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ABSTRACT

Variance reduction methods such as SVRG (Johnson & Zhang, 2013) and Spi-
derBoost (Wang et al., 2018) use a mixture of large and small batch gradients
to reduce the variance of stochastic gradients. Compared to SGD (Robbins &
Monro, 1951), these methods require at least double the number of operations per
update to model parameters. To reduce the computational cost of these methods,
we introduce a new sparsity operator: The random-top-k operator. Our opera-
tor reduces computational complexity by estimating gradient sparsity exhibited
in a variety of applications by combining the top-k operator (Stich et al., 2018;
Aji & Heafield, 2017) and the randomized coordinate descent operator. With this
operator, large batch gradients offer an extra benefit beyond variance reduction:
A reliable estimate of gradient sparsity. Theoretically, our algorithm is at least
as good as the best algorithm (SpiderBoost), and further excels in performance
whenever the random-top-k operator captures gradient sparsity. Empirically, our
algorithm consistently outperforms SpiderBoost using various models on various
tasks including image classification, natural language processing, and sparse ma-
trix factorization. We also provide empirical evidence to support the intuition
behind our algorithm via a simple gradient entropy computation, which serves to
quantify gradient sparsity at every iteration.

1 INTRODUCTION

Optimization tools for machine learning applications seek to minimize the finite sum objective

min
x∈Rd

f(x) ,
1

n

n∑
i=1

fi(x), (1)

where x is a vector of parameters, and fi : Rd → R is the loss associated with sample i. Batch
SGD serves as the prototype for modern stochastic gradient methods. It updates the iterate x with
x− η∇fI(x), where η is the learning rate and∇fI(x) is the batch stochastic gradient, i.e.

∇fI(x) =
1

|I|
∑
i∈I
∇fi(x).

The batch size |I| in batch SGD directly impacts the stochastic variance and gradient query com-
plexity of each iteration of the update rule.

In recent years, variance reduction techniques have been proposed by carefully blending large and
small batch gradients (e.g. Roux et al., 2012; Johnson & Zhang, 2013; Defazio et al., 2014; Xiao &
Zhang, 2014; Allen-Zhu & Yuan, 2016; Allen-Zhu & Hazan, 2016; Reddi et al., 2016a;b; Allen-Zhu,
2017; Lei & Jordan, 2017; Lei et al., 2017; Allen-Zhu, 2018b; Fang et al., 2018; Zhou et al., 2018;
Wang et al., 2018; Pham et al., 2019; Nguyen et al., 2019; Lei & Jordan, 2019). They are alterna-
tives to batch SGD and are provably better than SGD in various settings. While these methods allow
for greater learning rates than batch SGD and have appealing theoretical guarantees, they require a
per-iteration query complexity which is more than double than that of batch SGD. Defazio (2019)
questions the utility of variance reduction techniques in modern machine learning problems, empir-
ically identifying query complexity as one issue. In this paper, we show that gradient sparsity (Aji
& Heafield, 2017) can be used to significantly reduce the query complexity of variance reduction
methods. Our work is motivated by the observation that gradients tend to be ”sparse,” having only
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a small fraction of large coordinates. Specifically, if the indices of large gradient coordinates (mea-
sured in absolute value) are known before updating model parameters, we compute the derivative of
only those coordinates while setting the remaining gradient coordinates to zero. In principle, if spar-
sity is exhibited, using large gradient coordinates will not effect performance and will significantly
reduce the number of operations required to update model parameters. Nevertheless, this heuristic
alone has three issues: (1) bias is introduced by setting other entries to zero; (2) the locations of
large coordinates are typically unknown; (3) accessing a subset of coordinates may not be easily
implemented for some problems like deep neural networks.

We provide solutions for all three issues. First, we introduce a new sparse gradient operator: The
random-top-k operator. The random-top-k operator is a composition of the randomized coordinate
descent operator and the top-k operator. In prior work, the top-k operator has been used to reduce
the communication complexity of distributed optimization (Stich et al., 2018; Aji & Heafield, 2017)
applications. The random-top-k operator has two phases: Given a stochastic gradient and a pair
of integers (k1, k2) that sum to k, the operator retains k1 coordinates which are most ”promising”
in terms of their ”likelihood” to be large on average, then randomly selects k2 of the remaining
coordinates with appropriate rescaling. The first phase captures sparsity patterns while the second
phase eliminates bias. Second, we make use of large batch gradients in variance reduction methods
to estimate sparsity patterns. Inspired by the use of a memory vector in Aji & Heafield (2017),
the algorithm maintains a memory vector initialized with the absolute value of the large batch gra-
dient at the beginning of each outer loop and updated by taking an exponential moving average
over subsequent stochastic gradients. Coordinates with large values in the memory vector are more
”promising,” and the random-top-k operator will pick the top k1 coordinate indices based on the
memory vector. Since larger batch gradients have lower variance, the initial estimate is quite accu-
rate. Finally, for software that supports dynamic computation graphs, we provide a cost-effective
way (sparse back-propagation) to implement the random-top-k operator.

In this work we apply the random-top-k operator to SpiderBoost (Wang et al., 2018), a recent vari-
ance reduction method that achieves optimal query complexity, with a slight modification based on
the ”geometrization” technique introduced by Lei & Jordan (2019). Theoretically, we show that our
algorithm is never worse than SpiderBoost and can strictly outperform it when the random-top-k
operator captures gradient sparsity. Empirically, we demonstrate the improvements in computa-
tion for various tasks including image classification, natural language processing, and sparse matrix
factorization.

The rest of the paper is organized as follows. In Section 2, we define the random-top-k operator,
our optimization algorithm, and a description of sparse backpropagation. The theoretical analyses
are presented in Section 3, followed by experimental results in Section 4. All technical proofs are
relegated to Appendix A, and additional experimental details can be found in Appendix B.

