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Abstract

Lipschitz constraints under L2 norm on deep neural networks are useful for prov-
able adversarial robustness bounds, stable training, and Wasserstein distance esti-
mation. While heuristic approaches such as the gradient penalty have seen much
practical success, it is challenging to achieve similar practical performance while
provably enforcing a Lipschitz constraint. In principle, one can design Lipschitz
constrained architectures using the composition property of Lipschitz functions,
but Anil et al. [2] recently identified a key obstacle to this approach: gradient
norm attenuation. They showed how to circumvent this problem in the case of
fully connected networks by designing each layer to be gradient norm preserving.
We extend their approach to train scalable, expressive, provably Lipschitz convo-
lutional networks. In particular, we present the Block Convolution Orthogonal
Parameterization (BCOP), an expressive parameterization of orthogonal convolu-
tion operations. We show that even though the space of orthogonal convolutions is
disconnected, the largest connected component of BCOP with 2n channels can rep-
resent arbitrary BCOP convolutions over n channels. Our BCOP parameterization
allows us to train large convolutional networks with provable Lipschitz bounds.
Empirically, we find that it is competitive with existing approaches to provable
adversarial robustness and Wasserstein distance estimation.

1 Introduction

There has been much interest in training neural networks with known upper bounds on their Lipschitz
constants under L2 norm2. Enforcing Lipschitz constraints can provide provable robustness against
adversarial examples [47], improve generalization bounds [45], and enable Wasserstein distance
estimation [2, 3, 21]. Heuristic methods for enforcing Lipschitz constraints, such as the gradient
penalty [21] and spectral norm regularization [51], have seen much practical success, but provide no
guarantees about the Lipschitz constant. It remains challenging to achieve similar practical success
while provably satisfying a Lipschitz constraint.

In principle, one can design provably Lipschitz-constrained architectures by imposing a Lipschitz
constraint on each layer; the Lipschitz bound for the network is then the product of the bounds
for each layer. Anil et al. [2] identified a key difficulty with this approach: because a layer with
a Lipschitz bound of 1 can only reduce the norm of the gradient during backpropagation, each
step of backprop gradually attenuates the gradient norm, resulting in a much smaller Jacobian for
the network’s function than is theoretically allowed. We refer to this problem as gradient norm
attenuation. They showed that Lipschitz-constrained ReLU networks were prevented from using
their full nonlinear capacity due to the need to prevent gradient norm attenuation. To counteract this
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2Unless specifically specified, we refer to Lipschitz constant as the Lipschitz constant under L2 norm.
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problem, they introduced gradient norm preserving (GNP) architectures, where each layer preserves
the gradient norm. For fully connected layers, this involved constraining the weight matrix to be
orthogonal and using a GNP activation function called GroupSort. Unfortunately, the approach of
Anil et al. [2] only applies to fully-connected networks, leaving open the question of how to constrain
the Lipschitz constants of convolutional networks.

As many state-of-the-art deep learning applications rely on convolutional networks, there have been
numerous attempts for tightly enforcing Lipschitz constants of convolutional networks. However,
those existing techniques either hinder representational power or induce difficulty in optimization.
Cisse et al. [12], Tsuzuku et al. [47], Qian and Wegman [39] provide loose bounds on the Lipschitz
constant that can limit the parameterizable region. Gouk et al. [20] obtain a tight bound on the
Lipschitz constant, but tend to lose expressive power during training due to vanishing singular values.
The approach of Sedghi et al. [44] is computationally intractable for larger networks.

In this work, we introduce convolutional GNP networks with an efficient parameterization of orthogo-
nal convolutions by adapting the construction algorithm from Xiao et al. [50]. This parameterization
avoids the issues of loose bounds on the Lipschitz constant and computational intractability observed
in the aforementioned approaches. Furthermore, we provide theoretical analysis that demonstrates
the disconnectedness of the orthogonal convolution space, and how our parameterization alleviates
the optimization challenge engendered by the disconnectedness.

