2nd Symposium on Advances in Approximate Bayesian Inference, 2019 1-16

Divide, Conquer, and Combine: a New Inference Strategy
for Probabilistic Programs with Stochastic Support

Yuan Zhou YUAN.ZHOU@CS.OX.AC.UK
Department of Computer Science, University of Oxford

Hongseok Yang HONGSEOK.YANG@KAIST.AC.KR
School of Computing, KAIST

Yee Whye Teh Y.W.TEH@QSTATS.OX.AC.UK
Department of Statistics, University of Oxford

Tom Rainforth RAINFORTH@STATS.0X.AC.UK
Department of Statistics & Christ Church, University of Ozford

Abstract

Universal probabilistic programming systems (PPSs) provide a powerful framework for
specifying rich and complex probabilistic models. However, this expressiveness comes at
the cost of substantially complicating the process of drawing inferences from the model. In
particular, inference can become challenging when the support of the model varies between
executions. Though general-purpose inference engines have been designed to operate in such
settings, they are typically inefficient, often relying on proposing from the prior to make
transitions. To address this, we introduce a new inference framework: Divide, Conquer,
and Combine (DCC). DCC divides the program into separate straight-line sub-programs,
each of which has a fixed support allowing more powerful inference algorithms to be run
locally, before recombining their outputs in a principled fashion. We show how DCC can be
implemented as an automated and general-purpose PPS inference engine, and empirically
confirm that it can provide substantial performance improvements over previous approaches.

1. Introduction

Universal PPSs, such as Church (Goodman et al., 2008), Venture (Mansinghka et al.,
2014), Anglican (Wood et al., 2014) and Pyro (Bingham et al., 2018), are set up to try
and support the widest possible range of models a user might wish to write. Though this
means that such systems can be used to write models which would be otherwise difficult to
encode, this expressiveness comes at the cost of significantly complicating the automation of
inference. In particular, models may contain variables with mixed types or have varying,
or even unbounded, dimensionalities; characteristics which cause significant challenges at
the inference stage. In this paper, we aim to address one of the most challenging of these
complicating factors: variables whose very existence is stochastic, often, though not always,
leading to the overall dimensionality of the model varying between realizations.

Some very basic inference algorithms, such as importance sampling from the prior, are
able to deal with this problem naturally, but they are catastrophically inefficient for all but
the most simple models. Sequential Monte Carlo (Wood et al., 2014) and variational (Paige,
2016) approaches can sometimes also be applied, but only offer improvements for models
with particular exploitable structures. MCMC approaches, on the other hand, are difficult
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to apply due to the need to construct proposals able to switch between the different variable
configurations, something which is difficult to achieve even in a problem specific manner, let
alone automate for generic problems. Moreover, ensuring these proposals remain efficient
can be almost impossible, as different configurations might not have natural similarities or
“neighboring regions”; the problem is analogous to running MCMC on a highly multi-modal
distribution without any knowledge of where the different modes are. In short, there are a
wide range of models for which no effective PPS-suitable inference methods currently exist.
More discussion can be seen in Appendix B.

To this end, we introduce a new framework—D+ivide, Conquer, and Combine (DCC)—
for performing inference in such models. DCC works by dividing the program into separate
straight-line sub-programs with fixed support, conquering these separate sub-problems
using an inference strategy that exploits the fixed support to remain efficient, and then
combining the resulting sub-estimators to an overall approximation of the posterior. By
splitting the original program up into its separate configurations, we effectively transfer
this transitioning problem to one of estimating the marginal likelihood for the different
models, something which is typically much easier to achieve. Furthermore, this approach also
allows us to introduce meta-strategies for allocating resources between sub-problems, thereby
explicitly controlling the exploration-exploitation trade-off in a manner akin to Rainforth
et al. (2018); Lu et al. (2018). To demonstrate its potential utility, we implement a specific
realization of our DCC framework as an automated and general-purpose inference engine
in the PPS Anglican (Wood et al., 2014), finding that it is able to achieve substantial
performance improvements and tackle more challenging models than existing approaches.

