be close to its prior p(z). Due to the unusable
reparameterization trick in original VAEs for the
commonly-used Dirichlet or gamma distributions
in general TMs, various configurations of the prior
distribution p(z), data distribution py (x|z), pos-
terior distribution gg(z|x), as well as different ar-
chitectures of the decoder and encoder, have been
developed for VAE-based NTM. We refer readers
to Zhao et al. (2021a) for more details about NTMs.

2.2 Contrastive learning

Recent contrastive learning (CL) methods have
been successfully applied in learning meaningful
representations (van den Oord et al., 2018; Chen
et al., 2020b). The main idea behind CL is that the
more similar are two data points the closer they live
in the latent space (Saunshi et al., 2019). Specif-
ically, for an anchor data sample x, one can find
pairs of positive (similar) samples (x, 1) and neg-
ative (dissimilar) pairs (2, ™). The goal is to learn
a function fy : RY — RX that maps those associ-
ated samples (x, ™, ™) to the latent distribution
(2,217, 2z7). CL typically specifies the noise con-
trastive estimation (NCE) objective (Logeswaran
and Lee, 2018):

exp (z-z")
exp (z-zt)+B-exp(z-2z7)]’
2
where ( is the strength of the constraint and 5 = 1
yields the usual form of the contrastive objective.

mglx Ezcx |log

3 The proposed model

This paper proposes the Contrastive BERT-based
framework to improve NTMs (CBTM for short)
via distilling knowledge from PLMs, with the help
of contrastive learning, whose overview is shown
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Figure 1: An overview of our proposed model. For a given document d, we can treat its BoW vector x as the anchor,
where x-axis denotes the word index in the vocabulary and y-axis is the count value of x,. Then we view the sequential

representation s of document d as the positive sample of anchor @ and construct the negative sample, where the blue bars in x

neg

denote the perturbed weights of the selected words according to their tf-idf scores. Then, the samples (&, ", s) are fed into

modality-specific encoders for inferring latent representation (z¥ * ™

in Fig. 1. Given a document d, an NTM uses an
encoder go(zN™|z) to embed d’s topical represen-
tation zN™ ¢ RX (i.e., topic proportion) from
the BoW data of the document, i.e., x € NV*. We
denote zN™ = NTMEnc(x). Note that we do
not specify the implementation of the NTM used
here and our method is expected to work with an
arbitrary NTM. As discussed in Section 2.2, we
consider document d’s topic representation zN™™
as the anchor and the next key point is how to spec-
ify the positive and negative samples of the anchor.
Although extensive study on the selection of pos-
itive and negative samples has been conducted in
contrastive learning for image representation learn-
ing (Chen et al., 2020a,b), it has not been com-
prehensively investigated for documents or topic
modelling. In this paper, we propose a novel selec-
tion strategy.

Selection of positive samples. For the given
document d, we can also represent it as a sequence
of words, denoted as s = {wy,--- ,wy} where
wy, € {1 : V;} and V] is the vocabulary size of
PLMs. The semantic representation of the same
document d can be obtained by using the CLS to-
ken from a PLM: h = PLMEnc(s). We are not
limited to a specific PLM and theoretically any
PLM that can discover semantic representations of
documents are applicable in our framework, where
we employ Sentence BERT (SBERT) (Reimers and
Gurevych, 2019) without loss of generality.

Our basic idea is straightforward and intuitive.
As h is extracted by a PLM, which is trained
on large general corpora, we can consider that
h is complementary to the orderless BoW infor-
mation. To incorporate such knowledge into the

17 zNTM-neg7 zPLM)'

NTMs, we can push zN™ obtained from our to-be-
learned NTM close to h. Usually, ZNIM ¢ RE
and h € RO live in the different spaces, thus
we first project h into a K-dimensional vector
by introducing a learnable matrix E € RE*O,
expressed as h = Eh. Since 2N™ is sampled
from gg(2N™ |x), we also employ the variational
inference network g, (z|h) to consider the uncer-
tainty. Here, the parameter w is part of 8, which
includes the parameters for mapping @ into a K-
dimensional vector and those for mapping the K-
dimensional vector into parameters of posterior
distribution (e.g., mean and variance in Gaussian
distribution), where w belongs to the latter. That
is to say, we only additionally introduce E as

the to-be-learned matrix. We formulate zPIM —

NTMEnc(h). In our case, for one document d, it is
natural to use the 2™ from the PLM as the posi-
tive sample of the topical representation 2N™ from
the NTM, as both of them capture the semantics of
a same document.