We evaluate our GNP networks in two situations where expressive Lipschitz-constrained networks are
of central importance. The first is provable norm-bounded adversarial robustness, which is the task of
classification and additionally certifying that the network’s classification will not change under any
norm-bounded perturbation. Due to the tight Lipschitz properties, the constructed GNP networks can
easily give non-trivial lower bounds on the robustness of the network’s classification. We demonstrate
that our method outperforms the state-of-the-art in provable deterministic robustness under L2 metric
on MNIST and CIFAR10. The other application is Wasserstein distance estimation. Wasserstein
distance estimation can be rephrased as a maximization over 1-Lipschitz functions, allowing our
Lipschitz-constrained networks to be directly applied to this problem. Moreover, the restriction to
GNP we impose is not necessarily a hindrance, as it is shown by Gemici et al. [18] that the optimal
1-Lipschitz function is also GNP almost everywhere. We demonstrate that our GNP convolutional
networks can obtain tighter Wasserstein distance estimates than competing architectures.

2 Background

2.1 Lipschitz Functions under L2 Norm

In this work, we focus on Lipschitz functions with respect to the L2 norm. We say a function
f : Rn → Rm is l-Lipschitz if and only if

||f(x1)− f(x2)||2 ≤ l||x1 − x2||2,∀x1,x2 ∈ Rn (1)

We denote Lip(f) as the smallest K for which f is l-Lipschitz, and call it the Lipschitz constant of
f . For two Lipschitz continuous functions f and g, the following property holds:

Lip(f ◦ g) ≤ Lip(f) Lip(g) (2)

The most basic neural network design consists of a composition of linear transformations and non-
linear activation functions. The property above (Equation 2) allows one to upper-bound the Lipschitz
constant of a network by the product of the Lipschitz constants of each layer. However, as modern
neural networks tend to possess many layers, the resultant upper-bound is likely to be very loose, and
constraining it increases the risk of diminishing the Lipschitz constrained network capacity that can
be utilized.

2.2 Gradient Norm Preservation (GNP)

Let y = f(x) be 1-Lipschitz, andL be a loss function. The norm of the gradient after backpropagating
through a 1-Lipschitz function is no larger than the norm of the gradient before doing so:

‖∇xL‖2 = ‖(∇yL)(∇xf)‖2 ≤ ‖∇yL‖2 ‖∇xf‖2 ≤ Lip(f) ‖∇yL‖2 ≤ ‖∇yL‖2

As a consequence of this relation, the gradient norm will likely be attenuated during backprop if
no special measures are taken. One way to fix the gradient norm attenuation problem is to enforce
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each layer to be gradient norm preserving (GNP). Formally, f : Rn 7→ Rm is GNP if and only if its
input-output Jacobian, J ∈ Rm×n, satisfies the following property:∥∥JTg∥∥

2
= ||g||2,∀g ∈ G.

where G ⊆ Rm defines the possible values that the gradient vector g can take. Note that when
m = n, this condition is equivalent to orthogonality of J . In this work, we consider a slightly stricter
definition where G = Rm because this allows us to directly compose two GNP (strict) functions
without reasoning about their corresponding G. For the rest of the paper, unless specified otherwise, a
GNP function refers to this more strict definition.

Based on the definition of GNP, we can deduce that GNP functions are 1-Lipschitz in the 2-norm.
Since the composition of GNP functions is also GNP, one can design a GNP network by stacking GNP
building blocks. Another favourable condition that GNP networks exhibit is dynamical isometry [50,
36, 37] (where the entire distribution of singular values of input-output Jacobian is close to 1), which
has been shown to improve training speed and stability.

2.3 Provable Norm-bounded Adversarial Robustness

We consider a classifier f with T classes that takes in input x and produces a logit for each of the
classes: f(x) = [y1 y2 · · · yT ]. An input data point x with label t ∈ {1, 2, · · · , T} is provably
robustly classified by f under perturbation norm of ε if

arg max
i

f(x + δ)i = t, ∀δ : ||δ||2 ≤ ε.

The margin of the prediction for x is given byMf (x) = max(0, yt−maxi 6=t yi). If f is l-Lipschitz,
we can certify that f is robust with respect to x if

√
2lε <Mf (x) (See Appendix P for the proof).