2 STOCHASTIC VARIANCE REDUCTION WITH SPARSE GRADIENTS

Generally, variance reduction methods reduce the variance of stochastic gradients by taking a snap-
shot ∇f(y) of the gradient ∇f(x) every m steps of optimization, and use the gradient information
in this snapshot to reduce the variance of subsequent smaller batch gradients ∇fI(x) (Johnson &
Zhang, 2013; Wang et al., 2018). Methods such as SCSG (Lei & Jordan, 2017) utilize a large batch
gradient, which is typically some multiple in size of the small batch gradient b, which is much more
practical and is what we do in this paper. To reduce the cost of computing additional gradients, we
use sparsity by only computing a subset k of the total gradients d, where y ∈ Rd.

For d, k, k1, k2 ∈ Z+, let k = k1 + k2, where 1 ≤ k ≤ d for a parametric model of dimension
d. In what follows, we define an operator which takes vectors x, y and outputs y′, where y′ retains
only k of the entries in y, k1 of which are selected according to the coordinates in x which have
the k1 largest absolute values, and the remaining k2 entries are randomly selected from y. The k1
coordinate indices and k2 coordinate indices are disjoint. Formally, the operator rtopk1,k2 : Rd →
Rd is defined for x, y ∈ Rd as

(
rtopk1,k2(x, y)

)
`

=


y` if k1 > 0 and |x|` ≥ |x|(k1)
(d−k1)
k2

y` if ` ∈ S
0 otherwise,
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where |x| denotes a vector of absolute values, |x|(1) ≥ |x|(2) ≥ . . . ≥ |x|(d) denotes the order
statistics of coordinates of x in absolute values, and S denotes a random subset with size k2 that is
uniformly drawn from the set {` : |x|` < |x|(k1)}. For instance, if x = (11, 12, 13,−14,−15), y =
(−25,−24, 13, 12, 11) and k1 = k2 = 1, then S is a singleton uniformly drawn from {1, 2, 3, 4}.
Suppose S = {2}, then rtop1,1(x, y) = (0, 4y2, 0, 0, y5) = (0,−96, 0, 0, 11). If k1 + k2 = d,
rtopk1,k2(x, y) = y. On the other hand, if k1 = 0, rtop0,k2(x, y) does not depend on x and returns
a rescaled random subset of y. This is the operator used in coordinate descent methods. Finally,
rtopk1,k2(x, y) is linear in y. The following Lemma shows that rtopk1,k2(x, y) is an unbiased
estimator of y, which is a crucial property in our later analysis.
Lemma 1. Given any x, y ∈ Rd,

E
(
rtopk1,k2(x, y)

)
= y, Var

(
rtopk1,k2(x, y)

)
=
d− k1 − k2

k2
‖ top−k1(x, y)‖2,

where E is taken over the random subset S involved in the rtopk1,k2 operator and

(top−k1(x, y))` =

{
y` if k1 > 0 and |x|` < |x|(k1)
0 otherwise.

Our algorithm is detailed as below.

Algorithm 1: SpiderBoost with Sparse Gradients.
Input: Learning rate η, inner loop size m, outer loop size T , large batch size B, small batch size b,

initial iterate x0, memory decay factor α, sparsity parameters k1, k2.
1 I0 ∼ Unif({1, . . . , n}) with |I0| = B
2 M0 := |∇fI0(x0)|
3 for j = 1, ..., T do
4 x

(j)
0 := xj−1, M

(j)
0 := Mj−1

5 Ij ∼ Unif({1, . . . , n}) with |Ij | = B

6 ν
(j)
0 := ∇fIj (x

(j)
0 )

7 Nj := m (for implementation) or Nj ∼ geometric distribution with mean m (for theory)
8 for t = 0, . . . , Nj − 1 do
9 x

(j)
t+1 := x

(j)
t − ην

(j)
t

10 I(j)t ∼ Unif([n]) with |I(j)t | = b

11 ν
(j)
t+1 := ν

(j)
t + rtopk1,k2

(
M

(j)
t ,∇fI(j)t

(x
(j)
t+1)−∇fI(j)t

(x
(j)
t )
)

12 M
(j)
t+1 := α|ν(j)t+1|+ (1− α)M

(j)
t

13 xj := x
(j)
Nj
, Mj := M

(j)
Nj

Output: xout = xT (for implementation) or xout = xT ′ where T ′ ∼ Unif([T ]) (for theory)

The algorithm includes an outer-loop and an inner-loop. In the theoretical analysis, we generate Nj
as Geometric random variables. This trick is called ”geometrization”, proposed by Lei & Jordan
(2017) and dubbed by Lei & Jordan (2019). It greatly simplifies analysis (e.g. Lei et al., 2017;
Allen-Zhu, 2018a). In practice, as observed by Lei et al. (2017), setting Nj to m does not impact
performance in any significant way. We only use ”geometrization” in our theoretical analysis for
clarity. Similarly, for our theoretical analysis, the output of our algorithm is selected uniformly at
random from the set of outer loop iterations. Like the use of average iterates in convex optimization,
this is a common technique for nonconvex optimization proposed by Nemirovski et al. (2009). In
practice, we simply use the last iterate.

Similar to Aji & Heafield (2017), we maintain a memory vector M (j)
t at each iteration of our al-

gorithm. The memory vector is initialized to the large batch gradient computed before every pass
through the inner loop, which provides a relatively accurate gradient sparsity estimate of x(j)0 . The
exponential moving average gradually incorporates information from subsequent small batch gra-
dients to account for changes to gradient sparsity. We then use M (j)

t as an approximation to the
variance of each gradient coordinate in our rtopk1,k2 operator. With M (j)

t as input, the rtopk1,k2
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operator targets k1 high variance gradient coordinates in addition to k2 randomly selected coordi-
nates.

The cost of invoking rtopk1,k2 is dominated by the algorithm for selecting the top k coordinates,
which has linear worst case complexity when using the introselect algorithm (Musser, 1997).