Selection of negative samples. Here, we follow
a general principle of selecting negative samples
for our framework: A document’s topical represen-
tation will change if the important words in the
document are changed. Recalling that we have
2N™ — NTMEnc(x), we can generate a new BoW
data "¢ by perturbing the counts of the important
words in @ and have 2N™"¢¢ — NTMEnc(x"°¢).
It is natural to assume that 2N™¢¢ should be dif-
ferent from 2N™ and we can use 2NTM™¢2 a5 the
negative sample of 2N™, To generate "¢ from x,
we take the following steps: 1) Following (Nguyen
and Luu, 2021), we sort the words in document d by
their tf-idf scores, and select top M tokens possess-



ing the highest tf-idf scores {wy, - ,wps}. Ttis
reasonable to assume that these words mainly con-
tribute to the topic of the document, i.e., they are
relatively more important. 2) We copy « to "8,
ie, " = x. 3) With 2N™ = NTMEncy(z),
we feed it into the NTM decoder to get the re-
constructed weights of x, denoted as grecon-weight
which is a normalized probability vector. We ob-
tain the predicted BoW count vector, " by
qprecon — wrecon—weight 21‘)/?:1 s. 4) Finally, we per-
mute the weight of the selected top-M word in "¢
by Tmt = 2" for all m € {1,--- , M}, where
M is a hyperparameter of our framework.
Training NTMs by distilling from PLMs with
contrastive loss. With the specification of the posi-
tive and negative samples, we introduce the follow-
ing contrastive loss for training NTMs with PLMs:

LU0, E) =

exp (zNTM . ZPLM)

2 exp (2NTM. 2PLM) t expy (2NTM. zNTM-neg)’

3)
where £(0, E) is parameterized by § and E, 0
is the parameter of the NTM encoder and E is the
matrix for embedding the output of PLM to the
K -dimensional vector.

Given a specific NTM, the proposed contrastive
loss serves as an additional loss to the one used
to train the NTM originally. Therefore, we aim to
maximize the final objective, expressed as

lo

L£=LNM0,4)+ ML, E), @)

where ) is the parameter of the decoder of the
NTM and A > 0 is a hyperparameter that con-
trols the balance between the two losses. Note that
for most of the popular NTMs, LNTM (4, 1)) is the
ELBO in (1), as introduced in Section 2.1.

As the introduced contrastive loss is independent
to the original NTM loss and it only uses the output
of the NTM encoder, our method can be used to im-
prove an arbitrary NTM. That is to say our method
is model agnostic. This will be comprehensively
demonstrated in the experiments.

4 Related work
4.1 NTMs with pre-trained language models

The most closet work in NTMs to ours is utiliz-
ing pre-trained Transformer-based language mod-
els to improve the NTMs. For example, Bianchi
et al. (2021) introduced a Combined Topic Model

(CombinedTM) to incorporate the pre-trained doc-
ument contextualized representations from SBERT
Reimers and Gurevych (2019) into Product-of-
Experts LDA (ProdLDA) of Srivastava and Sutton
(2017) to improve the topic coherence. To improve
the document-level understanding, Chaudhary et al.
(2020) proposed TopicBERT by combining an
NTM with a fine-tuned BERT, which concatenates
the topic distribution and the learned BERT embed-
ding of a document as the features for document
classification. Hoyle et al. (2020) combined the ad-
vantages of these two approaches—the rich contex-
tual language knowledge in pre-trained BERT and
the intelligibility of NTMs—using knowledge dis-
tillation, which is denoted as BERT-based Autoen-
coder Teacher (BAT). The authors instantiated BAT
to the two existing NTMs, including Scholar (Card
et al., 2018b) (i.e. BAT+Scholar) and Wasserstein-
LDA (Nan et al., 2019) (i.e. BAT+W-LDA).