2.4 Wasserstein Distance Estimation

Wasserstein distance is a distance metric between two probability distributions [38]. The Kantorovich-
Rubinstein formulation of Wasserstein distance expresses it as a maximization problem over 1-
Lipschitz functions [3]:

W (P1, P2) = sup
f :Lip(f)≤1

(
E

x∼P1(x)
[f(x)]− E

x∼P2(x)
[f(x)]

)
. (3)

In Wasserstein GAN architecture, Arjovsky et al. [3] proposed to parametrize the scalar-valued
function f using a Lipschitz constrained network, which serves as the discriminator that estimates
the Wasserstein distance between the generator and data distribution. One important property to
note is that the optimal scalar function f is GNP almost everywhere (See Corollary 1 in Gemici
et al. [18]). Naturally, this property favours the optimization approach that focuses on searching over
GNP functions. Indeed, Anil et al. [2] found that GNP networks can achieve tighter lower bounds
compared to non-GNP networks.

3 Orthogonal Convolution Kernels

The most crucial step to building a GNP convolutional network is constructing the GNP convolution
itself. Since a convolution operator is a linear operator, making the convolution kernel GNP is
equivalent to making its corresponding linear operator orthogonal. While there are numerous
methods for orthogonalizing arbitrary linear operators, it is not immediately clear how to do this for
convolutions, especially when preserving kernel size. We first summarize the orthogonal convolution
representations from Kautsky and Turcajová [27] and Xiao et al. [50] (Section 3.1). Then, we
analyze the topology of the space of orthogonal convolution kernels and demonstrate that the space is
disconnected (with at least O(n2) connected components for a 2× 2 2-D convolution layer), which
is problematic for gradient-based optimization methods because they are confined to one component
(Section 3.2). Fortunately, this problem can be fixed by increasing the number of channels: we
demonstrate that a single connected component of the space of orthogonal convolutions with 2n
channels can represent any orthogonal convolution with n channels (Section 3.3).
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Figure 1: Visualization of a 1-D orthogonal convolution, [P I − P ], applied to a 1-D input tensor
v ∈ R2×3 with a length of 3 and channel size of 2. P ∈ R2×2 here is the orthogonal projection
onto the x-axis, which makes I − P the complementary projection onto the y-axis. Each cell of v
corresponds to one of the three spatial locations, and the vector contained within it represents the
vector along the channel dimension in said spatial location.

3.1 Constructing Orthogonal Convolutions

To begin analysing orthogonal convolution kernels, we must first understand the symmetric projector,
which is a fundamental building block of orthogonal convolutions. An n × n matrix P is defined
to be a symmetric projector if P = P 2 = PT . Geometrically, a symmetric projector P represents
an orthogonal projection onto the range of P . From this geometric interpretation, it is not hard to
see that the space of projectors has n+ 1 connected components, based on the rank of the projector
(for a more rigorous treatment, see Remark 4.1 in Appendix K). For notation simplicity, we denote
P(n) as the set of all n× n symmetric projectors and P(n, k) as the subset of all n× n symmetric
projectors with ranks of k.

Now that the concept of symmetric projectors has been established, we will consider how to construct
1-D convolutional kernels. As shown by Kautsky and Turcajová [27], all 1-D orthogonal convolution
kernels with a kernel size K can be represented as:

W(H,P1:K−1) = H� [P1 (I − P1)]� · · ·� [PK−1 (I − PK−1)] (4)
where H ∈ O(n) is an orthogonal matrix of n× n, Pi ∈ P(n), and � represents block convolution,
which is convolution using matrix multiplication rather than scalar multiplication:

[X1 X2 · · · Xp]� [Y1 Y2 · · · Yq] = [Z1 Z2 · · · Zp+q−1]

with Zi =
∑∞
i′=−∞Xi′Yi−i′ , where the out-of-range elements are all zero (e.g., X<1 = 0, X>p =

0, Y<1 = 0, Y>q = 0). Unlike regular convolutions, the block convolution does not commute since
matrix multiplication does not commute. One important property of block convolution is that it
corresponds to composition of the kernel operators. That is, X ∗ (Y ∗ v) = (X�Y ) ∗ v, where
A ∗ v represents the resulting tensor after applying convolution A to v. This composition property
allows us to decompose the representation (Equation 4) into applications of orthogonal convolutions
with kernel size of 2 (Figure 1 demonstrates the effect of it) along with a channel-wise orthogonal
transformation (H).