2. Divide, Conquer, and Combine

To aid exposition and formalize these programs, we will focus on the particular universal
PPS Anglican (Wood et al., 2014), but note that our ideas are applicable to any universal
PPS for which the program’s support is not necessarily fixed. The density of an Anglican
program is derived by executing it in a forward manner, drawing from sample statements
when encountered, and keeping track of density components originating from both the
sample and observe terms. Specifically, let {z;};"; = x1,..., 2y, represent the random
variables generated from the encountered sample statements, where the i-th encountered
sample statement has a lexical program address a;. More formal definition of the density is
provided in Appendix A.1. For clarity, we refer to the sequence ai.,, as the path of a trace
and x1.,, as the draws. A program with stochastic support means that the path aj.,, of
the program varies between different realizations: a different value for the path corresponds
to a different configuration of variables being sampled.

Unlike most existing inference approaches which directly target the full program density,
DCC breaks the problem into individual sub-problems with fixed support and tackles
them separately. Specifically, it divides the overall program into separate straight-line
sub-programs according to their execution paths, conquers each sub-program by running
inference locally, and combines the results together in a principled manner.

Divide The first step of DCC is to divide the given probabilistic program into its con-
stituent straight-line programs (SLPs), where each SLP is a partition of the overall program
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(let [z0 (sample (normal 0 2))

yl 9] #l1: 20 ~ (normal 0 2)
(if (< z0 0) z0<(‘)/ \z‘OZO
(let [z1 (sample (normal -5 2))]  #1,: 21~ (normal —5 2) #ly: 22 ~ (normal 5 2)
(observe (normal zl 2) yi1)
[z0 z1]) #lg: 23 ~ (normal 22 2)
(let [z2 (sample (normal 5 2)) v v
TAy =T#l, #a] | 14, = [#l0, #lr, #ls]|

z3 (sample (normal z2 2))]
(observe (normal z3 2) y1))
[z0 z2 z31)))

lx, = {z0,21} | lx;, = {=0, 22,23}

Figure 1: A branching model written in Anglican (left) and its execution trace (right).

corresponding to a particular sequence of sample addresses encountered during execution
i.e. a particular path af. n, - Bach SLP has a fixed support as the set of variables o .
it draws are fixed by the path i.e. the program always draws from the same set of sample
statements in the same fixed order. Using the shorthand Ay, := a]f:nz .» the set of of all possi-

ble execution paths is now given by {A;}X_ | where K must be countable (but may not be
finite) and k indexes the individual SLPs (the ordering of which is inconsequential). For the
example in Figure 1, this set consists of two paths Ay = [#11, #l4] and Ay = [#11, #l7, #lg],
where we use #l[; to denote the lexical address of the sample statement at the 4% line.

Dividing a program into its constituent SLPs implicitly partitions the overall target density
into disjoint regions, with each part defining a sub-model on the corresponding sub-space. The
density mg(z) of the SLP Ay, is defined with respect to the variables {x;}; " that are paired
with the addresses {ai}?:x’lk of A, which we only have access to the unnormalized version
~Yi(x). We use X, to denote the corresponding sub-space of Tling . and note that the union of

X}, for all k is the entire latent space defined by the overall program, X = Ule AX).. Unlike
previously, n, , and Ay are now, critically, deterministic variables so that the support of the
sub-model is fized. The formal definition of the density for a SLP is given in Appendix A.2.
Following our example in Figure 1, SLP A; corresponds to the sub-space X1 = {[x1,z2] €
R? | 21 < 0} and has the density v (z) = N (21;0,2)N (z2; —5, 2)N (y1; 72, 2)[[x1 < 0], while
Ajg corresponds to the sub-space Xy = {[x1, 22, 73] € R® | 21 > 0} and has density vo(x) =
N(21;0,2)N (x2;5,2)N (x3; 22, 2)N (y1; 23, 2)I[x1 > 0]. More details are in Appendix C.2.

Conquer Given the set of SLPs produced by the divide step, we now carry out the required
local inference for each. This forms our conquer step and its aim is to produce a set of
estimates for the individual SLP densities 7;(z) and corresponding marginal likelihoods
Zi.. As each SLP has a fixed support, this can be achieved with conventional inference
approaches, with a large variety of methods potentially suitable. Note that 7 (x) and Z
need not be estimated using the same approach, e.g. we may use an MCMC scheme to
estimate 7 (z) and then introduce a separate estimator for Zj. In short, we will propose the
use of a combination of Metropolis-with-Gibbs (MwG) and the parallel interacting Markov
adaptive importance sampling (PI-MAIS) algorithm of Martino et al. (2017) for performing
the local inference with further details in Appendix C.1.