4.2 Contrastive learning for texts

Originally proposed for images, contrastive learn-
ing also start to gain popularity in natural language
processing tasks (Logeswaran and Lee, 2018; Xu
et al., 2021). However, how contrastive learning
helps in (neural) topic modeling has not been care-
fully studied. The most related work to ours is Con-
trastive Neural Topic Model (CNTM) ! (Nguyen
and Luu, 2021). Inspired by human behavior when
comparing different documents, CNTM proposed
a sampling strategy to construct positive and nega-
tive sample (i.e., BoW) and additionally introduced
the contrastive objective to improve the NTMs.
Although ours is alos on contrastive learning for
NTMs, we have a different propose that is to distill
knowledge from PLMs to help learn better NTMs.
This propose leads to a different selection of the
positive samples, which come from PLMs. For
using external semantic knowledge extracted by
PLMs, NTMs can be guided to better infer topi-
cal representation of documents as well as better
topics.

5 Experiments

In this section, we study the performance of the
proposed model and compare it to related NTMs
on five benchmark textual data. As a desired TM
should discover both accurate topic proportions and
coherent topics, we consider topic interpretability

"We are unable to compare with CNTM (Nguyen and Luu,
2021) as their code is not publicly available.



and document classification, as described below.

5.1 Corpora

We run our experiments on five readily avail-
able datasets, which include regular and short
documents and vary in scales, described as fol-
lows: (1) 20NG consists of newsgroups including
18,846 articles evenly categorized into 20 differ-
ent categories. The number of training samples is
11,314 and testing 7,532. (2) Ohsumed is a set
of 13,929 unique cardiovascular diseases abstracts
from MEDLINE, an on-line medical information
database. The classification scheme consists of the
23 Medical Subject Headings (MeSH) categories
of cardiovascular diseases group. After removing
documents belonging to multiple categories, we ob-
tain 3,357 documents in the training set and 4,043
documents in the test set. (3) R8 and R52 are two
subsets of the Reuters 21,578 dataset. R8 contains
5,485 training and 2,189 test documents from 8
different classes. R52 consists of 6,532 training
and 2,568 test documents and each of them is as-
sociated with 52 different labels. (4) AG News
contains 496,835 categorized news articles from
more than 2000 news sources. Following (Zhang
et al., 2015), we choose the 4 largest classes from
this corpus, using only the description fields. Each
class contains 30,000 training samples and 1,900
testing samples, leading to 120,000 training sam-
ples and 7,600 testing samples.

For all datasets, we first clean and tokenize text
following the preprocessing steps in (Yao et al.,
2019). For the topic model, we additionally ex-
clude standard stop words and low frequency words
appearing less than 5 times. For 20NG and AG, we
keep the 20,000 most frequent terms as the vocabu-
lary. The statistics of the preprocessed datasets are
summarized in Table 1.

Dataset J, all J] train Ji test c ‘/t N
20NG 18,864 11,314 7,532 20 20,000 142.75
Ohsumed 7,400 3,357 4,043 23 14,157 135,82
R8 7,674 5485 2,189 8 7,688  65.72
R52 9,100 6,532 2,568 52 80892 69.82
AG 127,600 120,000 7,600 4 20,000 19.74

Table 1: Summary statistics of the datasets, where J denotes
the number of documents, C' the number of classes, V; the
vocabulary size of topic modelling and /N the average length
of documents in the corpus, respectively.