Xiao et al. [50] extended the 1-D representation to the 2-D case using alternating applications of
orthogonal convolutions of size 2:

W(H,P1:K−1, Q1:K−1) = H�

[
P1

I − P1

]
� [Q1 I −Q1]� · · ·

· · ·�
[

PK−1

I − PK−1

]
� [QK−1 I −QK−1]

(5)

where Z = X�Y is defined similarly to the 1-D case with Zij =∑∞
i′=−∞

∑∞
j′=−∞ [Xi′,j′Yi−i′,j−j′ ], and Pi, Qi ∈ P(n). Unlike in 1-D, we discovered that

this 2-D representation could only represent a subset of 2-D orthogonal convolutions (see Appendix
O for an example). However, we do not know whether simple modifications to this parameterization
will result in a complete representation of all 2-D orthogonal convolutions (see Appendix O for
details on the open question).

3.2 Topology of the Orthogonal Convolution Space

Before utilizing this space of orthogonal convolutions, we would like to analyze some fundamental
properties of this space. Since P(n) has n+ 1 connected components and orthogonal convolutions
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Algorithm 1: Block Convolution Orthogonal Parameterization (BCOP)

Input: co × ci unconstrained matrix O, ci ×
⌊
ci
2

⌋
unconstrained matrices Mi, Ni for i from 1

to k − 1, assuming ci ≥ co
Result: Orthogonal Convolution Kernel W ∈ Rco×ci×K×K
H ← Orthogonalize(O); . any differentiable orthogonalization procedure (e.g., Björck [5]);
Initialize W as a 1× 1 convolution with W [0, 0] = H;
for i from 1 to K − 1 do

RP , RQ ← Orthogonalize(Mi), Orthogonalize(Ni);
P, Q← RPR

T
P , RQR

T
Q; . Construct symmetric projectors with half of the full rank;

W ←W�

[
P

I − P

]
� [Q I −Q]

end
Output: W

are constructed out of many projectors, it is to be expected that there are many connected components
in the space of orthogonal convolutions. Indeed, we see the first result in 1-D (Theorem 1).

Theorem 1 (Connected Components of 1-D Orthogonal Convolution). The 1-D orthogonal convolu-
tion space is compact and has 2(K − 1)n+ 2 connected components, where K is the kernel size and
n is the number of channels.

In 2-D, we analyze case of kernel size of 2 (2× 2 kernels) and show that the number of connected
components grows at least quadratically with respect to the channel size:

Theorem 2 (Connected Components of 2-D Orthogonal Convolution with K = 2). 2-D orthogonal
convolution space with a kernel size of 2× 2 has at least 2(n+ 1)2 connected components, where n
is the number of channels.

The disconnectedness in the space of orthogonal convolution imposes an intrinsic difficulty in
optimizing over the space of orthogonal convolution kernels, as gradient-based optimizers are
confined to their initial connected component. We refer readers to Appendix K for the proof of
Theorem 1 and Appendix M for the proof of Theorem 2.

3.3 Block Convolution Orthogonal Parameterization (BCOP)

To remedy the disconnectedness issue, we show the following:

Theorem 3 (BCOP Construction with Auxiliary Dimension). For any convolution C =
W(H,P1:K−1, Q1:K−1) with input and output channels n and Pi, Qi ∈ P(n), there exists a con-
volution C ′ = W(H ′, P ′1:K−1, Q

′
1:K−1) with input and output channels 2n constructed from only

n-rank projectors (P ′i , Q
′
i ∈ P(2n, n)) such that C ′(x)1:n = C(x1:n). That is, the first n channels

of the output is the same with respect to the first n channels of the input under both convolutions.

The idea behind this result is that some projectors in P(2n, n) may use their first n dimensions to
represent P(n) and then use the latter n dimensions in a trivial capacity so that the total rank is n (see
Appendix N for the detailed proof).