An important component in carrying out this conquer step effectively, is to note that it
is not usually necessary to obtain equally high fidelity estimates for each SLP. Specifically,
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SLPs with small marginal likelihoods Zj only make a small contribution to the overall
density and thus do not require as accurate estimation as SLPs with large Zxs. As such, it
will typically be beneficial to carry out resource allocation as part of the conquer step, that
is, to generate our estimates in an online manner where at each iteration we use information
from previous samples to decide the best SLP(s) to update our estimates for. Further details
on this, along with our suggested approach for the local inference itself, are given in and C.3.

Combine The last stage of DCC is to combine the local estimates from the individual
SLPs to an overall estimate of the conditional distribution for the original program. For
this, we can simply note that, because the supports of the individual SLPs are disjoint and
their union is the complete program, we have () = .0 v (z) and Z = S, Zp, such
that the unnormalized density and marginal likelihoods are both additive. We then have

K K K 4 -

_ Zk:l V() _ Zk:l Zymy(z) ~ Zk:l Zy7g() 1
7T(.7,') - K - K ~ K ~ ( )
k=1 Zk k=1 Zk k=1 Zk

where 7 (z) and 7, are the SLP estimates generated during the conquer step.

When using an MCMC sampler for mi(x), 7x(x) will take the form of an empirical
. . . ~ o L Nk .
measure comprising of a set of samples, i.e. Tx(z) = 5 > % 9z¢ (2). If we instead use an
importance sampling or particle filtering based approach, our empirical measure will instead
compose of weighted samples. We note that in this case, the Z; term in the numerator
of (1) will cancel with any potential self-normalization term used in 7x(z), such that we can
instead think of using the estimate m(z) ~ (Yt Y&(2))/(Cr, Z)-

Specific strategies for implementing each component are introduced in Appendix C.

3. Experiments -

We compare DCC against Anglican’s importance 10¢ _xﬁ

sampling (IS) and Random-walk Metropolis Hasting
(RMH), a variant of the Lightweight Metropolis Hast-
ing (LMH) (Wingate et al., 2011), on two models given
the same computational resources over 15 runs. — DCC

1074 —— IS
—— IS from RMH

Squared Error
=
<

Gaussian Mixture model (GMM) The first model ~ * T 10°
is a GMM where the number of the mixtures as well as

the mean of each mixture are unknown. We first examine
the convergence of the overall log marginal likelihood Z,
and present the median (solid line) and 25% — 75% quan-
tiles (shaded area) of the squared error of the estimates
in Figure 2 (top) among three methods. As RMH cannot
be used directly here, we instead draw importance sam-
ples centered around the RMH chain in a manner akin to
PI-MAIS (Martino et al., 2017). It shows that DCC out- ' bce s

perforrgs both. baselines by many orders of .magl.litu.de. .To Figure 2: GMM

further investigate, we look into the posterior distribution

of K and compare the estimates of p(K = 5|y1.n,) in Figure 2 (bottom). DCC performs
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Figure 3: Estimates of the posterior distribution p(©|D) in the function induction model.

the most accurately and consistently whereas IS occasionally gives reasonable estimates and
RMH has a tendency to get stuck in one sub-model. More details are given in Appendix D.1.

Function Induction The second model is about function induction generated by a
Probabilistic Context Free Grammar (PCFG) (Manning et al., 1999). We specify the structure
of a candidate function using a PCFG and distribution over the function parameters, and
estimate the posterior of both for given data. Our PCFG model consists of four production
rules:
R={e—x|2°|sin(axe) | axe+bxe}

where x and z? are terminal symbols, a and b are unknown coefficient parameters, and e is
a non-terminal symbol. The rules have fixed probabilities pr. The model also has the prior
distributions for each parameter.

Conditioned on some training data, we want to infer the LML

posterior distribution of the function structure as well the DCC | -14.483 £ 0.219

underlying parameters, which can be used to do prediction IS 513.642 T 0.335

given the test data. We report the mean and one standard RMH | -19.870 £ 7.262

derivation of the test log marginal likelihood (LML) estimates
(the higher the better) in Table 1 and DCC outperforms the
baselines both in terms of predictive accuracy and stability. A
more qualitatively comparison of the posterior distribution are provided in Figure 3. DCC
samples capture the periodicity of the training data and in general interpolates them well,
while remaining uncertain in the regions of no data. Though RMH does find some good
functions, it becomes stuck in a particular mode and doe not fully capture the uncertainty
in the model, leading to poor predictive performance. See more results in Appendix D.2.

Table 1: LML comparison.