2.1 SPARSE BACK-PROPAGATION

A weakness of our method is the technical difficulty of implementing a sparse backpropagation
algorithm in modern machine learning libraries, such as Tensorflow (Abadi et al., 2015) and Pytorch
(Paszke et al., 2017). Models implemented in these libraries generally assume dense structured
parameters. The optimal implementation of our algorithm makes use of a sparse forward pass and
assumes a sparse computation graph upon which backpropagation is executed. Libraries that support
dynamic computation graphs, such as Pytorch, will construct the sparse computation graph in the
forward pass, which makes the required sparse backpropagation trivial. We therefore expect our
algorithm to perform quite well on libraries which support dynamic computation graphs.

Consider the forward pass of a deep neural network, where φ is a deep composition of parametric
functions,

φ(x; θ) = φL(φL−1(. . . φ0(x; θ0) . . . ; θL−1); θL). (2)

The unconstrained problem of minimizing over the θ` can be rewritten as a constrained optimization
problem as follows:

min
θ

1

n

n∑
i=1

loss(z(L+1)
i , yi)

s.t. z
(L+1)
i = φL(z

(L)
i ; θL)

...

z
(`+1)
i = φ`(z

(`)
i ; θ`)

...

z
(1)
i = φ0(xi; θ0).

(3)

In this form, zL+1
i is the model estimate for data point i. Consider φ`(x; θ`) = σ(xT θ`) for 1 ≤

` < L, φL be the output layer, and σ be some subdifferentiable activation function. If we apply the
rtopk1,k2 operator per-layer in the forward-pass, with appropriate scaling of k1 and k2 to account
for depth, we see that the number of multiplications in the forward pass is reduced to k1 + k2:
σ(rtopk1,k2(v, x)T rtopk1,k2(v, θ`)). A sparse forward-pass yields a computation graph for a (k1 +
k2)-parameter model, and back-propagation will compute the gradient of the objective with respect
to model parameters in linear time (Chauvin & Rumelhart, 1995).

3 THEORETICAL COMPLEXITY ANALYSIS

3.1 NOTATION AND ASSUMPTIONS

Denote by ‖ · ‖ the Euclidean norm and by a ∧ b the minimum of a and b. For a random vector
Y ∈ Rd,

Var(Y ) =

d∑
i=1

Var(Yi).

We say a random variable N has a geometric distribution, N ∼ Geom(m), if N is supported on the
non-negative integers with

P(N = k) = γk(1− γ), ∀k = 0, 1, . . . ,

for some γ such that EN = m. Here we allow N to be zero to facilitate the analysis.
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Assumption A1 on the smoothness of individual functions will be made throughout the paper.

A1 fi is differentiable with
‖∇fi(x)−∇fi(y)‖ ≤ L‖x− y‖,

for some L <∞ and for all i ∈ {1, . . . , n}.

As a direct consequence of assumption A1, it holds for any x, y ∈ Rd that

− L

2
‖x− y‖2 ≤ fi(x)− fi(y)− 〈∇fi(y), x− y〉 ≤ L

2
‖x− y‖2. (4)

To formulate our complexity bounds, we define

f∗ = inf
x
f(x), ∆f = f(x0)− f∗.

Further we define σ2 as an upper bound on the expected norm of the stochastic gradients:

σ2 = sup
x

1

n

n∑
i=1

‖∇fi(x)‖2. (5)

By Cauchy-Schwarz inequality, it is easy to see that σ2 is also a uniform bound of ‖∇f(x)‖2.

Finally, we assume that sampling an index i and accessing the pair ∇fi(x) incur a unit of cost and
accessing the truncated version rtopk1,k2(m,∇fi(x)) incur (k1 + k2)/d units of cost. Note that
calculating rtopk1,k2(m,∇fI(x)) incurs |I|(k1 + k2)/d units of computational cost. Given our
framework, the theoretical complexity of the algorithm is

Ccomp(ε) ,
T∑
j=1

(
B + 2bNj

k1 + k2
d

)
. (6)

3.2 WORST-CASE GUARANTEE

Theorem 1. Under the following setting of parameters

ηL =

√
k2

6dm
, B =

⌈
2σ2

ε2
∧ n
⌉

For any T ≥ T (ε) , 4∆f/ηmε
2,

E‖∇f(xout)‖ ≤ ε.
If we further set

m =
Bd

b(k1 + k2)
,

the complexity to achieve the above condition is

ECcomp(ε) = O

( σ
ε3
∧
√
n

ε2

)
L∆f

√
b(k1 + k2)

k2

 .

Recall that the complexity of SpiderBoost (Wang et al., 2018) is

O

((
σ

ε3
∧
√
n

ε2

)
L∆f

)
.

Thus as long as b = O(1), k1 = O(k2), our algorithm has the same complexity as SpiderBoost
under appropriate settings. The penalty term O(

√
b(k1 + k2)/k2) is due to the information loss by

sparsification.
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3.3 DATA ADAPTIVE ANALYSIS

Let
g
(j)
t = ‖ top−k1(M

(j)
t ,∇f(x

(j)
t+1)−∇f(x

(j)
t ))‖2,

and

G
(j)
t =

1

n

n∑
i=1

‖ top−k1(M
(j)
t ,∇fi(x(j)t+1)−∇fi(x(j)t ))‖2.

By Cauchy-Schwarz inequality and the linearity of top−k1 , it is easy to see that g(j)t ≤ G
(j)
t . If our

algorithm succeeds in capturing sparsity, both g(j)t and G(j)
t will be small. In this subsection we will

analyze the complexity under this case. Further define Rj as

Rj = Ejg(j)Nj
+

EjG(j)
Nj

b
, (7)

where Ej is taken over all randomness in j-th outer loop (line 4-13 of Algorithm 1).
Theorem 2. Under the following setting of parameters

ηL =

√
b ∧m
3m

, B =

⌈
3σ2

ε2
∧ n
⌉

For any T ≥ T (ε) , 6∆f/ηmε
2,

E‖∇f(xout)‖2 ≤
2ε2

3
+

(d− k1 − k2)m

k2
ER̄T ,

where

R̄T =
1

T

T∑
j=1

Rj .

If ER̄T ≤ ε2 k2
3(d−k1−k2)m , then

E‖∇f(xout)‖ ≤ ε.
If we further set

m =
Bd

b(k1 + k2)
,

the complexity to achieve the above condition is

ECcomp(ε) = O

((
σ

ε3
∧
√
n

ε2

)
L∆f

√
k1 + k2

d

b

b ∧m

)
.

