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Abstract

Pose estimation is an omnipresent problem in medical image analysis. Deep
learning methods often parameterise a pose with a representation that separates
rotation and translation, as commonly available frameworks do not provide means
to calculate loss on a manifold. In this paper, we propose a general Riemannian
formulation of the pose estimation problem and train CNNs directly on SE(3)
equipped with a left-invariant Riemannian metric. At each training step; the loss is
calculated as the squared Riemannian geodesic distance, with the gradients required
for back-propagation calculated with respect to the predicted pose p̂ on the tangent
space of the manifold SE(3) at p̂. We thoroughly evaluate the effectiveness of
our loss function by comparing its performance with popular and most commonly
used existing methods, and show that it can improve registration accuracy for
image-based 2D to 3D registration.

1 Introduction

Intensity-based registration and landmark matching are the de-facto standards to align data from
multiple image sources into a common co-ordinate system. Applications that require intensity-based
registration include e.g., atlas-based segmentation, motion-compensation, tracking, or clinical analysis
of the data visualised in a standard co-ordinate system. A pose, i.e. a rigid transformation in 3D, is
an element of the Lie group SE(3), the Special Euclidean group in 3D, and has two components; a
rotation component of group SO(3) and a translation component of R3. SE(3) has the following
convenient matrix representation (called the homogeneous representation):

SE(3) =

{
X | X =

[
R t
0 1

]
, t ∈ R3, R ∈ SO(3)

}
(1)

In usual implementations of SE(3), the rotation can be parameterised in any form as long as the
SO(3) group structure is implicitly imposed. The rotation can be stored as Euler angles, as quaternion,
as axis-angle or as rotation matrix. This needs to be considered carefully, especially when designing
deep learning applications, as the numerical properties of each parameterisation can hamper efficacy.

Popular deep learning frameworks available today, such as Caffe, TensorFlow, Theano, PyTorch, do
not provide the means to regress on SE(3), as the common loss metrics provided are cross-entropy
for probabilities or a p-norms for distances. In literature, the SE(3) pose has being parameterised in
many different forms, with most methods utilising the L2-norm as the loss metric. E.g., Kendall et
al. [4] uses the L2-norm to regress parameters on the Lie algebra se(3) directly, with a β parameter
to weight the contribution between rotation and translation. Methods that do not couple together the
rotation and translation parameters neglect the intrinsic structure of SE(3) = SO(3)nR3, which
can lead to unpredictable behaviours. As for the non-linear structure of SO(3), this can be observed
visually with quaternions, e.g., the Euclidean distance of two quaternions can be small, despite the
rotation being large. Hence, it is desirable to have a loss function that respects the structure and
non-linearity of SE(3) as a Lie group, and thus as a manifold.
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2 Method
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Figure 1: CNN architecture using a Rieman-
nian geodesic distance as the loss on SE(3).

The core of our method is to implement a new loss
layer: we define the loss as the squared geodesic
distance on SE(3) equipped with a left-invariant Rie-
mannian metric, Figure 1. The network architecture
is therefore structure agnostic, as long as the regressor
head outputs a vector of six values.

Left-invariant Riemannian metric on SE(3): A
Riemannian metric on SE(3) is a smooth collection
of positive definite inner products on each tangent

space of SE(3). Then, SE(3) becomes a Riemannian manifold. With a left-invariant metric, it is
enough to define an inner product on the tangent space at the identity of SE(3), and then “propagate"
it: the metric is s.t. ∀u, v ∈ Tp1

SE(3) and ∀p1, p2 ∈ SE(3): < DLp1
(p2)u,DLp1

(p2)v >
|Lp1

p2
=< u, v > |p2

where Lp1
is the left translation by p1: Lp1

(p2) = p1 ◦ p2, and DLp1
(p2) its

differential at p2. Defining an inner product Z at p2 = identity enables us to get a metric Zp1
at the

tangent space of any pose p1 of SE(3) [6], and thus to compute inner products and norms of tangent
vectors at p1.

Loss and gradient: We use the loss function: loss(p, p̂) = distZSE(3)(p, p̂)
2 =

∥∥LogZp̂ (p)
∥∥2
Zp̂

where distZSE(3) is the geodesic distance and Logp̂ is the Riemannian logarithm at p̂ i.e. a tangent
vector at p̂. We use a left-invariant Riemannian metric, thus: loss(p, p̂) = ||DLp̂−1 .LogZ

p̂ (p)||2Z ,
where we now have a tangent vector at the identity and we can use the inner product Z to compute
its squared norm. If we take Z being the canonical inner product at identity, this is the L2-norm but
on the tangent vector transported from p̂ to identity using the differential DLp̂−1 . The backward
gradient corresponding to the loss seen as a function of p̂ is∇p̂loss(p, p̂) = −2 ·LogZ

p̂ (p) [7] which
is a tangent vector at p̂.

Implementation: The inputs to the loss layer are the poses p and p̂ for ground truth and prediction
respectively. We represent a pose with geomstats implementation [5] i.e. as the Riemannian
Logarithm of canonical left-invariant metric on SE(3) s.t. p = {r, t} = {rx, ry, rz, tx, ty, tz} ∈ R6.
With this parameterisation, the rotation r is in axis-angle parameterisation, the inner product Z is
a 6x6 positive definite matrix and the differential DLp̂ of the left translation is the 6x6 jacobian

matrix: Jp̂ =

(
∂Lp̂

r

∂r
∂Lp̂

r

∂t
∂Lp̂

t

∂r
∂Lp̂

t

∂t

)
. We denote vt = LogZ

p̂ (p) which is a tangent vector at p̂ in this

parameterisation. The loss is calculated by loss(p, p̂) = vTt ∗ JT
p̂−1 ∗ Z ∗ Jp̂−1 ∗ vt where ∗ is the

matrix multiplication and the Riemannian logarithm vt is given by geomstats. The gradient is
calculated by: ∇p̂loss(p, p̂) = −2 ∗ JT

p̂−1 ∗ Z ∗ Jp̂−1 ∗ vt.