4. Conclusions

In this paper, we have proposed Divide, Conquer and Combine (DCC), a new inference
strategy for probabilistic programs with stochastic support. We have shown that by breaking
down the overall inference problem into a number of separate inferences of subprograms of
fixed support, the DCC framework can provide substantial performance improvements over
existing approaches which directly target the full program. To realize this potential, we have
shown how to implement a particular instance of DCC as an automated engine in the PPS
Anglican, and demonstrated its effectiveness through two example problems.
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Appendix A. Formal Definition of the Density of a Probabilistic Program
A.1. Density of the Probabilistic Program in Anglican

Anglican inherits its general syntax from Clojure, extending this with two special forms:
sample and observe, between which the distribution of the program is defined. sample
statements are used to draw random variables from provided probability distributions, while
observe statements are used to condition on data. Informally, they can be respectively
thought of as prior and likelihood terms.

The density of an Anglican program is derived by executing it in a forward manner,
drawing from sample statements when encountered, and keeping track of density components
originating from both the sample and observe terms. Specifically, let {x;}*; = z1,..., 2y,
represent the random variables generated from the encountered sample statements, where
the ¢-th encountered sample statement has a lexical program address a;, an input 7;, and a
density fo,(xi|n;). Analogously, let {y; }?il = Y1, -, Yn, represent the observed values of
the n, encountered observe statements, which have lexical addresses b; and corresponding
densities gy, (y;/¢;j), where ¢; is analogous to 7;. The program density is now given by
m(x) = v(x)/Z where

() 1= T S it T oy (w169), @)
i=1 Jj=1

2= [ TLsutailn) [ o, (o) v (3)
-1 j=1

and the associated reference measure is implicitly defined through the encountered sample
statements. Note here that everything (i.e. ng, ny, T1.m,, Ylings Olings Olings Min,, and ¢1;ny)
is a random variable, but each is deterministically calculable given z1.,,. See Rainforth
(2017, §4.3.2) for a more detailed introduction.

We denote an execution trace (i.e. realization) of an Anglican program by the sequence
of the addresses of sample statements and the corresponding variables, namely [a;, z;];* ;.
For clarity, we refer to the sequence aj.,, as the path of a trace and x1.,, as the draws.
A program with stochastic support can now be more formally defined as one for which the
path ay.,, varies between different realizations: a different value for the path corresponds to
a different configuration of variables being sampled.

A.2. Density of a Path

Dividing a program into its constituent SLPs implicitly partitions the overall target
density into disjoint regions, with each part defining a sub-model on the corresponding
sub-space. The unnormalized density 7 (x) of the straight-line program Ay, is defined with
respect to the variables {z;};*" that are paired with the addresses {a;}, " of Ay. We use
X}, to denote the corresponding sub-space of T1p,,- Note that the union of X}, for all k is

the entire latent space defined by the overall program, X = Uiil Xk. Analogously to (2),
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we now have that the density of SLP k is m(x) = v (2)/Zy where
() = y(@)[z € ]

N,k Ny k 4
=Tz € X [T Faui(@iln) [ o, (wilés). @
-1 j=1

Zy = / s, (5)

Unlike for (2), n, ; and Ay are now, critically, deterministic variables so that the support
of the problem is fixed. Though b; and n, ; may still be stochastic, these do not effect the
reference measure of the program (see Rainforth (2017, §4.4.3)) and so this does not cause a
problem when trying to perform MCMC sampling.

Appendix B. Inference Algorithms Accommodating Stochastic Support

Designing inference algorithms for models with stochastic support is typically very
challenging. Some basic inference schemes, such as importance sampling from the prior, can
be directly applied, but their performance deteriorates rapidly as the dimension of the model
increases. Particle based inference methods such as Sequential Monte Carlo (SMC) (Wood
et al., 2014; Doucet et al., 2001) can offer improvements for models with natural sequential
structure, but similarly rapidly succumb to the curse of dimensionality in the majority of cases.
Variational approaches, on the other hand, are typically ill-suited to this setting: though
some strategies have been proposed in Paige (2016), they require substantial approximations
to be made and are again only applicable to very simple problems due to difficulties with
gradient estimation.

