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Abstract
We present a general plug-and-play contrastive001
learning framework that improves existing002
neural topic models (NTMs) by incorporating003
the knowledge distilled from pre-trained lan-004
guage models. Recent NTMs have been ap-005
plied to many applications and shown promis-006
ing improvement on text analysis. How-007
ever, they mainly focus on word-occurrences008
and are often optimized by maximizing the009
likelihood-based objective, which could lead010
to suboptimal topic coherence and document011
representation. To overcome the above bottle-012
neck, we introduce an additional contrastive013
loss that pushes the topical representation of014
a document learned by an NTM close to the015
semantic representation of the document ob-016
tained from pre-trained language models. In017
this way, the prior knowledge of the pre-018
trained language models can enrich the contex-019
tual information of the target corpus for NTMs.020
Comprehensive experiments show that the pro-021
posed framework achieve the state-of-the-art022
performance. Importantly, our framework is023
general approach to improve most of the exist-024
ing NTMs.025

1 Introduction026

A topic model (TM) discovers a set of interpretable027

topics from a target corpus, which can be used to028

derive topical representations of documents. TMs029

have been successfully applied in a wide range030

of applications such as document classification,031

keyphrase extraction, e-commerce recommenda-032

tions, and clinical-admission analysis (Nan et al.,033

2019; Peinelt et al., 2020; Wang et al., 2019; Jin034

et al., 2018; Xu et al., 2018).035

Recently, neural topic models (NTMs) (Miao036

et al., 2017; Srivastava and Sutton, 2017; Zhao037

et al., 2021b; Duan et al., 2021) have been a popu-038

lar research direction in topic modeling due to their039

better flexibility and scalability than conventional040

TMs. Most of NTMs are inspired by the varia-041

tional autoencoders (VAEs) (Kingma and Welling,042

2014). Specifically, an NTM uses an encoder to 043

derive the document’s topic representation, indicat- 044

ing the topic proportion over the topics, and then 045

feeds it into a decoder to reconstruct the document. 046

Generally, the NTM is trained by maximizing the 047

evidence lower bound (ELBO) of the likelihood 048

of the observed documents. While, most of con- 049

ventional TMs or NTMs purely learn from the sta- 050

tistical information of the target corpus, they may 051

suffer from downgraded performance when there 052

is less contextual information in the target corpus 053

(Miao et al., 2017), such as short texts like tweets 054

and news headlines. To tackle this issue, various 055

approaches have been proposed, most of which 056

use metadata such as pretrained word embeddings 057

(Zhao et al., 2017; Inoue et al., 2021) and docu- 058

ment labels (Card et al., 2018a) to complement to 059

the contexts in the target corpus. 060

Recently, pre-trained language models (PLMs) 061

such as BERT (Devlin et al., 2019; Reimers and 062

Gurevych, 2019), and GPT (Brown et al., 2020) 063

have been widely used various natural language 064

processing (NLP) tasks. Trained on extremely 065

large-scale corpora, PLMs can capture the seman- 066

tic and syntactic information of natural languages. 067

Given a document, a PLM can derive its semantic 068

representation encoded by the CLS token (Adhikari 069

et al., 2019). For the same document, the topical 070

representation discovered from an NTM and the se- 071

mantic representation discovered from a PLM are 072

expected to be highly related. Therefore, PLMs can 073

naturally serve as the sources of complementary 074

contextual information for the training of NTMs. 075

Following this general idea, we introduce a new 076

method that distills knowledge from PLMs to help 077

learn NTMs better. The basic idea of our approach 078

is very straightforward and intuitive: Given a PLM 079

(pre-trained and fixed), we expect the topical rep- 080

resentation of a document derived from a to-be- 081

learned NTM to be close to the document’s seman- 082

tic representation derived from the PLM. In this 083
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way, the prior knowledge of the PLM, pre-trained084