In practice, m is usually much larger than b. As a result, the complexity of our algorithm is
O(
√

(k1 + k2)/d) smaller than that of SpiderBoost if our algorithm captures gradient sparsity. Al-
though this type of data adaptive analyses is not as clean as the worst-case guarantee (Theorem 1), it
reveals the potentially superior performance of our algorithm. Similar analyses have been done for
various other algorithms, including AdaGrad (Duchi et al., 2011) and Adam (Kingma & Ba, 2014).

4 EXPERIMENTS

In this section, we present a variety of experiments to illustrate gradient sparsity and demonstrate
the performance of Sparse SpiderBoost. By computing the entropy of the empirical distribution of
the absolute value of stochastic gradient coordinates, we show that certain models exhibit gradient
sparsity during optimization. To evaluate the performance of variance reduction with sparse gradi-
ents, we compute the loss over gradient queries per epoch of Sparse Spiderboost and SpiderBoost
for a number of image classification problems. We also compare Sparse SpiderBoost, SpiderBoost,
and SGD on a natural language processing task and sparse matrix factorization.

For all experiments, unless otherwise specified, we run SpiderBoost and Sparse SpiderBoost with a
learning rate η = 0.1, large-batch size B = 1000, small-batch size b = 100, inner loop length of
m = 10, memory decay factor of α = 0.5, and k1 and k2 both set to 5% of the total number of
model parameters. We call the sum k1 + k2 = k = 10% the sparsity of the optimization algorithm.
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4.1 GRADIENT SPARSITY AND IMAGE CLASSIFICATION

Our experiments in this section test a number of image classification tasks for gradient sparsity, and
plot the learning curves of some of these tasks. We test a 2-layer fully connected neural network
with hidden layers of width 100, a simple convolutional neural net which we describe in detail in
Appendix B, and Resnet-18 (He et al., 2015). All models use ReLu activations. For datasets, we use
CIFAR-10 (Krizhevsky et al.), SVHN (Netzer et al., 2011), and MNIST (LeCun & Cortes, 2010).
None of our experiments include Resnet-18 on MNIST as MNIST is an easier dataset; it is included
primarily to provide variety.

Our method relies partially on the assumption that the magnitude of the derivative of some model
parameters are greater than others. To measure this, we compute the entropy of the empirical distri-
bution of the absolute value of stochastic gradient coordinates. In Algorithm 1, the following term
updates our estimate of the variance of each coordinate’s derivative:

M
(j)
t+1 := α|ν(j)t+1|+ (1− α)M

(j)
t .

Consider the entropy of the following probability vector p(j)t = M
(j)
t /‖M (j)

t ‖1. The entropy of p
provides us with a measure of how much structure there is in our gradients. To see this, consider the
hypothetical scenario where pi = 1/d. In this scenario we have no structure; the top k1 component
of our sparsity operator is providing no value and entropy is maximized. On the other hand, if a
single entry pi = 1 and all other entries pj = 0, then the top k1 component of our sparsity operator
is effectively identifying the only relevant model parameter.

To measure the potential of our sparsity operator, we compute the entropy of p while running Spi-
derBoost on a variety of datasets and model architectures. The results of running this experiment
are summarized in the following table.

Table 1: Entropy of Memory Vectors

FC NN Conv NN Resnet-18

Max Before After Max Before After Max Before After

CIFAR-10 18.234 16.41 8.09 15.920 13.38 2.66 23.414 22.59 21.70
SVHN 18.234 15.36 8.05 15.920 13.00 2.97 23.414 22.62 21.31
MNIST 18.234 14.29 9.77 15.920 14.21 2.77 - - -

Table 1 provides the maximum entropy as well as the entropy of the memory vector before and
after training for 150 epochs, for each dataset and each model. For each model, the entropy at the
beginning of training is almost maximal. This is due to random initialization of model parameters.
After 150 epochs, the entropy of Mt for the convolutional model drops to approximately 3, which
suggests a substantial amount of gradient structure. Note that for the datasets that we tested, the
gradient structure depends primarily on the model and not the dataset. In particular, for Resnet-18,
the entropy appears to vary minimally after 150 epochs.

Figure 1: SpiderBoost with 10% sparsity (k = 0.1d) compared to SpiderBoost without sparsity. Left
figure compares the two algorithms using Resnet-18 on Cifar-10. Right figure compares the two
algorithms using a convolutional neural network trained on MNIST. The x-axis measures gradient
queries over N , where N is the size of the respective datasets. Plots are in log-scale.
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Figure 1 compares SpiderBoost alone to SpiderBoost with 10% sparsity (10% of parameter deriva-
tives). All experiments in this section are run for 50 epochs. In our comparison to SpiderBoost,
we measure the number of gradient queries over the size of the dataset N . A single gradient query
is taken to be the cost of computing a gradient for a single data point. If i is the index of a single
sample, then∇fi(x) is a single gradient query. Using the batch gradient to update model parameters
for a dataset of size B has a gradient query cost of B. For a model with d parameters, using a single
sample to update k model parameters has a gradient query cost of k/d, etc.

Our results of fitting the convolutional neural network to MNIST show that sparsity provides a sig-
nificant advantage compared to using SpiderBoost alone. We only show 2 epochs of this experiment
since the MNIST dataset is fairly simple and convergence is rapidly achieved. The results of training
Resnet-18 on CIFAR-10 suggests that our sparsity algorithm works well on large neural networks,
and non-trivial datasets. We believe Resnet-18 on CIFAR-10 does not do as well due to the gradient
density we observe for Resnet-18 in general. Sparsity here not only has the additional benefit of
reducing gradient query complexity, but also provides a dampening effect on variance due to the
additional covariates in SpiderBoost’s update to model parameters. Results for the rest of these
experiments can be found in Appendix B.