Markov chain Monte Carlo (MCMC) methods (Metropolis and Ulam, 1949) have the
potential to tackle more difficult problems. In particular, reversible jump Markov chain
Monte Carlo (RIMCMC) (Green, 1995, 2003) methods allow one to perform MCMC on
problems with stochastic support by introducing proposals capable of transitioning between
configurations. However, their application is fundamentally challenging due to the difficulty
in designing proposals which can transition efficiently. Namely, proposing changes in the
variable configuration introduces new variables that are not present in the current sample.
Further, the posterior on the other variables may shift substantially. Consequently, one loses
a notion of locality when switching configurations; having a sample in a high density region
of one configuration typically provides little information about which regions have a high
density for another configuration. In turn, this means that it is extremely difficult to design
proposals which both efficiently move between configurations and maintain a high acceptance
rate; once in a high density region of one configuration, it becomes extremely difficult to
switch to another configuration. This is then compounded by the fact that RIMCMC only
estimates the relative mass of each configuration through the relative frequency of transitions,
giving a very slow mixing rate for the overall sampler.

The difficulty in applying RIMCMC is exacerbated in universal PPSs due to the desire
to construct proposals in an automated fashion. Thus, though RJMCMC has recently been
applied in the PPS context by Roberts et al. (2019), they rely on manual specification of the
proposal by the user, thereby losing most of the automation that forms a core part of the

10
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motivation for PPSs in the first place. Moreover, for many programs, it will be impractically
difficult to even hand-design such a proposal.

One MCMC method that can be fully automated for PPSs is the Lightweight Metropolis
Hastings algorithm (LMH) of Wingate et al. (2011) and its extensions (Ritchie et al., 2016;
Tolpin et al., 2015), for which implementations are provides in a number of systems such
as Venture (Mansinghka et al., 2014), WebPPL (Goodman and Stuhlmiiller, 2014), and
Anglican (Wood et al., 2014). LMH is based around a Metropolis-within-Gibbs (MwG)
approach (Brooks et al., 2011) whereby one first samples a variable in the execution trace,
k € 1 : ng, uniformly at random and then proposes a MwG transition to this sample,
x, — ). Unlike in a standard MwG scheme, one must further now check if this transition
influences the downstream control flow of the program: we must check that the transition
does not cause the downstream path to change, i.e. that we have a;c+1:n;c = Qk+1:n,- When
the path remains the same, we can reuse the downstream draws xjy1.,, and, in turn, a
standard MwG accept-reject step. However, when the path changes, the downstream draws
no longer produce a valid execution trace. To account for this, the remainder of the trace is
instead redrawn afresh by simulating from the prior, such that the proposed trace is instead
{avw, @ q b {A@ 101, @, Ty 1.y ], Where [y, ) 14, ] is the new partial execution
trace generating by this redrawing. This new sample is now accepted or rejected in the
standard manner, except for an additional n,/n/, term in the acceptance ratio.

Though widely applicable, LMH relies on proposing from the prior whenever the con-
figuration changes for the downstream variables. This inevitably forms a highly inefficient
proposal (akin to importance sampling from the prior), such that LMH typically performs
very poorly for programs with stochastic support, particularly in high dimensions.

Appendix C. Details of DCC

We now outline a particular realization of our DCC framework that we have implemented
for Anglican, which can be used to perform inference in an automated fashion for any
input program of Anglican. For this, we suggest particular strategies for the individual
components left unspecified in the last section, emphasizing that these are not the only
possible choices. Specifically, we will propose the use of a combination of Metropolis-with-
Gibbs (MwG) and the parallel interacting Markov adaptive importance sampling (PI-MAIS)
algorithm of Martino et al. (2017) for performing the local inference, a dynamic model
discovery approach for establishing the SLPs, and a resource allocation approach based on
the exploration-exploration strategy introduced in Rainforth et al. (2018).

C.1. Local Estimators

Recall that the goal for the local inference is to estimate the local target density 7 (x)
(where we only have access to 7¢(z)), and the local marginal likelihood Zj. Straightforward
choices for this include (self-normalized) importance sampling and SMC as both return a
marginal likelihood estimate Zk However, knowing good proposals for these a priori is
challenging and, as we discussed in §B, naive choices like sampling from the prior are unlikely
to perform well.

Thankfully, each SLP has a fixed support, which means many of complications that
make inference challenging for universal PPSs no longer apply. In particular, we can use

11
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conventional MCMC samplers—such as MH, HMC, or MwG—to approximate 7 (x). Due to
a combination of restrictions from our underlying PPS and the fact that individual variable
types may be unknown or not even fixed, we have elected to use MwG in our implementation,
but note that more powerful inference approaches like HMC may be preferable when they
can be safely applied. To encourage sample diversity and assist in estimating Zj, (see below),
we further run N independent MwG samplers for each SLP.