on large global corpora, can enrich the contextual085

information of the target corpus for learning NTM.086

To implement this idea, we are inspired by con-087

trastive learning (CL) (Chopra et al., 2005; Robin-088

son et al., 2021; Ma et al., 2021), which is a popu-089

lar and successful self-learning approach originally090

proposed for image feature learning. In CL, the fea-091

ture of an anchor image is expected to be closer to092

its positive samples’ (e.g., the anchor image’s aug-093

mentations) than its negative samples’ (e.g., other094

images) (Saunshi et al., 2019; Tian et al., 2020). In095

our case, we propose a novel contrastive loss for096

training NTMs. Specifically, for an anchor docu-097

ment’s topical representation learned by an NTM,098

we define its positive samples as the semantic rep-099

resentations generated from a PLM and push the100

topical representation close to them. Importantly,101

the proposed contrastive loss serves as an addi-102

tional training objective to the original maximum103

likelihood estimation loss (e.g., ELBO) of existing104

NTMs without changing the model architectures105

of NTMs. That is to say, we propose a general106

plug-and-play technique that is flexible enough to107

improve on many existing NTMs. Our contribu-108

tions are summarized as follows: (1) We propose109

a novel contrastive method that helps learn better110

NTMs by distilling knowledge from pre-trained111

language models, which tackles the issue of insuf-112

ficient information in the target corpus for training113

NTMs. (2) The proposed approach is model agnos-114

tic and can be used to improve an arbitrary NTM.115

(3) Extensive experiments show that our proposed116

model achieves better document classification ac-117

curacy while discovering high-quality topics.118

2 Background119

2.1 Topic modeling and neural topic models120

Suppose that D = {dj} is the corpora including J121

documents and we can represent each document dj122

as a BoW count vector xj ∈ NVt . Here Vt denotes123

the size of the vocabulary in topic modelling and124

xvj is the number of times the v-th word occurs in125

the j-th document. In general, the goal of TM is to126

learn K shared topics {φk}k=1:K from the corpora127

and the representation zj ∈ RK for document j,128

which indicates the document’s topic proportions129

over K topics.130

Most of existing NTMs follow the framework131

of VAEs (Kingma and Welling, 2014). A typi-132

cal NTM consists of an encoder, which maps the133

BoW input x to its topic proportion z, denoted 134

as qθ(z|x) for approximating the posterior p(z|x), 135

and a decoder that generates x conditioned on the 136

topic proportion z, expressed as pψ(x|z), where 137

we omit the subscript j for simplicity. Therefore, 138

one can learn an NTM by maximising the ELBO of 139

the marginal likelihood of BoW vector x in terms 140

of θ, ψ, formulated as 141

LVAE(x, θ, ψ) = Eqθ(z|x)[log(pψ(x|z))]−
KL(qθ(z|x)||p(z)),

(1) 142

where pψ(x|z) denotes the likelihood about the 143

BoW vector x and the second term is the Kullback- 144

Leibler (KL) divergence that regularises qθ(z|x) 145

to be close to its prior p(z). Due to the unusable 146

reparameterization trick in original VAEs for the 147

commonly-used Dirichlet or gamma distributions 148

in general TMs, various configurations of the prior 149

distribution p(z), data distribution pψ(x|z), pos- 150

terior distribution qθ(z|x), as well as different ar- 151

chitectures of the decoder and encoder, have been 152

developed for VAE-based NTM. We refer readers 153

to Zhao et al. (2021a) for more details about NTMs. 154

2.2 Contrastive learning 155

Recent contrastive learning (CL) methods have 156

been successfully applied in learning meaningful 157

representations (van den Oord et al., 2018; Chen 158

et al., 2020b). The main idea behind CL is that the 159

more similar are two data points the closer they live 160

in the latent space (Saunshi et al., 2019). Specif- 161

ically, for an anchor data sample x, one can find 162

pairs of positive (similar) samples (x,x+) and neg- 163

ative (dissimilar) pairs (x,x−). The goal is to learn 164

a function fθ : RV → RK that maps those associ- 165

ated samples (x,x+,x−) to the latent distribution 166

(z, z+, z−). CL typically specifies the noise con- 167

trastive estimation (NCE) objective (Logeswaran 168

and Lee, 2018): 169

max
θ

Ex∈X

[
log

exp (z·z+)
exp (z·z+)+β ·exp (z · z−)

]
,

(2) 170

where β is the strength of the constraint and β = 1 171

yields the usual form of the contrastive objective. 172

3 The proposed model 173

This paper proposes the Contrastive BERT-based 174

framework to improve NTMs (CBTM for short) 175

via distilling knowledge from PLMs, with the help 176

of contrastive learning, whose overview is shown 177
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To be, or not to be, that is 
the question: whether ‘tis 
nobler in the mind ...