Theorem 3 implies that all connected components of orthogonal convolutions constructed by W
with n channels can all be equivalently represented in a single connected component of convolutions
constructed byW with 2n channels by only using projectors that have rank n. (This comes at the
cost of requiring 4 times as many parameters.)

This result motivates us to parameterize the connected subspace of orthogonal convolutions defined by
W(H, P̃1:K−1, Q̃1:K−1) where P̃i ∈ P(n,

⌊
n
2

⌋
) and Q̃i ∈ P(n,

⌊
n
2

⌋
). We refer to this method as the

Block Convolution Orthogonal Parameterization (BCOP). The procedure for BCOP is summarized in
Algorithm 1 (See Appendix H for implementation details).
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4 Related Work

4.1 Lipschitz Constrained Convolutions

Reshaped Kernel Method (RK) This method reshapes a convolution kernel with dimensions
(co, ci, k, k) into a (co, k

2ci) matrix. The Lipschitz constant (or spectral norm) of a convolution
operator is bounded by a constant factor of the spectral norm of its reshaped matrix [12, 47, 39],
which enables bounding of the convolution operator’s Lipschitz constant by bounding that of the
reshaped matrix. However, this upper-bound can be conservative, causing a bias towards convolution
operators with low Lipschitz constants, limiting the method’s expressive power. In this work, we
strictly enforce orthogonality of the reshaped matrix rather than softly constrain it via regularization,
as done in Cisse et al. [12]. We refer to this variant as reshaped kernel orthogonalization, or RKO.

One-Sided Spectral Normalization (OSSN) This variant of spectral normalization [35] scales the
kernel so that the spectral norm of the convolution operator is at most 1 [20]. This is a projection
under the matrix 2-norm but not the Frobenius norm. It is notable because when using Euclidean
steepest descent with this projection, such as in constrained gradient-based optimization, there is
no guarantee to converge to the correct solution (see an explicit example and further analysis in
Appendix A). In practice, we found that projecting during the forward pass (as in Miyato et al. [35])
yields better performance than projecting after each gradient update.

Singular Value Clipping and Masking (SVCM) Unlike spectral normalization, singular value
clipping is a valid projection under the Frobenius norm. Sedghi et al. [44] demonstrates a method to
perform an approximation of the optimal projection to the orthogonal kernel space. Unfortunately,
this method needs many expensive iterations to enforce the Lipschitz constraint tightly, making this
approach computationally intractable in training large networks with provable Lipschitz constraints.

Comparison to BCOP OSSN and SVCM’s run-time depend on the input’s spatial dimensions,
which prohibits scalability (See Appendix C for a time complexity analysis). RKO does not guarantee
an exact Lipschitz constant, which may cause a loss in expressive power. Additionally, none of these
methods guarantee gradient norm preservation. BCOP avoids all of the issues above.

4.2 Provable Adversarial Robustness

Certifying the adversarial robustness of a network subject to norm ball perturbation is difficult. Exact
certification methods using mixed-integer linear programming or SMT solvers scale poorly with
the complexity of the network [26, 10]. Cohen et al. [14] and Salman et al. [42] use an estimated
smoothed classifier to achieve very high provable robustness with high confidence. In this work, we
are primarily interested in providing deterministic provable robustness guarantees.

Recent work has been focusing on guiding the training of the network to be verified or certified
(providing a lower-bound on provable robustness) easier [48, 49, 17, 16, 22]. For example, Xiao
et al. [49] encourage weight sparsity and perform network pruning to speed up the exact verification
process for ReLU networks. Wong et al. [48] optimize the network directly towards a robustness
lower-bound using a dual optimization formulation.

Alternatively, rather than modifying the optimization objective to incentivize robust classification,
one can train networks to have a small global Lipschitz constant, which allows an easy way to certify
robustness via the output margin. Cohen et al. [13] deploy spectral norm regularization on weight
matrices of a fully connected network to constrain the Lipschitz constant and certify the robustness of
the network at the test time. Tsuzuku et al. [47] estimate an upper-bound of the network’s Lipschitz
constant and train the network to maximize the output margin using a modified softmax objective
function according to the estimated Lipschitz constant. In contrast to these approaches, Anil et al.
[2] train fully connected networks that have a known Lipschitz constant by enforcing gradient norm
preservation. Our work extends this idea to convolutional networks.