As MCMC samplers do not directly provide an estimate for the marginal likelihood,
we must introduce a further estimator for Zi. For this, we use the PI-MAIS approach
of Martino et al. (2017). Though ostensibly an adaptive importance sampling algorithm,
PI-MALIS is based around using a set of N proposals each centered on the outputs of an
MCMC chain. We can thus also think of it as a method for generating marginal likelihood
estimates from a set of MCMC chains, which is what we require.

To be more precise, given a series of samples, %y 1.7,1.x, from N MwG chains run for T
iterations each on the SLP Ay, for each iteration of the chain PI-MAIS introduces a mixture
proposal distribution by using the combination of separate proposals (e.g. a Gaussian)
centered on each of these chains:

N
. 1 .
Qe (| Tre,1:n) = N E;Qk7t,n("$k7t,n)7 te{l: T} (6)
n

This can then be used to produce an importance sampling estimate for the target, with
Rao-Blackwellization typically applied across the mixture components, such that one draws
M samples separately from each gyt ,,, rather than NM samples from g ;. By proxy, this
also produces a marginal likelihood estimate Zk, which is equal to the empirical average of
the importance weights, where this average is taken of N, T, and M.

An interesting point of note is that one can use either the originally MCMC samples, or
the importance samples generated by the PI-MAIS for the estimate 7 (x). The relative meric
of these approaches depends on the exact problem (we will use the latter in our experiments).
For problems where the PI-MAIS forms an efficient adaptive importance sampler, the
estimate it produces will typically be preferable. However, in some cases, particularly
high-dimensional problems, this sampler may struggle, so that it is more effective to take
the original MCMC samples. Though it might seem that we are doomed to fail anyway
in such situations, as the struggling of the PI-MAIS estimator is likely to indicate our Zj,
estimates are poor, this is certainly not always the case. In particular, for many problems,
one SLP will dominate, i.e. Zg« > Zj4+ for some k*. Here we do not necessarily need an
accurate estimates of the Zj to achieve an overall good approximation of the posterior, we
need only identify the dominant Zj.

C.2. Extracting the SLPs

To divide a given model into its constituent sub-models expressed by SLPs, we need a
mechanism for discovering these sub-models automatically.

One possible approach (Chaganty et al., 2013; Nori et al., 2014) would be to analyze the
source code of the program defining the model using a static analysis, thereby extracting
the set of possible execution paths of the program at compilation time. However, this is a
difficult, and potentially impossible, feat to achieve for all possible programs in a universal
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PPS. In particular, it fails to deal with cases where the number of the sub-models is countably
infinite.

Because of these issues, we take an alternative approach based on discovering models
dynamically at run time. Not only does this circumvent the need for a complex static
program analysis, in settings where the number of potential models is too large to tractably
enumerate, it further provides a natural approach to ensuring we only investigate models
with a high potential to make a significant contribution to the overall density.

Our approach starts by executing the program forward for T iterations to generate
sample execution traces. This corresponds to drawing samples from the prior of the model.
The paths traversed by these sampled traces are recorded, and our set of SLPs is initialized
as that of these recorded paths. At subsequent iterations, after each local inference stage,
we then perform one global LMH proposal based on the sub-model Ag« that was chosen
to run local inference on, generating a new possible path Ag. If Ap corresponds to an
existing SLP, this sample is simply discarded. However, if it corresponds to an unseen
path, it is added to our stack of models as a new SLP. To avoid the rate of models being
generated outstripping our ability to perform inference on current models, this new SLP is
not considered a candidate for the resource allocation (as per the next section) until some
threshold for the number of times it has been proposed is reached. This also provides a
mechanism for providing distinct starting points for the N MCMC changes that will be run.

We note that in cases where there is a small number of discrete draws, it can sometimes
be beneficial to partition our SLPs further into separate models for distinct values of these
discrete variables to aid the mixing of the local MCMC sampler.

C.3. Resource Allocation

Given this dynamic set of candidate SLPs, we must now, at each iteration, choose a SLP
to perform local inference on. Though valid, it is not wise to evenly split our computational
resources evenly among all SLPs; it is more important to ensure we have accurate estimates
for SLPs with large Z;. To address this, we introduce a resource allocation scheme, based
on Rainforth et al. (2018).