PLMEnc

NTMEnc

NTMEnc

Topic Space

pull

push

Topic 
Decoder

Figure 1: An overview of our proposed model. For a given document d, we can treat its BoW vector x as the anchor,
where x-axis denotes the word index in the vocabulary and y-axis is the count value of xv . Then we view the sequential
representation s of document d as the positive sample of anchor x and construct the negative sample, where the blue bars in xneg

denote the perturbed weights of the selected words according to their tf-idf scores. Then, the samples (x,xneg, s) are fed into
modality-specific encoders for inferring latent representation (zNTM ,zNTM-neg,zPLM).

in Fig. 1. Given a document d, an NTM uses an178

encoder qθ(zNTM|x) to embed d’s topical represen-179

tation zNTM ∈ RK (i.e., topic proportion) from180

the BoW data of the document, i.e., x ∈ NVt . We181

denote zNTM = NTMEnc(x). Note that we do182

not specify the implementation of the NTM used183

here and our method is expected to work with an184

arbitrary NTM. As discussed in Section 2.2, we185

consider document d’s topic representation zNTM186

as the anchor and the next key point is how to spec-187

ify the positive and negative samples of the anchor.188

Although extensive study on the selection of pos-189

itive and negative samples has been conducted in190

contrastive learning for image representation learn-191

ing (Chen et al., 2020a,b), it has not been com-192

prehensively investigated for documents or topic193

modelling. In this paper, we propose a novel selec-194

tion strategy.195

Selection of positive samples. For the given196

document d, we can also represent it as a sequence197

of words, denoted as s = {w1, · · · , wN} where198

wn ∈ {1 : Vl} and Vl is the vocabulary size of199

PLMs. The semantic representation of the same200

document d can be obtained by using the CLS to-201

ken from a PLM: h = PLMEnc(s). We are not202

limited to a specific PLM and theoretically any203

PLM that can discover semantic representations of204

documents are applicable in our framework, where205

we employ Sentence BERT (SBERT) (Reimers and206

Gurevych, 2019) without loss of generality.207

Our basic idea is straightforward and intuitive.208

As h is extracted by a PLM, which is trained209

on large general corpora, we can consider that210

h is complementary to the orderless BoW infor-211

mation. To incorporate such knowledge into the212

NTMs, we can push zNTM obtained from our to-be- 213

learned NTM close to h. Usually, zNTM ∈ RK 214

and h ∈ RO live in the different spaces, thus 215

we first project h into a K-dimensional vector 216

by introducing a learnable matrix E ∈ RK×O, 217

expressed as ĥ = Eh. Since zNTM is sampled 218

from qθ(z
NTM|x), we also employ the variational 219

inference network qw(z|ĥ) to consider the uncer- 220

tainty. Here, the parameter w is part of θ, which 221

includes the parameters for mapping x into a K- 222

dimensional vector and those for mapping the K- 223

dimensional vector into parameters of posterior 224

distribution (e.g., mean and variance in Gaussian 225

distribution), where w belongs to the latter. That 226

is to say, we only additionally introduce E as 227

the to-be-learned matrix. We formulate zPLM = 228

NTMEnc(ĥ). In our case, for one document d, it is 229

natural to use the zPLM from the PLM as the posi- 230

tive sample of the topical representation zNTM from 231

the NTM, as both of them capture the semantics of 232

a same document. 233

Selection of negative samples. Here, we follow 234

a general principle of selecting negative samples 235

for our framework: A document’s topical represen- 236

tation will change if the important words in the 237

document are changed. Recalling that we have 238

zNTM=NTMEnc(x), we can generate a new BoW 239

data xneg by perturbing the counts of the important 240

words in x and have zNTM-neg = NTMEnc(xneg). 241

It is natural to assume that zNTM-neg should be dif- 242

ferent from zNTM and we can use zNTM-neg as the 243

negative sample of zNTM. To generate xneg from x, 244

we take the following steps: 1) Following (Nguyen 245

and Luu, 2021), we sort the words in document d by 246

their tf-idf scores, and select top M tokens possess- 247
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ing the highest tf-idf scores {w1, · · · , wM}. It is248

reasonable to assume that these words mainly con-249

tribute to the topic of the document, i.e., they are250

relatively more important. 2) We copy x to xneg,251

i.e., xneg = x. 3) With zNTM = NTMEncθ(x),252

we feed it into the NTM decoder to get the re-253

constructed weights of x, denoted as xrecon-weight,254

which is a normalized probability vector. We ob-255

tain the predicted BoW count vector, xrecon by256

xrecon = xrecon-weight∑Vt
v=1 s. 4) Finally, we per-257

mute the weight of the selected top-M word in xneg258

by xneg
m = xrecon

m for all m ∈ {1, · · · ,M}, where259

M is a hyperparameter of our framework.260

Training NTMs by distilling from PLMs with261

contrastive loss. With the specification of the posi-262

tive and negative samples, we introduce the follow-263

ing contrastive loss for training NTMs with PLMs:264

265

LCL(θ,E) =

log
exp

(
zNTM ·zPLM

)
exp (zNTM ·zPLM)+exp (zNTM ·zNTM-neg)