4.2 NATURAL LANGUAGE PROCESSING

We evaluate Sparse SpiderBoost’s performance on an LSTM-based (Hochreiter & Schmidhuber,
1997) generative language model. We compare Sparse SpiderBoost, SpiderBoost, and SGD. We
train our LSTM model on the Penn Treebank (Marcus et al., 1994) corpus. The natural language
processing model consists of a word embedding of dimension 128 of 1000 tokens, which is jointly
learned with the task. The LSTM has a hidden and cell state dimension of 1024. All three opti-
mization algorithms operate on this model. The variance reduction training algorithm for this type
of model can be found in Appendix B. We run SpiderBoost and Sparse SpiderBoost with a learning
rate η = 0.2, large-batch size B = 40, small-batch size b = 20, inner loop length of m = 2. We run
SGD with learning rate 0.2 and batch size is 20. Figure 2 shows SpiderBoost is slightly worse than
SGD, and sparsity provides a noticeable improvement over SGD.

Figure 2: (a): SGD learning rate is 0.2 and batch size is 20. (b): SGD batch size is 103 and learning
rate schedule is 0.1 for epochs 0− 10, 0.01 for epochs 10− 20, and 0.001 for epochs 20− 40. The
x-axis measures gradient queries over N , where N is the size of the respective datasets. Plots are in
log-scale.

4.3 SPARSE MATRIX FACTORIZATION

For our experiments with sparse matrix factorization, we perform Bayesian Personalized Ranking
(Rendle et al., 2009) on the MovieLens database (Harper & Konstan, 2015) with a latent dimension
of 20. To satisfy m = B/b, we run SpiderBoost and Sparse SpiderBoost with a large-batch size
B = 1030, small-batch size b = 103, inner loop length of m = 10. For this experiment, we run
SpiderBoost with the following learning rate schedule:

η(a, b, t) = b+ (a− b)m− t
m

,

where a = 1.0 and b = 0.1. The schedule interpolates from a to b as the algorithm progresses
through the inner loop. For instance, within the inner loop, at iteration 0 the learning rate is 1.0, and
at iteration m the learning rate is 0.1. We believe this is a natural way to utilize the low variance
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at the beginning of the inner loop, and is a fair comparison to an exponential decay learning rate
schedule for SGD. Details of the SGD baselines are provided in Figure 2. We see SpiderBoost is
slightly worse than SGD, and sparsity provides a slight improvement over SGD, especially in the
first few epochs.

5 CONCLUSION

In this paper, we show how sparse gradients with memory can be used to improve the gradient
query complexity of SVRG-type variance reduction algorithms. While we provide a concrete sparse
variance reduction algorithm for SpiderBoost, the techniques developed in this paper can be adapted
to other variance reduction algorithms.

We show that our algorithm provides a way to explicitly control the gradient query complexity of
variance reduction methods, a problem which has thus far not been addressed. Assuming our algo-
rithm captures the sparsity structure of the optimization problem, we also prove that the complexity
of our algorithm is an improvement over SpiderBoost. The results of our comparison to Spider-
Boost validates this assumption, and entropy measures provided in Table 1 empirically support our
hypothesis that gradient sparsity exists.

Table 1 also supports the results in Aji & Heafield (2017), which shows that the top-k operator
generally outperforms the random-k operator. Our random-top-k operator takes advantage of the
superior performance of the top-k operator while eliminating bias via a secondary random-k opera-
tor. Not every problem we tested exhibited sparsity structure. While this is true, our analysis proves
that our algorithm performs no worse than SpiderBoost in these settings. Even when there is no
structure, our algorithm reduces to a random sampling of k1 + k2 coordinates, which is essentially
a randomized coordinate descent analogue of SpiderBoost. Empirically, we see that Sparse Spider-
Boost outperforms SpiderBoost when no sparsity structure is present. We believe this is due to the
variance introduced by additional covariates in the SpiderBoost update, which is mitigated in Sparse
SpiderBoost by our random-top-k operator.

The results of our experiments on natural language processing and matrix factorization demonstrate
that, with additional effort, variance reduction methods are competitive with SGD. While we view
this as progress toward improving the practical viability of variance reduction algorithms, we believe
further improvements can be made, such as better utilization of reduced variance during training, and
better control over increased variance in very high dimensional models such as dense net (Defazio,
2019). We recognize these issues and hope to make progress on them in future work.
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A TECHNICAL PROOFS

A.1 PREPARATORY RESULTS

Lemma 2 (Lemma 3.1 of Lei & Jordan (2019)). Let N ∼ Geom(m). Then for any sequence
D0, D1, . . . with E|DN | <∞,

E(DN −DN+1) =
1

m
(D0 − EDN ) .

Remark 1. The requirement E|DN | < ∞ is essential. A useful sufficient condition if |Dt| =
O(Poly(t)) because a geometric random variable has finite moments of any order.

Lemma 3 (Lemma B.2 of Lei & Jordan (2019)). Let z1, . . . , zM ∈ Rd be an arbitrary population
and J be a uniform random subset of [M ] with size m. Then

Var

 1

m

∑
j∈J

zj

 ≤ I(m < M)

m
· 1

M

M∑
j=1

‖zj‖22.

Proof of Lemma 1. WLOG, assume that |x1| ≥ |x2| ≥ . . . ≥ |xd|. Let S be a random subset of
{k1 + 1, . . . , d} with size k2. Then(

rtopk1,k2(x, y)
)
`

= y`

(
I(` ≤ k1) +

d− k1
k2

I(` ∈ S)

)
.

As a result,

E
[(

rtopk1,k2(x, y)
)
`

]
= y`

(
I(` ≤ k1) +

d− k1
k2

I(` > k1)P (` ∈ S)

)
= y`,

and

Var
[(

rtopk1,k2(x, y)
)
`

]
=

(
d− k1
k2

)2

y2` I(` > k1)P (` ∈ S)(1− P (` ∈ S))

=
d− k1 − k2

k2
y2` I(` > k1).

Therefore,

Var
(
rtopk1,k2(x, y)

)
=
d− k1 − k2

k2

∑
`>k1

y2` =
d− k1 − k2

k2
‖ top−k1(x, y)‖2.