The resource allocation scheme is based on an Upper Confidence Bound (UCB) scheme (Car-
pentier et al., 2015). Specifically, at each iteration we will update the estimate for the SLP
which has the largest utility, defined as

Uy = le ((1 — )T + 0p; + 51("32\/#) M)

where Ly is the number of times DCC has performed local inference on Ay, 75 is the “ex-
ploitation target” of Ay, (explained below) and 7y, = 7,/ max{7.x }, p; is a target exploration
term (explained below), and § and ( are hyper-parameters, adapted from Rainforth et al.
(2018, Eq. 6 in §5).

As proved in Rainforth et al. (2018, §5.1), the optimal asymptotic allocation strategy
is to choose each Ay in proportion to 7, = {/Z% 4+ (1 + k)o? where £ is a smoothness

hyper-parameter, Z; is the local marginal likelihood, and ai is the variance of the weights
of the individual samples used to generate Z;. Intuitively, this allocates resources not only
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Figure 4: We compare DCC (ours) against IS and RMH on the convergence of the log
marginal likelihood (4(a)) and the posterior distribution of the number of the
clusters (4(b)) over 15 independent runs. The ground truth of the log marginal
and the posterior probability p(K = 5|y1.n,) were estimated using a large number
of samples with a manually adapted proposal. In Figure 4(a), we show the squared
error of the log marginal likelihood estimates with the solid line being the median
and the shading region 25% — 75% quantiles. In Figure 4(b), we report the
estimated posterior probability of K = 5 of each run, where the true estimate is
around 0.9998. We see that DCC substantially outperforms the baselines for both.

to the SLPs with high marginal probability mass, but also to the ones having high variance
on our estimate of it. We normalize 7; by the maximum of 71.x as the reward function in
UCB is usually in [0, 1].

The target exploration term p; is a subjective tail-probability estimate on how much
the local inference could improve in estimating the local marginal likelihood if given more
computations. This is motivated by the fact that estimating Z; accurately is difficult,
especially at the early stage of inference. One might miss substantial modes if only relying
on optimism boost to undertake exploration. As per Rainforth et al. (2018), we realize
this insight by extracting additional information from the log weights. Namely, we define
Pr := P(p(T,) > wy) ~ 1 — Ui(logwy,)', which means the probability of obtaining at
least one sample with weight w that exceeds some threshold weight wy, if provided with Ty
“look-ahead” samples. Here Wy (-) is a cumulative density estimator of the log local weights,
T, is a hyperparameter, and wy, can be set to the maximum weight so far among all SLPs.
If Py is high, it implies that there is a high chance that one can produce higher estimates of
Z. given more budget.
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Appendix D. Experiment Details
D.1. Gaussian Mixture Model

We first consider a Gaussian Mixture Model where the number of clusters is unknown.
Specifically, we have
K ~ Uniform{ K in, Kmin+1, ..., Kmaz}

(b—a)(k—l)ﬁ(b—a)(’f)) fork=1...K,

K ’ K
zn|K ~ Cat({1/K,...,1/K}) forn=1...N,,
Un|(zn=F, ) ~ N (g, o) forn=1...N,.

/J,k’KNU (a—i—

Here K is the number of clusters, . are the cluster centers, z1.y, are the cluster as-
signments, y1.n, is the observed data, and all other terms are fixed parameters. When
conducting inference, we can analytically marginalize out the cluster assignments 2.y, and
perform inference on K and py.x only.

To benchmark DCC, we generated a synthetic dataset of y1.150 for an one-dimensional
mixture of five clusters by setting Kpin = 2, Kpmez = 8, a =0, b =20 and 01.x,,,, = 0.1.
Note that there are seven sub-models for this dataset. We compare the performance of our
DCC method against two baselines: Anglican’s importance sampling (IS) and RMH (Le,
2015) (a variant of LMH) implementations, taking the same computational budget (one
million samples in total).

We first examine the convergence of the overall log marginal likelihood Z. As RMH
cannot be used directly here, we instead draw importance samples centered around the
RMH chain in a manner akin to PI-MAIS. Figure 4(a) shows that DCC outperforms both
baselines by many orders of magnitude.

To further investigate the source of these improvements, we further look into the posterior
distribution of K and report the estimates of p(K = 5|y1.n,) in Figure 4(b). We see that IS
occasionally gives reasonable estimates (6 out of 15 runs) but the performance is unstable.
This is due to the fact that the posterior mass mostly concentrated within one sub-model
(K = 5), and further highly peaked within that model. The IS scheme evenly spreads
computation resources among the different sub-models and, moreover, struggles to make
effective proposals within these models.