,

(3)266

where LCL(θ,E) is parameterized by θ and E, θ267

is the parameter of the NTM encoder and E is the268

matrix for embedding the output of PLM to the269

K-dimensional vector.270

Given a specific NTM, the proposed contrastive271

loss serves as an additional loss to the one used272

to train the NTM originally. Therefore, we aim to273

maximize the final objective, expressed as274

L = LNTM(θ, ψ) + λLCL(θ,E), (4)275

where ψ is the parameter of the decoder of the276

NTM and λ > 0 is a hyperparameter that con-277

trols the balance between the two losses. Note that278

for most of the popular NTMs, LNTM(θ, ψ) is the279

ELBO in (1), as introduced in Section 2.1.280

As the introduced contrastive loss is independent281

to the original NTM loss and it only uses the output282

of the NTM encoder, our method can be used to im-283

prove an arbitrary NTM. That is to say our method284

is model agnostic. This will be comprehensively285

demonstrated in the experiments.286

4 Related work287

4.1 NTMs with pre-trained language models288

The most closet work in NTMs to ours is utiliz-289

ing pre-trained Transformer-based language mod-290

els to improve the NTMs. For example, Bianchi291

et al. (2021) introduced a Combined Topic Model292

(CombinedTM) to incorporate the pre-trained doc- 293

ument contextualized representations from SBERT 294

Reimers and Gurevych (2019) into Product-of- 295

Experts LDA (ProdLDA) of Srivastava and Sutton 296

(2017) to improve the topic coherence. To improve 297

the document-level understanding, Chaudhary et al. 298

(2020) proposed TopicBERT by combining an 299

NTM with a fine-tuned BERT, which concatenates 300

the topic distribution and the learned BERT embed- 301

ding of a document as the features for document 302

classification. Hoyle et al. (2020) combined the ad- 303

vantages of these two approaches—the rich contex- 304

tual language knowledge in pre-trained BERT and 305

the intelligibility of NTMs—using knowledge dis- 306

tillation, which is denoted as BERT-based Autoen- 307

coder Teacher (BAT). The authors instantiated BAT 308

to the two existing NTMs, including Scholar (Card 309

et al., 2018b) (i.e. BAT+Scholar) and Wasserstein- 310

LDA (Nan et al., 2019) (i.e. BAT+W-LDA). 311

4.2 Contrastive learning for texts 312

Originally proposed for images, contrastive learn- 313

ing also start to gain popularity in natural language 314

processing tasks (Logeswaran and Lee, 2018; Xu 315

et al., 2021). However, how contrastive learning 316

helps in (neural) topic modeling has not been care- 317

fully studied. The most related work to ours is Con- 318

trastive Neural Topic Model (CNTM) 1 (Nguyen 319

and Luu, 2021). Inspired by human behavior when 320

comparing different documents, CNTM proposed 321

a sampling strategy to construct positive and nega- 322

tive sample (i.e., BoW) and additionally introduced 323

the contrastive objective to improve the NTMs. 324

Although ours is alos on contrastive learning for 325

NTMs, we have a different propose that is to distill 326

knowledge from PLMs to help learn better NTMs. 327

This propose leads to a different selection of the 328

positive samples, which come from PLMs. For 329

using external semantic knowledge extracted by 330

PLMs, NTMs can be guided to better infer topi- 331

cal representation of documents as well as better 332

topics. 333

5 Experiments 334

In this section, we study the performance of the 335

proposed model and compare it to related NTMs 336

on five benchmark textual data. As a desired TM 337

should discover both accurate topic proportions and 338

coherent topics, we consider topic interpretability 339

1We are unable to compare with CNTM (Nguyen and Luu,
2021) as their code is not publicly available.
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and document classification, as described below.340