3 Experiments and Results

We evaluate our novel loss function on two existing datasets: (Exp1) the common C-Arm X-Ray to
Computed Tomography (CT) alignment problem with data from [2]. (Exp2), the pose estimation
dataset for motion compensation in fetal Magnetic Resonance Imaging (MRI) from [1]. In each
experiment, we benchmark existing SE(3) parameterisation strategies with the respective loss
function used. PoseNet: direct regression of parameters on the Lie algebra se(3) using L2-norms.
Anchor Points: a re-parameterisation of SE(3) in Euclidean space, where three statically defined
points in 3D space defines a plane. Each Anchor Point is regressed independently using the L2-norm.
Finally, our SE(3) loss function, i.e., the geodesic distance on the Riemannian manifold.

Exp1: It can be seen that the average error for Euler parameters and translation parameters (for both
healthy and pathological patients) are similar to each other, and shown insignificant by Student’s t-test.
However, there is a noticeable trend in average geodesic distance errors. Student’s t-test showed
significant difference between SE(3) loss compared to PoseNet and Anchor Points for both datasets
(marked by *). This shows that the geodesic metric is able to quantify properties that the metric
expressed in Euler-translation parameters cannot.
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Table 1: Mean Error of Loss Functions on DRR (Digitally Reconstructed Radiographs)
Rx Ry Rz tx ty tz G.D.

PoseNet 7.960 3.136 7.547 62.650 57.315 45.852 15201.845
Anchor Points 7.274 2.511 7.059 59.292 54.889 40.576 15115.858

SE(3) 8.243 3.697 7.924 58.647 55.477 44.189 14170.722*
Healthy Patient Dataset

Rx Ry Rz tx ty tz G.D.

PoseNet 10.653 5.788 10.760 69.107 72.238 57.726 23495.708
Anchor Points 8.540 4.060 8.553 65.521 68.543 54.133 21725.921

SE(3) 10.511 6.789 11.913 62.588 68.747 54.110 19624.246*
Pathological Patient Dataset

Exp2: In this experiment, we replicate the experiment and evaluation method from [1]. We evaluated
our loss regressor for 2D/3D registration used during motion compensation of fetal MRI data in
canonical organ space.

Table 2: Mean Error of Loss Functions on Fetal Brain Images
CC MSE PSNR SSIM G.D.

PoseNet 0.8199 1046.4 18.6509 0.5448 18.1708
Anchor Points 0.8378 935.0 19.3564 0.5845 15.7504

SE(3) 0.8732* 724.9713* 20.7484* 0.6470* 10.0836*

Our SE(3) loss function shows drastic improvement in all image similarity metrics. This is confirmed
by Student’s t-test which shows significant difference, and is crucial for Slice-to-Volume applications
as the metric for slice alignment is derived from the metrics used above [3].

Discussion and Conclusion A pose is a combination of rotation and translation, therefore it seems
reasonable that a CNN predicting a pose should use a metric that accounts for both of them simulta-
neously. However, one should compare metrics with a target application. Metrics are perceptually a
method of measurement with its own set of rules, e.g., imperial vs. metric system for quantifying
distances. Choosing a metric for a target application is not always straight forward and often a
question of required precision, e.g., one would not measure the diameter of a pinhead with a meter
rule, nor measure distance between cities with a caliper.

We have shown that our loss function, using a Riemannian geodesic distance on SE(3) is better suited
for medical registration tasks as shown in both experiments. Exp1 shows each test case yielding no
significant difference on Euler and translation parameters, with significant difference on geodesic
parameters. This suggests that Euler-translation parameters separately are not able to fully quantify
the properties of SE(3). In Exp2, our loss function was able to significantly improve the image
similarity metrics, as used by Slice-to-Volume motion compensation algorithms.

References
[1] Hou, B., et al.: 3D Reconstruction in Canonical Co-ordinate Space from Arbitrarily Oriented 2D Images.

IEEE Trans. Med. Imaging PP(99), 1–1 (2018)

[2] Hou, B., et al.: Predicting slice-to-volume transformation in presence of arbitrary subject motion. In:
MICCAI’17. pp. 296–304 (2017)

[3] Kainz, B., et al.: Fast Volume Reconstruction from Motion Corrupted Stacks of 2D Slices. IEEE Trans. Med.
Imag. 34(9), 1901–13 (2015)

[4] Kendall, A., et al.: Posenet: A convolutional network for real-time 6-DOF camera relocalization. In: ICCV.
pp. 2938–2946 (2015)

[5] Miolane, N.: Geomstats: Computations and statistics on manifolds with geometric structures. (Feb 2018),
https://github.com/ninamiolane/geomstats

[6] Miolane, N., Pennec, X.: Computing Bi-Invariant Pseudo-Metrics on Lie Groups for Consistent Statistics.
Entropy 17(4), 1850–1881 (Apr 2015)

[7] Pennec, X.: Probabilities and statistics on riemannian manifolds: Basic tools for geometric measurements.
In: NSIP. pp. 194–198. Citeseer (1999)

3

https://github.com/ninamiolane/geomstats

	Introduction
	Method
	Experiments and Results