A.2 ANALYSIS OF A SINGLE INNER LOOP

Lemma 4. For any j, t,

Ej,t(ν(j)t+1 − ν
(j)
t ) = ∇f(x

(j)
t+1)−∇f(x

(j)
t )

and

Varj,t(ν
(j)
t+1 − ν

(j)
t ) ≤ η2L2

b
‖ν(j)t ‖2 +

d− k1 − k2
k2

(
g
(j)
t +

G
(j)
t

b

)
,

where Ej,t and Varj,t are taken over the randomness of I(j)t and the random subset S involved in
the rtopk1,k2 operator.

Proof. By definition,

ν
(j)
t+1 − ν

(j)
t = rtopk1,k2

(
M

(j)
t ,∇fI(j)t

(x
(j)
t+1)−∇fI(j)t

(x
(j)
t )
)
.
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Let S be the random subset involved in rtopk1,k2 . Then S is independent of (I(j)t ,M
(j)
t , x

(j)
t+1, x

(j)
t ).

By Lemma 1,
ES
(
ν
(j)
t+1 − ν

(j)
t

)
= ∇fI(j)t

(x
(j)
t+1)−∇fI(j)t

(x
(j)
t )

and

VarS

(
ν
(j)
t+1 − ν

(j)
t

)
=
d− k1 − k2

k2

∥∥∥top−k1

(
M

(j)
t ,∇fI(j)t

(x
(j)
t+1)−∇fI(j)t

(x
(j)
t )
)∥∥∥2 .

Since I(j)t is independent of (M
(j)
t , x

(j)
t+1, x

(j)
t ), the tower property of conditional expectation and

variance implies that

Ej,t
(
ν
(j)
t+1 − ν

(j)
t

)
= EI(j)t

(
∇fI(j)t

(x
(j)
t+1)−∇fI(j)t

(x
(j)
t )
)

= ∇f(x
(j)
t+1)−∇f(x

(j)
t ),

and

Varj,t

(
ν
(j)
t+1 − ν

(j)
t

)
= EI(j)t

(
VarS

(
ν
(j)
t+1 − ν

(j)
t

))
+ VarI(j)t

(
ES
(
ν
(j)
t+1 − ν

(j)
t

))
. (8)

To bound the first term, we note that top−k1 is linear in y and thus

EI(j)t

∥∥∥top−k1

(
M

(j)
t ,∇fI(j)t

(x
(j)
t+1)−∇fI(j)t

(x
(j)
t )
)∥∥∥2

=
∥∥∥EI(j)t

top−k1

(
M

(j)
t ,∇fI(j)t

(x
(j)
t+1)−∇fI(j)t

(x
(j)
t )
)∥∥∥2

+ VarI(j)t

[
top−k1

(
M

(j)
t ,∇fI(j)t

(x
(j)
t+1)−∇fI(j)t

(x
(j)
t )
)]

= g
(j)
t + VarI(j)t

1

b

∑
i∈I(j)t

top−k1(M
(j)
t ,∇fi(x(j)t+1)−∇fi(x(j)t ))


≤ g(j)t +

G
(j)
t

b
, (9)

where the last inequality uses Lemma 3. To bound the second term of (8), by Lemma 3,

VarI(j)t

(
ES
(
ν
(j)
t+1 − ν

(j)
t

))
= VarI(j)t

(
∇fI(j)t

(x
(j)
t+1)−∇fI(j)t

(x
(j)
t )
)

≤ 1

b

1

n

n∑
i=1

‖∇fi(x(j)t+1)−∇fi(x(j)t )‖2
(i)

≤ L2

b
‖x(j)t+1 − x

(j)
t ‖2

(ii)
=

η2L2

b
‖ν(j)t ‖2,

where (i) uses assumption A1 and (ii) uses the definition that x(j)t+1 = x
(j)
t − ην

(j)
t .

Lemma 5. For any j, t,

Ej,t‖ν(j)t+1 −∇f(x
(j)
t+1)‖2 ≤ ‖ν(j)t −∇f(x

(j)
t )‖2 +

η2L2

b
‖ν(j)t ‖2 +

d− k1 − k2
k2

(
g
(j)
t +

G
(j)
t

b

)
,

where Ej,t and Varj,t are taken over the randomness of I(j)t and the random subset S involved in
the rtopk1,k2 operator.

Proof. By Lemma 4, we have

ν
(j)
t+1 −∇f(x

(j)
t+1) = ν

(j)
t −∇f(x

(j)
t ) +

(
ν
(j)
t+1 − ν

(j)
t − Ej,t(ν(j)t+1 − ν

(j)
t )
)
.

Since I(j)t is independent of (ν
(j)
t , x

(j)
t ),

Covj,t

(
ν
(j)
t −∇f(x

(j)
t ), ν

(j)
t+1 − ν

(j)
t

)
= 0.

As a result,

Ej,t‖ν(j)t+1 −∇f(x
(j)
t+1)‖2 = ‖ν(j)t −∇f(x

(j)
t )‖2 + Varj,t(ν

(j)
t+1 − ν

(j)
t ).

The proof is then completed by Lemma 4.
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Lemma 6. For any j,

Ej‖ν(j)Nj
−∇f(x

(j)
Nj

)‖2 ≤ mη2L2

b
Ej‖ν(j)Nj

‖2 +
σ2I(B < n)

B
+

(d− k1 − k2)m

k2
Rj ,

where Ej is taken over all randomness in j-th outer loop (line 4-13 of Algorithm 1). 4.