5.1 Corpora341

We run our experiments on five readily avail-342

able datasets, which include regular and short343

documents and vary in scales, described as fol-344

lows: (1) 20NG consists of newsgroups including345

18,846 articles evenly categorized into 20 differ-346

ent categories. The number of training samples is347

11,314 and testing 7,532. (2) Ohsumed is a set348

of 13,929 unique cardiovascular diseases abstracts349

from MEDLINE, an on-line medical information350

database. The classification scheme consists of the351

23 Medical Subject Headings (MeSH) categories352

of cardiovascular diseases group. After removing353

documents belonging to multiple categories, we ob-354

tain 3,357 documents in the training set and 4,043355

documents in the test set. (3) R8 and R52 are two356

subsets of the Reuters 21,578 dataset. R8 contains357

5,485 training and 2,189 test documents from 8358

different classes. R52 consists of 6,532 training359

and 2,568 test documents and each of them is as-360

sociated with 52 different labels. (4) AG News361

contains 496,835 categorized news articles from362

more than 2000 news sources. Following (Zhang363

et al., 2015), we choose the 4 largest classes from364

this corpus, using only the description fields. Each365

class contains 30,000 training samples and 1,900366

testing samples, leading to 120,000 training sam-367

ples and 7,600 testing samples.368

For all datasets, we first clean and tokenize text369

following the preprocessing steps in (Yao et al.,370

2019). For the topic model, we additionally ex-371

clude standard stop words and low frequency words372

appearing less than 5 times. For 20NG and AG, we373

keep the 20,000 most frequent terms as the vocabu-374

lary. The statistics of the preprocessed datasets are375

summarized in Table 1.376

Dataset Jall Jtrain Jtest C Vt N

20NG 18,864 11,314 7,532 20 20,000 142.75
Ohsumed 7,400 3,357 4,043 23 14,157 135,82
R8 7,674 5,485 2,189 8 7,688 65.72
R52 9,100 6,532 2,568 52 8,892 69.82
AG 127,600 120,000 7,600 4 20,000 19.74

Table 1: Summary statistics of the datasets, where J denotes
the number of documents, C the number of classes, Vt the
vocabulary size of topic modelling and N the average length
of documents in the corpus, respectively.

5.2 Baselines377

To demonstrate the effectiveness of introducing378

cross-modality positive samples and PLM in im-379

proving the existing NTMs based on the contrastive 380

loss, we consider several baselines for a fair com- 381

parison, including representative NTMs and NTMs 382

with PLMs, described as follows: 1) ProdLDA 383

(Srivastava and Sutton, 2017) presents the effec- 384

tive auto-encoder variational Bayes (AEVB) based 385

inference algorithm for LDA, and uses logistic nor- 386

mal distribution for the Dirichlet prior. 2) ETM 387

(Dieng et al., 2020), a VAE-based NTM, which 388

assumes that words and topics live in the same em- 389

bedding space, and draws each word from a categor- 390

ical distribution whose natural parameter is calcu- 391

lated by the inner product between the embeddings 392

of vocabulary and an embedding of its assigned 393

topic. 3) Sawtooth (Duan et al., 2021), a ETM- 394

based hierarchical NTM, while, employs Poisson 395

and Gamma distributions to model the BoW vec- 396

tor and latent topic proportion, respectively. 4) 397

DVAE (Burkhardt and Kramer, 2019), a VAE- 398

based NTM with the Dirichlet prior, introduces 399

rejection sampling variational inference for its repa- 400

rameterization. 5) SCHOLAR+BAT (Hoyle et al., 401

2020) uses DistillBERT as the teacher model and 402

trains SCHOLAR in the knowledge distillation 403

framework. Note that SCHOLAR is equivalent 404

to the ProdLDA without metadata and sparsity. 6) 405

CombinedTM (Bianchi et al., 2021), a variant of 406

ProdLDA that combines the BoW with the con- 407

textual document embeddings extracted from the 408

pre-trained SBERT as input to produce more mean- 409

ingful topics. 410

5.3 Settings 411

For all experiments, we set the number of top- 412

ics K=100, the dimension of word and topic em- 413

beddings of ETM-based models d=100, and the 414

batch size as 200. Below we select the recent 415

Sawtooth (Duan et al., 2021) as the base NTM 416

in our framework (CBTM-Saw) when comparing it 417

with other baselines and also consider other NTMs 418

in Section 5.6 for a comprehensively evaluations. 419

We initialize word embeddings and topic embed- 420

dings from the Gaussian distribution N (0, 0.02). 421

For topic encoder qθ(z|x), we employ an infer- 422

ence network stacked with a 3-layer Vt-256-100 423

fully-connected layer (Vt is the vocabulary size 424

in topic modelling), followed by a softplus layer. 425

Our framework is flexible for the choice of pre- 426

trained language models and we here adopt the 427

SBERT (Reimers and Gurevych, 2019), whose 428

maximum length is 256 and output h ∈ RO is 429
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a 768-dimensional vector. Here we introduce the430