5.2 Baselines

To demonstrate the effectiveness of introducing
cross-modality positive samples and PLM in im-

proving the existing NTMs based on the contrastive
loss, we consider several baselines for a fair com-
parison, including representative NTMs and NTMs
with PLMs, described as follows: /) ProdLDA
(Srivastava and Sutton, 2017) presents the effec-
tive auto-encoder variational Bayes (AEVB) based
inference algorithm for LDA, and uses logistic nor-
mal distribution for the Dirichlet prior. 2) ETM
(Dieng et al., 2020), a VAE-based NTM, which
assumes that words and topics live in the same em-
bedding space, and draws each word from a categor-
ical distribution whose natural parameter is calcu-
lated by the inner product between the embeddings
of vocabulary and an embedding of its assigned
topic. 3) Sawtooth (Duan et al., 2021), a ETM-
based hierarchical NTM, while, employs Poisson
and Gamma distributions to model the BoW vec-
tor and latent topic proportion, respectively. 4)
DVAE (Burkhardt and Kramer, 2019), a VAE-
based NTM with the Dirichlet prior, introduces
rejection sampling variational inference for its repa-
rameterization. 5) SCHOLAR+BAT (Hoyle et al.,
2020) uses DistillBERT as the teacher model and
trains SCHOLAR in the knowledge distillation
framework. Note that SCHOLAR is equivalent
to the ProdLDA without metadata and sparsity. 6)
CombinedTM (Bianchi et al., 2021), a variant of
ProdLDA that combines the BoW with the con-
textual document embeddings extracted from the
pre-trained SBERT as input to produce more mean-
ingful topics.

5.3 Settings

For all experiments, we set the number of top-
ics K=100, the dimension of word and topic em-
beddings of ETM-based models d=100, and the
batch size as 200. Below we select the recent
Sawtooth (Duan et al., 2021) as the base NTM
in our framework (CBTM-Saw) when comparing it
with other baselines and also consider other NTMs
in Section 5.6 for a comprehensively evaluations.
We initialize word embeddings and topic embed-
dings from the Gaussian distribution A/ (0,0.02).
For topic encoder ¢y(z|x), we employ an infer-
ence network stacked with a 3-layer V;-256-100
fully-connected layer (V; is the vocabulary size
in topic modelling), followed by a softplus layer.
Our framework is flexible for the choice of pre-
trained language models and we here adopt the
SBERT (Reimers and Gurevych, 2019), whose
maximum length is 256 and output h € R is



a 768-dimensional vector. Here we introduce the
embedding matrix E € R7%3*190 {5 project h into
the 100-dimensional vector k. We set A = 1 and
M = 15 for all experiments. We set the learning
rate as 0.001 and dropout rate as 0.1. We train the
proposed model for a maximum of 500 epochs us-
ing Adam optimizer (Kingma and Ba, 2015). For
baseline models, we used default parameter set-
tings as in their original papers or implementations.
All experiments are performed on an Nvidia RTX
2080-Ti GPU and implemented with PyTorch.

5.4 Topic interpretability

Dataset Method ™1t TCt TSt
ProdLDA 0.833 -0.020 1.642

ETM 0.238 -0.027 3.067

Sawtooth 0.553 0.012 4.183

20NG DVAE 0.431 -0.024 2.147
SCHOLAR+BAT | 0.666 -0.008 3.143
CombinedTM 0.741 -0.019 1.502
CBTM-Saw(Ours) | 0.639 0.024 4.931
ProdLDA 0.698 -0.043 1.927

ETM 0.137 -0.028 3.062

Sawtooth 0.549 -0.026 7.593

RS DVAE 0.154 -0.037 4.752
SCHOLAR+BAT | 0.448 -0.024 3.852
CombinedTM 0.632 -0.021 1.785
CBTM-Saw(Ours) | 0.575 -0.018 8.242
ProdLDA 0.627 -0.024 1.978

ETM 0.180 -0.032 2.630

Sawtooth 0.534 -0.011 6.985

R52 DVAE 0.152 -0.024 4.824
SCHOLAR+BAT | 0.553 -0.018 3.287
CombinedTM 0.630 -0.012 1.784
CBTM-Saw(Ours) | 0.497 -0.003 7.322
ProdLDA 0.785 -0.018 1.304

ETM 0.226 0.038 2.71.