5 Experiments

The primary point of interest for the BCOP method (Section 3.3) is its expressiveness compared
against other common approaches of paramterizing Lipschitz constrained convolutions (Section 4).
To study this, we perform an ablation study on two tasks using these architectures: The first task is
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provably robust image classification tasks on two datasets (MNIST [30] and CIFAR10 [29])3. We
find our method outperformed other Lipschitz constrained convolutions under the same architectures
as well as the state-of-the-art in this task (Section 5.2). The second task is 1-Wasserstein distance
estimation of GANs where our method also outperformed other competing Lipschitz-convolutions
under the same architecutre (Section 5.3).

5.1 Network Architectures and Training Details

A benefit of training GNP networks is that we enjoy the property of dynamical isometry, which
inherently affords greater training stability, thereby reducing the need for common techniques that
would otherwise be difficult to incorporate into a GNP network. For example, if a 1-Lipschitz residual
connection maintains GNP, the residual block must be an identity function with a constant bias (see
an informal justification in Appendix D.1). Also, batch normalization involves scaling the layer’s
output, which is not necessarily 1-Lipschitz, let alone GNP. For these reasons, residual connections
and batch normalization are not included in the model architecture. We also use cyclic padding to
substitute zero-padding since zero-padded orthogonal convolutions must be size 1 (see an informal
proof in Appendix D.2). Finally, we use “invertible downsampling” [24] in replacement of striding
and pooling to achieve spatial downsampling while maintaining the GNP property. The details for
these architectural decisions are in Appendix D.

Because of these architectural constraints, we base our networks on architectures that do not in-
volve residual connections. For provable robustness experiments, we use the “Small” and “Large”
convolutional networks from Wong et al. [48]. For Wasserstein distance estimation, we use the
fully convolutional critic from Radford et al. [40] (See Appendix E, F for details). Unless specified
otherwise, each experiment is repeated 5 times with mean and standard deviation reported.

5.2 Provable Adversarial Robustness

5.2.1 Robustness Evaluation

For adversarial robustness evaluation, we use the L2-norm-constrained threat model [8], where the
adversary is constrained to L2-bounded perturbation with the L2 norm constrained to be below ε. We
refer to clean accuracy as the percentage of un-perturbed examples that are correctly classified and
robust accuracy as the percentage of examples that are guaranteed to be correctly classified under the
threat model. We use the margin of the model prediction to determine a lower bound of the robust
accuracy (as described in Section 2.3). We also evaluate the empirical robustness of our model around
under two gradient-based attacks and two decision-based attacks: (i) PGD attack with CW loss [33, 7],
(ii) FGSM [46], (iii) Boundary attack (BA) [6], (iv) Point-wise attack (PA) [43]. Specifically, the
gradient-based methods ((i) and (ii)) are done on the whole test dataset; the decision-based attacks
((iii) and (iv)) are done only on the first 100 test data points since they are expensive to run.4

5.2.2 Comparison of Different Methods for Enforcing Spectral Norm of Convolution

We compare the performance of OSSN, RKO, SVCM, and BCOP on margin training for adversarial
robustness on MNIST and CIFAR10. To make the comparison fair, we ensure all the methods have
a tight Lipschitz constraint of 1. For OSSN, we use 10 power iterations and keep a running vector
for each convolution layer to estimate the spectral norm and perform the projection during every
forward pass. For SVCM, we perform the singular value clipping projection with 50 iterations after
every 100 gradient updates to ensure the Lipschitz bound is tight. For RKO, instead of using a
regularization term to enforce the orthogonality (as done in Cisse et al. [12]), we use Björck [5] to
orthogonalize the reshaped matrix before scaling down the kernel. We train two different convolutional
architectures with the four aforementioned methods of enforcing Lipschitz convolution layers on
image classification tasks. To achieve large output margins, we use first-order, multi-class, hinge loss
with a margin of 2.12 on MNIST and 0.7071 on CIFAR10.