RMH, on the other hand, has a tendency to become stuck in one sub-model, and it did

not accurately estimate p(K = 5|yi.n,) for any of the runs.

D.2. Function Induction

Function induction is an important task for automated machine learning and has been
investigated in many scenarios (Duvenaud et al., 2013; Kusner et al., 2017). In PPSs, it is
typically tackled using a probabilistic context free grammar (PCFG) (Manning et al., 1999).
We specify the structure of a candidate function using a PCFG and distribution over the
function parameters, and estimate the posterior of both for given data.

Our PCFG model consists of four production rules:

R={e—ux|2®|sin(axe) | axe+bre}
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Figure 5: Posterior distribution p(©|D) estimated by DCC (ours), IS and RMH under the
same computational budget. Blue points represent the observed data D and
orange ones the test data D’. Grey lines are the posterior samples of the functions
from one run for the three algorithms.

DCC (ours) IS RMH
LML | -14.483 + 0.219 | -213.642 & 0.335 | -19.870 + 7.262

Table 2: Mean and one standard derivation of the MLL over 15 independent runs. (The
higher, the better.)

where x and z? are terminal symbols, a and b are unknown coefficient parameters, and e is
a non-terminal symbol. The rules have fixed probabilities pr. The model also has the prior
distributions for each parameter.

To generate a function in this model, we first sample its structure from the PCFG R.
Next, we decide parameters in the sampled structure, by treating the parameters as all
different variables and sampling them from the prior distribution. Let © be the collection of
all the latent variables used in this generative process. That is, © consists of the discrete
variables recording the choices of the grammar rules and the coefficients in the sampled
structure. Conditioned on the training data D, we want to infer the posterior distribution

p(©]D), and calculate the predictive distribution for the test data D' = {(z7, y}) ;V:l'

In our experiment, we control the number of sub-models by requiring that the model use
the PCFG in a restricted way: a sampled function structure should have depth at most 3
and cannot use the plus rule consecutively. We generate a synthetic dataset of 30 training
data points (Figure 5, blue points) and compare the performance of DCC against IS and
RMH on estimating the posterior distribution and the posterior predictive under the same
computational budget (one million samples in total) over 15 independent runs.

Figure 5 shows the posterior samples generated by DCC, IS and RMH over one run,
with the training data D marked blue and the test data D’ in orange. The DCC samples
capture the periodicity of the training data and in general interpolates them well, while
remaining uncertain in the regions of no data. This indicates good inference results on both
the structure of a function (determined by the PCFG) and the coefficients of the structure.
Though RMH does find some good functions, it becomes stuck in a particular mode and doe
not fully capture the uncertainty in the model, leading to poor predictive performance.
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Table 2 shows the test log marginal likelihood (LML) estimates of the three algorithms,
i.e. LML :=log Z;VZI Jo p(y;|25,©)p(0]|D)dO. The LML measures how likely the predicted
g5 on each test zj is to be the true y; in log scale. We compared the LML for the three
algorithms over 15 independent runs. DCC clearly outperforms the baselines both in terms
of predictive accuracy and stability. The samples from IS approximate the posterior badly
so unsurprisingly its LML is low. RMH has a LML “close” to DCC, though the probability
is 200 smaller in non-log space. A more substantial problem in RMH is its high variance of
the LML. This is caused by it struggling to move and the results from runs to runs vary

significantly.

To test the effectiveness of the resource alloca-
tion strategy of DCC, we also compare computational
resource spent for each sub-model A; with the con-
vergence of the local marginal likelihood estimate
log Zj, of Ag. Our comparison is shown in Figure 6,
which implies that DCC indeed spends more compu-
tational resource on sub-models with high probability
mass, while also exploring the other sub-models oc-
casionally. For our training data D, four sub-models
(out of 26) contain most of the probability mass.
Two of them (models 15, 18) are functions of the
form f(z) = aix + azsin(azr?) modulo symmetry,
which is used to generate D. The other two sub-
models (models 23,24) are functions having the form

-60
-80 k=15
o k=18
© -100 — k=23
k=24
-120 1z
=
-140—5 =
0 25000 45000 70000

Total Cost
Figure 6: DCC’s estimate of the lo-
cal log marginal likelihood
log Zj, for each sub-model.

f(x) = ay sin(azr) + agsin(asz?), which can also match the data well in the region of the
training data (—1.5,1.5) (under appropriately chosen a;’s).
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