embedding matrix E ∈ R768×100 to project h into431

the 100-dimensional vector ĥ. We set λ = 1 and432

M = 15 for all experiments. We set the learning433

rate as 0.001 and dropout rate as 0.1. We train the434

proposed model for a maximum of 500 epochs us-435

ing Adam optimizer (Kingma and Ba, 2015). For436

baseline models, we used default parameter set-437

tings as in their original papers or implementations.438

All experiments are performed on an Nvidia RTX439

2080-Ti GPU and implemented with PyTorch.440

5.4 Topic interpretability441

Dataset Method TD ↑ TC↑ TS ↑

20NG

ProdLDA 0.833 -0.020 1.642
ETM 0.238 -0.027 3.067

Sawtooth 0.553 0.012 4.183
DVAE 0.431 -0.024 2.147

SCHOLAR+BAT 0.666 -0.008 3.143
CombinedTM 0.741 -0.019 1.502

CBTM-Saw(Ours) 0.639 0.024 4.931

R8

ProdLDA 0.698 -0.043 1.927
ETM 0.137 -0.028 3.062

Sawtooth 0.549 -0.026 7.593
DVAE 0.154 -0.037 4.752

SCHOLAR+BAT 0.448 -0.024 3.852
CombinedTM 0.632 -0.021 1.785

CBTM-Saw(Ours) 0.575 -0.018 8.242

R52

ProdLDA 0.627 -0.024 1.978
ETM 0.180 -0.032 2.630

Sawtooth 0.534 -0.011 6.985
DVAE 0.152 -0.024 4.824

SCHOLAR+BAT 0.553 -0.018 3.287
CombinedTM 0.630 -0.012 1.784

CBTM-Saw(Ours) 0.497 -0.003 7.322

Ohsumed

ProdLDA 0.785 -0.018 1.304
ETM 0.226 0.038 2.71.

Sawtooth 0.642 0.043 7.005
DVAE 0.364 0.024 2.041

SCHOLAR+BAT 0.706 0.043 3.036
CombinedTM 0.711 0.040 1.267

CBTM-Saw(Ours) 0.696 0.052 6.992

AG

ProdLDA 0.678 0.009 1.994
ETM 0.306 0.125 2.951

Sawtooth 0.527 0.207 7.752
DVAE 0.519 0.218 0.647

SCHOLAR+BAT 0.657 0.040 3.205
CombinedTM 0.668 0.048 2.466

CBTM-Saw(Ours) 0.706 0.050 7.803

Table 2: Topic quality over top 60% highest NPMI topics,
where the best results are highlighted in boldface.

We comprehensively measure topic interpretabil-442

ity by blending three metrics: topic coherence443

(TC), topic diversity (TD) and topic specificity444

(TS). Given a reference corpus, TC measures445

the semantic relevance in the most significant446

words (top 10 words in our case) of a topic,447

which is computed by the Normalized Point- 448

wise Mutual Information (NPMI) over the se- 449

lected words of each topic (Dieng et al., 2020): 450

f(wi, wj) =
[
log p(wi,wj)

p(wi)p(wj)

]
/ [−logp(wi, wj)] , 451

where p(wi, wj) is the probability of words wi and 452

wj co-occurring in a document and p(wi) is the 453

marginal probability of word wi, and both of them 454

are estimated with empirical counts. Those mod- 455

els owing higher topic coherence are more inter- 456

pretable topic models. As is implied by the name, 457

TD measures how diverse the learned topics are. 458

We define TD with the percentage of the unique 459

word in the top 25 words of all topics (Zhao et al., 460

2020). TD that closes to 0 indicates redundant 461

topics; that closes to 1 means more diverse topics. 462

Besides TC and TD, we also report TS, which is 463

used to measure how far a topic p(φk|k) is from 464

the overall distribution of words in the corpus p(w). 465

We calculate distance using KL divergence (Lee 466

et al., 2021): TS = 1
K

∑K
k=1 KL(p(φk|k)||p(w)). 467

A larger distance means the distilled topics are 468

more distinct; while a smaller distance suggests 469

that the topics are more similar to the corpus distri- 470

bution (overly general). 471

Since not all the learned topics are interpretable 472

(Yang et al., 2015), we choose 60% topics with 473

the highest NPMI, and report their average scores 474

at Table 2. For the results, we have the following 475

observations. Firstly, we can observe that topics 476

discovered by our proposed model achieve the high- 477

est topic coherence (TC) across all corpora, while 478

maintaining a competitive diversity (TD) and speci- 479

ficity (TS). This is because the PLM pre-trained 480

from large general corpora, provides rich syntax 481

and semantic information which can be incorpo- 482

rated as the complementary knowledge of the NTM 483

with the contrastive loss. It is beneficial for infer- 484

ring document’s true topics in the scenarios where 485

the BoW information is insufficient. Secondly, in 486

terms of ProdLDA, while its topic diversity outper- 487

forms ours on a few datasets, it achieves low topic 488

coherence and specificity, indicating its topics are 489

diverse but less interpretable. Thirdly, compared 490

to traditional NTMs, BERT-based NTMs includ- 491

ing SCHOLAR+BAT and CombinedTM, usually 492

produce more coherent and diverse topics. This re- 493

sult is in line with the previous study (Hoyle et al., 494

2020; Bianchi et al., 2021) that topic model itself 495

can benefit from the general language knowledge of 496

the pre-trained BERT. Among all the BERT-based 497

NTMs, in general, our model performs the best. 498
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Model 20NG R8 R52 Ohsumed AG
ProdLDA 58.42 ±0.24 89.26 ±0.17 80.14 ±0.09 41.85 ±0.24 79.96 ±0.20