Our approach (BCOP) outperforms all competing methods across all architectures on both MNIST
and CIFAR10 (See Table 1 and Appendix I, Table 7). To understand the performance gap, we visualize
the singular value distribution of a convolution layer before and after training in Figure 2. We observe

3We only claim in the deterministic case as recent approaches have much higher probabilistic provable
robustness [14, 42].

4We use foolbox [41] for the two decision-based methods.
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Figure 2: Singular value distribution at initialization (blue) and at the end of training (orange) for the
second layer of the “Large” baseline using different methods to enforce Lipschitz convolution.

Dataset OSSN RKO SVCM BCOP

MNIST
(ε = 1.58)

Small Clean 96.86± 0.13 97.28± 0.08 97.24± 0.09 97.54± 0.06
Robust 42.95± 1.09 43.58± 0.44 28.94± 1.58 45.84± 0.90

Large Clean 98.31± 0.03 98.44± 0.05 97.93± 0.05 98.69± 0.01
Robust 53.77± 1.02 55.18± 0.46 38.00± 1.82 56.37± 0.33

CIFAR10
(ε = 36/255)

Small Clean 62.18± 0.66 61.77± 0.63 62.39± 0.46 64.53± 0.30
Robust 48.03± 0.54 47.46± 0.53 47.59± 0.56 50.01± 0.21

Large Clean 67.51± 0.47 70.01± 0.26 69.65± 0.38 72.16± 0.23
Robust 53.64± 0.49 55.76± 0.16 53.61± 0.51 58.26± 0.17

Table 1: Clean and robust accuracy on MNIST and CIFAR10 using different Lipschitz convolutions.
The provable robust accuracy is evaluated at ε = 1.58 for MNIST and at ε = 36/255 for CIFAR10.

Dataset BCOP-Large FC-3 KW-Large KW-Resnet
MNIST

(ε = 1.58)
Clean 98.69± 0.01 98.71± 0.02 88.12 -
Robust 56.37± 0.33 54.46± 0.30 44.53 -

CIFAR10
(ε = 36/255)

Clean 72.16± 0.23 62.60± 0.39 59.76 61.20
Robust 58.26± 0.17 49.97± 0.35 50.60 51.96

Table 2: Comparison of our convolutional networks and the fully connected baseline in Anil et al.
[2] (FC-3) against provably robust models in previous works. The numbers for KW-Large and
KW-Resnet are directly obtained from Table 4 of in the Appendix of their paper [48].

that OSSN and RKO push many singular values to 0, suggesting that the convolution layer is not fully
utilizing the expressive power it is capable of. This observation is consistent with our hypothesis
that these methods bias the convolution operators towards sub-optimal regions caused by the loose
Lipschitz bound (for RKO) and improper projection (for OSSN). In contrast, SVCM’s singular values
started mostly near 0.5 and some of them were pushed up towards 1, which is consistent with the
procedure being an optimal projection. BCOP has all of its singular values at 1 throughout training
by design due to its gradient norm preservation and orthogonality. Thus, we empirically verify
the downsides of other methods and show that our proposed method enables maximally expressive
Lipschitz constrained convolutional layers with guaranteed gradient-norm-preservation.

5.2.3 State-of-the-art Comparison

To further demonstrate the expressive power of orthogonal convolution, we compare our networks
with models that achieve state-of-the-art deterministic provable adversarial robustness performance
(Table 2 and Appendix J, Table 8 and Table 9). We also evaluate the empirical robustness of our
model against common attacks on CIFAR10. Comparing against Wong et al. [48], our approach
reaches similar performance for “Small” architecture and better performance for “Large” architecture
(Table 3).
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KW BCOP
Small
Clean 54.39 64.53± 0.30
PGD 49.94 51.26± 0.17
FGSM 49.98 51.57± 0.18

Large
Clean 60.14 72.16± 0.23
PGD 55.53 64.12± 0.13
FGSM 55.55 64.24± 0.12

KW BCOP
Small
Clean (*) 63.00 74.20± 2.23
BA (*) 60.00 61.20± 2.99
PA (*) 63.00 74.00± 2.28

Large
Clean (*) 68.00 78.40± 1.96
BA (*) 64.00 71.00± 2.28
PA (*) 68.00 78.40± 1.96

Table 3: Comparison of our networks with Wong et al. [48] on CIFAR10 dataset. Left: results of the
evaluation on the entire CIFAR10 test dataset. Right (*): results of the evaluation on the first 100 test
samples. The KW models [48] are directly taken from their official repository.