Proof. By definition,

‖ν(j)t+1‖ ≤ ‖ν
(j)
t ‖+

∥∥∥rtopk1,k2

(
M

(j)
t ,∇fI(j)t

(x
(j)
t+1)−∇fI(j)t

(x
(j)
t )
)∥∥∥

≤ ‖ν(j)t ‖+
∥∥∥∇fI(j)t

(x
(j)
t+1)−∇fI(j)t

(x
(j)
t )
∥∥∥

≤ ‖ν(j)t ‖+
1

b

∑
i∈I(j)t

∥∥∥∇fi(x(j)t+1)−∇fi(x(j)t )
∥∥∥

≤ ‖ν(j)t ‖+

√√√√1

b

∑
i∈I(j)t

∥∥∥∇fi(x(j)t+1)−∇fi(x(j)t )
∥∥∥2

≤ ‖ν(j)t ‖+

√√√√√√2

b

 ∑
i∈I(j)t

∥∥∥∇fi(x(j)t+1)
∥∥∥2 +

∑
i∈I(j)t

∥∥∥∇fi(x(j)t )
∥∥∥2


≤ ‖ν(j)t ‖+

√√√√2n

b

(
1

n

n∑
i=1

∥∥∥∇fi(x(j)t+1)
∥∥∥2 +

1

n

n∑
i=1

∥∥∥∇fi(x(j)t )
∥∥∥2)

≤ ‖ν(j)t ‖+
√

2nσ

As a result,
‖ν(j)t ‖ ≤ ‖ν

(j)
0 ‖+ t

√
2nσ, (10)

Thus,
‖ν(j)t −∇f(x

(j)
t )‖2 ≤ 2‖ν(j)t ‖2 + 2‖∇f(x

(j)
t )‖2 = Poly(t).

This implies that we can apply Lemma 2 on the sequence Dt = ‖ν(j)t −∇f(x
(j)
t )‖2.

Letting j = Nj in Lemma 5 and taking expectation over all randomness in Ej , we have

Ej‖ν(j)Nj+1 −∇f(x
(j)
Nj+1)‖2

≤ Ej‖ν(j)Nj
−∇f(x

(j)
Nj

)‖2 +
η2L2

b
Ej‖ν(j)Nj

‖2 +
d− k1 − k2

k2
Ej

g(j)Nj
+
G

(j)
Nj

b


= Ej‖ν(j)Nj

−∇f(x
(j)
Nj

)‖2 +
η2L2

b
Ej‖ν(j)Nj

‖2 +
d− k1 − k2

k2
Rj . (11)

By Lemma 2,

Ej‖ν(j)Nj
−∇f(x

(j)
Nj

)‖2 − Ej‖ν(j)Nj+1 −∇f(x
(j)
Nj+1)‖2

=
1

m

(
‖ν(j)0 −∇f(x

(j)
0 )‖2 − Ej‖ν(j)Nj

−∇f(x
(j)
Nj

)‖2
)

=
1

m

(
Ej‖ν(j)0 −∇f(xj−1)‖2 − Ej‖ν(j)Nj

−∇f(xj)‖2
)
, (12)

where the last line uses the definition that xj−1 = x
(j)
0 , xj = x

(j)
Nj

. By Lemma 3,

Ej‖ν(j)0 −∇f(xj−1)‖2 ≤ σ2I(B < n)

B
. (13)

The proof is completed by putting (11), (12) and (13) together.
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Lemma 7. For any j, t,

f(x
(j)
t+1) ≤ f(x

(j)
t ) +

η

2
‖ν(j)t −∇f(x

(j)
t )‖2 − η

2
‖∇f(x

(j)
t )‖2 − η

2
(1− ηL)‖ν(j)t ‖2.

Proof. By (4),

f(x
(j)
t+1) ≤ f(x

(j)
t ) +

〈
∇f(x

(j)
t ), x

(j)
t+1 − x

(j)
t

〉
+
L

2
‖x(j)t − x

(j)
t+1‖2

= f(x
(j)
t )− η

〈
∇f(x

(j)
t ), ν

(j)
t

〉
+
η2L

2
‖ν(j)t ‖2

= f(x
(j)
t ) +

η

2
‖ν(j)t −∇f(x

(j)
t )‖2 − η

2
‖∇f(x

(j)
t )‖2 − η

2
‖ν(j)t ‖2 +

η2L

2
‖ν(j)t ‖2.

The proof is then completed.

Lemma 8. For any j,

Ej‖∇f(xj)‖2 ≤
2

ηm
Ej(f(xj−1)− f(xj)) + Ej‖ν(j)Nj

−∇f(xj)‖2 − (1− ηL)Ej‖ν(j)Nj
‖2,

where Ej is taken over all randomness in j-th outer loop (line 4-13 of Algorithm 1).

Proof. Since ‖∇f(x)‖ ≤ σ for any x,

|f(x
(j)
t+1)− f(x

(j)
t )| ≤ σ‖ν(j)t ‖.

This implies that

|f(x
(j)
t )| ≤ σ

t∑
k=0

‖ν(j)t ‖+ |f(x
(j)
0 )|.

As shown in (10), ‖ν(j)t ‖ = Poly(t) and thus |f(x
(j)
t )| = Poly(t). This implies that we can apply

Lemma 2 on the sequence Dt = f(x
(j)
t ).

Letting j = Nj in Lemma 7 and taking expectation over all randomness in Ej , we have

Ejf(x
(j)
Nj+1) ≤ Ejf(x

(j)
Nj

) +
η

2
‖ν(j)Nj

−∇f(x
(j)
Nj

)‖2 − η

2
‖∇f(x

(j)
Nj

)‖2 − η

2
(1− ηL)‖ν(j)Nj

‖2.

By Lemma 2,

Ejf(x
(j)
Nj

)− Ejf(x
(j)
Nj+1) =

1

m
Ej(f(x

(j)
0 )− f(x

(j)
Nj

)) =
1

m
Ej(f(xj−1)− f(xj)).

The proof is then completed.

Combining Lemma 6 and Lemma 8, we arrive at the following key result on one inner loop.

Theorem 3. For any j,

E‖∇f(xj)‖2 ≤
2

ηm
Ej(f(xj−1)− f(xj)) +

σ2I(B < n)

B
+

(d− k1 − k2)m

k2
Rj

−
(

1− ηL− mη2L2

b

)
Ej‖ν(j)Nj

‖2.