Sawtooth 0.642 0.043 7.005

Ohsumed DVAE 0.364 0.024 2.041
SCHOLAR+BAT | 0.706 0.043 3.036
CombinedTM 0.711 0.040 1.267
CBTM-Saw(Ours) | 0.696 0.052 6.992
ProdLDA 0.678 0.009 1.994

ETM 0.306 0.125 20951

Sawtooth 0.527 0207 7.752

AG DVAE 0.519 0218 0.647
SCHOLAR+BAT | 0.657 0.040 3.205
CombinedTM 0.668 0.048 2.466
CBTM-Saw(Ours) | 0.706 0.050 7.803

Table 2: Topic quality over top 60% highest NPMI topics,
where the best results are highlighted in boldface.

We comprehensively measure topic interpretabil-
ity by blending three metrics: topic coherence
(TC), topic diversity (TD) and topic specificity
(TS). Given a reference corpus, TC measures
the semantic relevance in the most significant
words (top 10 words in our case) of a topic,

which is computed by the Normalized Point-
wise Mutual Information (NPMI) over the se-
lected words of each topic (Dieng et al., 2020):

p(w;,w;)

fwi, wy) = [logm} / [—logp(w;, w;)] ,
where p(w;, w;) is the probability of words w; and
wj co-occurring in a document and p(w;) is the
marginal probability of word w;, and both of them
are estimated with empirical counts. Those mod-
els owing higher topic coherence are more inter-
pretable topic models. As is implied by the name,
TD measures how diverse the learned topics are.
We define TD with the percentage of the unique
word in the top 25 words of all topics (Zhao et al.,
2020). TD that closes to 0 indicates redundant
topics; that closes to 1 means more diverse topics.
Besides TC and TD, we also report TS, which is
used to measure how far a topic p(¢y|k) is from
the overall distribution of words in the corpus p(w).
We calculate distance using KL divergence (Lee
etal, 2021): TS = &+ S0 KL(p(¢py k) |[p(w)).
A larger distance means the distilled topics are
more distinct; while a smaller distance suggests
that the topics are more similar to the corpus distri-
bution (overly general).

Since not all the learned topics are interpretable
(Yang et al., 2015), we choose 60% topics with
the highest NPMI, and report their average scores
at Table 2. For the results, we have the following
observations. Firstly, we can observe that topics
discovered by our proposed model achieve the high-
est topic coherence (TC) across all corpora, while
maintaining a competitive diversity (TD) and speci-
ficity (TS). This is because the PLM pre-trained
from large general corpora, provides rich syntax
and semantic information which can be incorpo-
rated as the complementary knowledge of the NTM
with the contrastive loss. It is beneficial for infer-
ring document’s true topics in the scenarios where
the BoW information is insufficient. Secondly, in
terms of ProdLDA, while its topic diversity outper-
forms ours on a few datasets, it achieves low topic
coherence and specificity, indicating its topics are
diverse but less interpretable. Thirdly, compared
to traditional NTMs, BERT-based NTMs includ-
ing SCHOLAR+BAT and CombinedTM, usually
produce more coherent and diverse topics. This re-
sult is in line with the previous study (Hoyle et al.,
2020; Bianchi et al., 2021) that topic model itself
can benefit from the general language knowledge of
the pre-trained BERT. Among all the BERT-based
NTMs, in general, our model performs the best.



Model 20NG RS R52 Ohsumed AG
ProdLDA 58.42 +£0.24 89.26 +0.17 80.14 +£0.09 41.85 +£0.24 79.96 +0.20
DVAE 57.47 £0.18 88.25 £0.22 78.36 +0.11 35.98 £0.20 77.25 +0.16
ETM 61.75 £0.22 90.86 +0.03 80.61 +0.10 34.13 +£0.12 82.07 +£0.10
Sawtooth 64.65 £0.21 92.60 +0.11 80.92 +0.05 42.51 +£0.09 83.04 +0.09
SCHOLAR+BAT  66.03 £0.08 92.98 +0.24 82.17 £0.08 44.20 £0.10 85.06 +0.19
CombinedTM 65.91+£0.91 93.10+£0.36 83.75 £0.51 44.224+0.64 84.25 +0.27
CBTM-Saw(Ours) 66.46 £0.10 93.93 +0.07 84.35 +0.07 45.82 +0.13 86.25 +0.11

Table 3: Test accuracy of different models on unsupervised document classification task. We run all methods 5 times and report
the mean and standard deviation. The best scores of each dataset are highlighted in boldface.