DVAE 57.47 ±0.18 88.25 ±0.22 78.36 ±0.11 35.98 ±0.20 77.25 ±0.16
ETM 61.75 ±0.22 90.86 ±0.03 80.61 ±0.10 34.13 ±0.12 82.07 ±0.10

Sawtooth 64.65 ±0.21 92.60 ±0.11 80.92 ±0.05 42.51 ±0.09 83.04 ±0.09
SCHOLAR+BAT 66.03 ±0.08 92.98 ±0.24 82.17 ±0.08 44.20 ±0.10 85.06 ±0.19

CombinedTM 65.91±0.91 93.10±0.36 83.75 ±0.51 44.22±0.64 84.25 ±0.27
CBTM-Saw(Ours) 66.46 ±0.10 93.93 ±0.07 84.35 ±0.07 45.82 ±0.13 86.25 ±0.11

Table 3: Test accuracy of different models on unsupervised document classification task. We run all methods 5 times and report
the mean and standard deviation. The best scores of each dataset are highlighted in boldface.

5.5 Document classification499

Considering doc-topic proportions can be viewed500

as unsupervised document representations, we per-501

form document classification task and report ac-502

curacy (ACC) to evaluate the quality of such rep-503

resentation. Specifically, once we get the trained504

encoder network qθ(z|x), we feed the BoW vec-505

tors of testing documents into the encoder to collect506

the topic proportions. Then we apply logistic re-507

gression, which is trained on the proportions of508

training documents, to measure the classification509

performance of proportions of testing documents.510

Table. 3 summarizes the test accuracy of differ-511

ent NTMs in this task. As we can see, our pro-512

posed model obtains better classification perfor-513

mance than their baselines on all corpora, which514

confirms the effectiveness of our innovation of com-515

bining pre-trained language model and NTM in516

improving classification performance. Especially,517

even though SCHOLAR+BAT and CombinedTM518

incorporate the external knowledge learned by pre-519

trained language models into NTMs, both of them520

are inferior to our model. The main reason might521

be that we use the external information differently.522

In other words, moving beyond SCHOLAR+BAT523

and CombinedTM that incorporate the external lan-524

guage knowledge either through input or output in525

NTM, we build a general contrastive framework for526

NTM. It not only pulls together the positive pairs527

but also pushes away the negative samples, with the528

former borrowing the cross-modal language knowl-529

edge distilled from SBERT, and the latter bringing530

clearer classification boundaries, resulting in the531

SOTA accuracy.532

5.6 Improving other NTMs533
In previous experiments, we study the effectiveness534

of our proposed framework, where we adopt Saw-535

tooth as the NTM. Since our framework is agnostic536

about the choice of the NTM, we in this experiment537

use other popular NTMs as the backbone of ours538

Dataset Method TD TC TS ACC

20NG

ProdLDA 0.833 -0.020 1.64 58.42
Ours-ProdLDA 0.860 -0.032 1.67 66.20

ETM 0.238 -0.027 3.067 61.75
Ours-ETM 0.263 -0.004 3.168 66.79

R8

ProdLDA 0.698 -0.043 1.92 89.26
Ours-ProdLDA 0.723 -0.037 1.95 93.98

ETM 0.137 -0.028 3.06 90.86
Ours-ETM 0.149 -0.026 3.12 93.42

Ohsumed

ProdLDA 0.785 -0.018 1.30 41.85
Ours-ProdLDA 0.781 -0.009 1.32 44.78

ETM 0.226 0.038 2.71 34.13
Ours-ETM 0.239 0.053 2.78 44.00

Table 4: Performance of different models on 20NG, R8 and
Ohsumed, respectively.

including ProdLDA (Srivastava and Sutton, 2017) 539

and ETM (Dieng et al., 2020). Table. 4 shows the 540

performance (topic quality and ACC) comparison 541

between original NTMs and their improved vari- 542

ants in our framework on 20NG, R8, and Ohsumed. 543

The performance of NTMs on three datasets has an 544

improvement in most cases when combining our 545

proposed contrastive framework, especially for the 546

ETM. Although there are a slight decrease in TC 547

on 20NG and TD on Ohsumed for ProdLDA when 548

using our framework, our proposed models still 549

achieve a better topic specificity and classification 550

results. This observation validates the effective- 551

ness of our proposed contrastive framework for 552

enhancing existing NTMs. This suggests that our 553

proposed plug-and-play framework can be flexibly 554

used to enhance existing NTMs for topic modelling, 555

without changing or re-designing the model archi- 556

tectures of NTMs on purpose, providing a simple 557

but effective way for absorbing external semantic 558

knowledge from PLMs. 559

5.7 Ablation study and qualitative analysis 560

Number M of permuted tokens. To evaluate the 561

impact of number M of permuted tokens in neg- 562

ative sampling, we report the performance of our 563

proposed model on 20NG in Fig. 2 (a), where M is 564
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Methods NPMI Top-10 words