A.3 COMPLEXITY ANALYSIS

Proof of Theorem 1. By definition (7) of Rj and the smoothness assumption A1,

ERj ≤
b+ 1

b
L2E‖x(j)Nj+1 − x

(j)
Nj
‖2 ≤ 2η2L2E‖ν(j)Nj

‖2.
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By Theorem 3,

E‖∇f(xj)‖2 ≤
2

ηm
Ej(f(xj−1)− f(xj)) +

σ2I(B < n)

B

−
(

1− ηL− mη2L2

b
− 2(d− k1 − k2)mη2L2

k2

)
Ej‖ν(j)Nj

‖2.

Since ηL =
√
k2/6dm,

ηL+
mη2L2

b
+

2(d− k1 − k2)mη2L2

k2
≤ 1√

6
+

1

6
+

1

3
≤ 1.

As a result,

E‖∇f(xj)‖2 ≤
2

ηm
Ej(f(xj−1)− f(xj)) +

σ2I(B < n)

B
.

Since xout = xT ′ where T ′ ∼ Unif([T ]), we have

E‖∇f(xout)‖2 ≤
2

ηmT
E(f(x0)− f(xT+1)) +

σ2I(B < n)

B
≤ 2∆f

ηmT
+
σ2I(B < n)

B
.

The setting of T and B guarantees that

2∆f

ηmT
≤ ε2

2
,

σ2I(B < n)

B
≤ ε2

2
.

Therefore,
E‖∇f(xout)‖2 ≤ ε2.

By Cauchy-Schwarz inequality,

E‖∇f(xout)‖ ≤
√

E‖∇f(xout)‖2 ≤ ε.
In this case, the average computation cost is

ECcomp(ε) = T (ε)

(
B +

2(k1 + k2)

d
bm

)
= 3BT (ε)

= O

(
B∆f

ηmε2

)
= O

(√
BbL∆f

ε2

√
k1 + k2
k2

)
.

The proof is then proved by the setting of B.

Proof of Theorem 2. Under the setting of η,

ηL+
mη2L2

b
≤ 1√

3
+

1

3
≤ 1.

By Theorem 3,

E‖∇f(xj)‖2 ≤
2

ηm
Ej(f(xj−1)− f(xj)) +

σ2I(B < n)

B
+
d− k1 − k2

k2
Rj .

By definition of xout,

E‖∇f(xout)‖2 ≤
2∆f

ηmT
+
σ2I(B < n)

B
+

(d− k1 − k2)m

k2
ER̄T .

Under the settings of T and B,

2∆f

ηmT
≤ ε2

3
,

σ2I(B < n)

B
≤ ε2

3
.

This proves the first result. The second result follows directly. For the computation cost, similar to
the proof of Theorem 1, we have

ECcomp(ε) = O(BT ) = O

(
L∆f

ε2
B√

m(b ∧m)

)
.

The proof is then completed by trivial algebra.
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Figure 3: SpiderBoost with various values of sparsity, where (sparsity=k/d) corresponds to Spider-
Boost with sparsity k/d. Both figures use MNIST. The x-axis measures gradient queries over N ,
where N is the size of the respective datasets. Plots are in log-scale.

B EXPERIMENTS

B.1 DESCRIPTION OF SIMPLE CONVOLUTIONAL NEURAL NETWORK

The simple convolutional neural network used in the experiments consists of a convolutional layer
with a kernel size of 5, followed by a max pool layer with kernel size 2, followed by another convo-
lutional layer with kernel size 5, followed by a fully connected layer of input size 16× side2 × 120
(side is the size of the second dimension of the input), followed by a fully connected layer of size
120× 84, followed by a final fully connected layer of size 84× the output dimension.

B.2 NATURAL LANGUAGE PROCESSING

The natural language processing model consists of a word embedding of dimension 128 of 1000
tokens, which is jointly learned with the task. The LSTM has a hidden and cell state dimension of
1024.

Algorithm 2: SpiderBoost for Natural Language Processing.
Input: Learning rate η, inner loop size m, number of iterations T , large batch matrix Z2 with `2

batches of size B, small batch matrix Z1 with `1 batches of size b, initial iterate x0, initial
states s0 and S0.

1 for t = 0, ..., T − 1 do
2 i = mod(t, `1)
3 j = mod(t, `2)
4 if i = 0 then
5 st = 0

6 if j = 0 then
7 St = 0

8 if mod(t,m) = 0 then
9 νt, St+1 := ∇fZ2j

(xt, St)
10 st+1 = st

11 else
12 gp := ∇fZ1i

(xt−1, st−1)
13 gc, st+1 := ∇fZ1i

(xt, st)
14 νt := νt−1 + (gc − gb)
15 St+1 = St

16 xt+1 := xt − ηνt
Output: xT

Before describing Algorithm 2, let us derive the full batch gradient of a generative language model.
We encode the vocabulary of our dataset of length N so that D ∈ NN is a sequence of integers
corresponding to one-hot encodings of each token. We model the transition p(Di+1|Di, si) using
an RNN model M as M(Di, si) = Di+1, si+1, where si is the sequential model state at step i. The
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model M can be thought of as a classifier with cross entropy loss L and additional dependence on
si. The batch gradient objective can therefore be formulated by considering the full sequence of
predictions from i = 0 to i = N − 1, generating for each step i the output D̂i+1, si+1. Each token
is one-hot encoded as an integer (from 0 to the size of the vocabulary), so the empirical risk is given
by

J(D;x) =
1

N

N−1∑
i=0

L(D̂i, Di).

Thus, the full batch gradient is simply the gradient of J with respect to x.

In Algorithm 2, D is split into b contiguous sequences of length `1 = N/b and stored in a matrix
Z1 ∈ Nb×`1 . Taking a pass over Z1 requires maintaining a state si ∈ Nb for each entry in a batch,
which is reset before every pass over Z1. To deal with maintaining state for batches at different time
scales, we define a different matrix Z2 ∈ Nb×`2 which maintains a different set of states Si ∈ NB
for each entry of batch size B. We denote by g, st+1 = ∇fZ1j

(x, st) the gradient of our model with
respect to x, where ∇fZ1j

denotes the gradient function corresponding to the jth batch of matrix
Z1. The function fZ1j

simply computes the loss of the jth batch of matrix Z1.
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