5.5 Document classification

Considering doc-topic proportions can be viewed
as unsupervised document representations, we per-
form document classification task and report ac-
curacy (ACCQC) to evaluate the quality of such rep-
resentation. Specifically, once we get the trained
encoder network gg(z|x), we feed the BoW vec-
tors of testing documents into the encoder to collect
the topic proportions. Then we apply logistic re-
gression, which is trained on the proportions of
training documents, to measure the classification
performance of proportions of testing documents.
Table. 3 summarizes the test accuracy of differ-
ent NTMs in this task. As we can see, our pro-
posed model obtains better classification perfor-
mance than their baselines on all corpora, which
confirms the effectiveness of our innovation of com-
bining pre-trained language model and NTM in
improving classification performance. Especially,
even though SCHOLAR+BAT and CombinedTM
incorporate the external knowledge learned by pre-
trained language models into NTMs, both of them
are inferior to our model. The main reason might
be that we use the external information differently.
In other words, moving beyond SCHOLAR+BAT
and CombinedTM that incorporate the external lan-
guage knowledge either through input or output in
NTM, we build a general contrastive framework for
NTM. It not only pulls together the positive pairs
but also pushes away the negative samples, with the
former borrowing the cross-modal language knowl-
edge distilled from SBERT, and the latter bringing
clearer classification boundaries, resulting in the
SOTA accuracy.

5.6 Improving other NTMs

In previous experiments, we study the effectiveness
of our proposed framework, where we adopt Saw-
tooth as the NTM. Since our framework is agnostic
about the choice of the NTM, we in this experiment
use other popular NTMs as the backbone of ours

Dataset Method D TC TS ACC
ProdLDA 0.833 -0.020 1.64 58.42

20NG Ours-ProdLDA | 0.860 -0.032 1.67 66.20
ETM 0.238 -0.027 3.067 61.75

Ours-ETM 0.263 -0.004 3.168 66.79

ProdLDA 0.698 -0.043 1.92 89.26

RS Ours-ProdLDA | 0.723 -0.037 195 93.98
ETM 0.137 -0.028 3.06 90.86

Ours-ETM 0.149 -0.026 3.12 93.42

ProdLDA 0.785 -0.018 1.30 41.85

Ohsumed Ours-ProdLDA | 0.781 -0.009 1.32 44.78
ETM 0.226 0.038 2.71 34.13

Ours-ETM 0.239 0.053 2.78 44.00

Table 4: Performance of different models on 20NG, R8 and
Ohsumed, respectively.

including ProdLDA (Srivastava and Sutton, 2017)
and ETM (Dieng et al., 2020). Table. 4 shows the
performance (topic quality and ACC) comparison
between original NTMs and their improved vari-
ants in our framework on 20NG, R8, and Ohsumed.
The performance of NTMs on three datasets has an
improvement in most cases when combining our
proposed contrastive framework, especially for the
ETM. Although there are a slight decrease in TC
on 20NG and TD on Ohsumed for ProdLDA when
using our framework, our proposed models still
achieve a better topic specificity and classification
results. This observation validates the effective-
ness of our proposed contrastive framework for
enhancing existing NTMs. This suggests that our
proposed plug-and-play framework can be flexibly
used to enhance existing NTMs for topic modelling,
without changing or re-designing the model archi-
tectures of NTMs on purpose, providing a simple
but effective way for absorbing external semantic
knowledge from PLMs.