Sawtooth

0.114 windows, software, pc, system, modem, dos, use, mac, unix, os
-0.001 team, game, ca, season, play, hockey, roger, player, would, players
-0.109 bike, dod, ride, motorcycle, riding, dog, bikes, helmet, bmw, nec

CombinedTM

0.003 windows, nt, microsoft, font, apps, os, type, fonts, seas, clarku
-0.034 game, cup, go, series, goalie, playoffs, playoff, cmu, champs, beat
-0.123 bike, riding, ride, bnr, helmet, bikes, mike, adobe, countersteering, hydro

CBTM-Saw(Ours)

0.128 mac, modem, port, apple, serial, card, sound, bit, pc, software
0.024 baseball, game, edu, team, cubs, games, phillies, season, mets, braves
0.006 bike, dod, ride, riding, motorcycle, bmw, bikes, helmet, motorcycles, behanna

Table 5: Learned topics of Sawtooth, CombinedTM, and CBTM-Saw(Ours) on 20NG dataset, where we choose three topics
related to “software”, “game” and “bike” query words.

ranging from 5 to 25. Besides, we further train two565

variants of CBTN-Saw (red lines) with the different566

schemes of the selection of positive and negative567

samples: without positive samples (green lines)568

and without negative samples (blue lines). We can569

find that 1) M can be selected to balance the docu-570

ment classification and topic quality. With tuning571

carefully for each dataset, one may get more better572

results than those reported in our experiments; 2)573

By combining the positive and negative samples574

together with contrastive loss, CBTM achieves bet-575

ter results than using either of them; 3) Compared576

with the negative samples, the positive samples gen-577

erated from SBERT lead to more improvements,578

which is consistent with our motivation.579

（a） （b）

Figure 2: Shown in (a) and (b) are the ablation studies
on 20NG about the number M of negative samples and the
trade-off hyperparameter λ. In (a), CBTM-Saw and its two
variants CBTM-Saw without positive samples, CBTM-Saw
without negative samples are denoted as the red, green, and
blue, respectively.

Trade-off hyperparameter λ. As shown in Fig.580

2 (b), we further analyze the effect of trade-off581

hyperparameter λ which controls the weight of582

information incorporated from SBERT. Notably,583

we aim to explore the sensitiveness of our mod-584

els for hyperparameter λ rather than exhaustively585

tuning this hyperparameter λ. We find that with 586

the help of SBERT, the quality of the learned top- 587

ics from CBTM have a greater improvement than 588

only trained by NTM itself. We attribute this to 589

the knowledge introduced from the pre-trained lan- 590

guage model. Besides, the classification perfor- 591

mance has a large accept range for λ, which means 592

that CBTM is robust to document representation. 593

Visualization of learned topics. To investigate 594

the effectiveness of our proposed model qualita- 595

tively, we visualize three topics related to query 596

words including “software”, “game” and “bike”, 597

which are extracted by Sawtooth, CombinedTM 598

and our CBTM-Saw. For each topic, we select 599

the top-10 words and report its NPMI at Table. 5. 600

Compared with the Sawtooth and CombinedTM, 601

the topics learned by our proposed CBTM-Saw are 602

more coherent and explainable. This suggests that 603

our proposed framework can enhance the learn- 604

ing of meaningful topics for assimilating document 605

embeddings from PLM with contrastive loss. 606

6 Conclusions 607

We proposed a Contrastive learning framework 608

called CBTM for neural topic models, which pro- 609

vides a straightforward but effective way for intro- 610

ducing semantic language pattern from pre-trained 611

language models. For a document, CBTM views 612

the document embeddings generated from pre- 613

trained SBERT as the positive sampels, and per- 614

mutes the weights of the key words as the negative 615

samples. The additional contrastive loss pushes the 616

latent distribution encoded from NTMs closer to 617

the contextual representation distilled from BERT, 618

while pulls away from the negative samples, result- 619

ing in more informative and distinguished latent 620

distributions. Our model has shown appealing prop- 621

erties that are able to improve many existing NTMs 622

without changing their model architectures. 623
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