5.7 Ablation study and qualitative analysis

Number M of permuted tokens. To evaluate the
impact of number M of permuted tokens in neg-
ative sampling, we report the performance of our
proposed model on 20NG in Fig. 2 (a), where M is



Methods NPMI Top-10 words
0.114 windows, software, pc, system, modem, dos, use, mac, unix, os

Sawtooth -0.001 team, game, ca, season, play, hockey, roger, player, would, players
-0.109 bike, dod, ride, motorcycle, riding, dog, bikes, helmet, bmw, nec
0.003 windows, nt, microsoft, font, apps, os, type, fonts, seas, clarku

. -0.034 game, cup, go, series, goalie, playoffs, playoff, cmu, champs, beat
CombinedTM -0.123 bike, riding, ride, bnr, helmet, bikes, mike, adobe, countersteering, hydro
0.128 mac, modem, port, apple, serial, card, sound, bit, pc, software
0.024 baseball, game, edu, team, cubs, games, phillies, season, mets, braves
CBTM-Saw(Ours) 0.006 | bike, dod, ride, riding, motorcycle, bmw, bikes, helmet, motorcycles, behanna

Table 5: Learned topics of Sawtooth, CombinedTM, and CBTM-Saw(Ours) on 20NG dataset, where we choose three topics
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related to “software”, “game” and “bike” query words.

ranging from 5 to 25. Besides, we further train two
variants of CBTN-Saw (red lines) with the different
schemes of the selection of positive and negative
samples: without positive samples (green lines)
and without negative samples (blue lines). We can
find that 1) M can be selected to balance the docu-
ment classification and topic quality. With tuning
carefully for each dataset, one may get more better
results than those reported in our experiments; 2)
By combining the positive and negative samples
together with contrastive loss, CBTM achieves bet-
ter results than using either of them; 3) Compared
with the negative samples, the positive samples gen-
erated from SBERT lead to more improvements,
which is consistent with our motivation.

0.65
D D
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0.575 |
—_— 0.55
0.03

C
0.02

o
o
o
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52_/\—— ™
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Figure 2: Shown in (a) and (b) are the ablation studies
on 20NG about the number M of negative samples and the
trade-off hyperparameter A. In (a), CBTM-Saw and its two
variants CBTM-Saw without positive samples, CBTM-Saw
without negative samples are denoted as the red, green, and
blue, respectively.

o
o
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Trade-off hyperparameter \. As shown in Fig.
2 (b), we further analyze the effect of trade-off
hyperparameter A which controls the weight of
information incorporated from SBERT. Notably,
we aim to explore the sensitiveness of our mod-
els for hyperparameter A rather than exhaustively

tuning this hyperparameter A\. We find that with
the help of SBERT, the quality of the learned top-
ics from CBTM have a greater improvement than
only trained by NTM itself. We attribute this to
the knowledge introduced from the pre-trained lan-
guage model. Besides, the classification perfor-
mance has a large accept range for A, which means
that CBTM is robust to document representation.
Visualization of learned topics. To investigate
the effectiveness of our proposed model qualita-
tively, we visualize three topics related to query
words including “software”, “game” and “bike”,
which are extracted by Sawtooth, CombinedTM
and our CBTM-Saw. For each topic, we select
the top-10 words and report its NPMI at Table. 5.
Compared with the Sawtooth and CombinedTM,
the topics learned by our proposed CBTM-Saw are
more coherent and explainable. This suggests that
our proposed framework can enhance the learn-
ing of meaningful topics for assimilating document
embeddings from PLM with contrastive loss.

6 Conclusions

We proposed a Contrastive learning framework
called CBTM for neural topic models, which pro-
vides a straightforward but effective way for intro-
ducing semantic language pattern from pre-trained
language models. For a document, CBTM views
the document embeddings generated from pre-
trained SBERT as the positive sampels, and per-
mutes the weights of the key words as the negative
samples. The additional contrastive loss pushes the
latent distribution encoded from NTMs closer to
the contextual representation distilled from BERT,
while pulls away from the negative samples, result-
ing in more informative and distinguished latent
distributions. Our model has shown appealing prop-
erties that are able to improve many existing NTMs
without changing their model architectures.
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