OSSN RKO BCOP

Wasserstein Distance MaxMin 7.39± 0.31 8.95± 0.12 9.91± 0.11
ReLU 7.06± 0.72 7.82± 0.21 8.28± 0.19

Table 4: Comparison of different Lipschitz constrained architectures on the Wasserstein distance
estimation task between the data and generator distributions of an STL-10 GAN. Each estimate is
a strict lower bound (estimated using 6,400 pairs of randomly sampled real and generated image
examples), hence larger values indicate better performance.

5.3 Wasserstein Distance Estimation

In this section, we consider the problem of estimating the Wasserstein distance between two high
dimensional distributions using neural networks. Anil et al. [2] showed that in the fully connected
setting, ensuring gradient norm preservation is critical for obtaining tighter lower bounds on the
Wasserstein distance. We observe the same phenomenon in the convolutional setting.

We trained our networks to estimate the Wasserstein distance between the data and generator distri-
butions of a GAN5 [19] trained on RGB images from the STL-10 dataset, resized to 64x64. After
training the GAN, we froze the weights of the generator and trained Lipschitz constrained convolu-
tional networks to estimate the Wasserstein distance. We adapted the fully convolutional discriminator
model used by Radford et al. [40] by removing all batch normalization layers and replacing all vanilla
convolutional layers with Lipschitz candidates (BCOP, RKO, and OSSN)6. We trained each model
with ReLU or MaxMin activations [2]. The results are shown in Table 4.

Baking in gradient norm preservation in the architecture leads to significantly tighter lower bounds on
the Wasserstein distance. The only architecture that has gradient norm preserving layers throughout
(BCOP with MaxMin) leads to the best estimate. Although OSSN has the freedom to learn orthogonal
kernels, this does not happen in practice and leads to poorer expressive power.

6 Conclusion and Future Work

We introduced convolutional GNP networks with an efficient construction method of orthogonal
convolutions (BCOP) that overcomes the common issues of Lipschitz constrained networks such
as loose Lipschitz bounds and gradient norm attenuation. In addition, we showed the space of
orthogonal convolutions has many connected components and demonstrated how BCOP parameteri-
zation alleviates the optimization challenges caused by the disconnectedness. Our GNP networks
outperformed the state-of-the-art for deterministic provable adversarial robustness on L2 metrics
with both CIFAR10 and MNIST, and obtained tighter Wasserstein distance estimates between high
dimensional distributions than competing approaches. Despite its effectiveness, our parameterization
is limited to only expressing a subspace of orthogonal convolutions. A complete parameterization
of the orthogonal convolution space may enable training even more powerful GNP convolutional
networks. We presented potential directions to achieve this and left the problem for future work.

5Note that any GAN variant could have been chosen here.
6We omit SVCM for comparison in this case due to its computational intractability

9



Acknowledgements

We would like to thank Lechao Xiao, Arthur Rabinovich, Matt Koster, and Siqi Zhou for their
valuable insights and feedback.

References
[1] Martin Abadi, Andy Chu, Ian Goodfellow, H Brendan McMahan, Ilya Mironov, Kunal Talwar,

and Li Zhang. Deep learning with differential privacy. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security, pages 308–318. ACM, 2016.

[2] Cem Anil, James Lucas, and Roger Grosse. Sorting out Lipschitz function approximation. In
Kamalika Chaudhuri and Ruslan Salakhutdinov, editors, Proceedings of the 36th International
Conference on Machine Learning, volume 97 of Proceedings of Machine Learning Research,
pages 291–301, Long Beach, California, USA, 09–15 Jun 2019. PMLR. URL http://
proceedings.mlr.press/v97/anil19a.html.

[3] Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein GAN. arXiv preprint
arXiv:1701.07875, 2017.

[4] Dimitri P Bertsekas. Nonlinear programming. Journal of the Operational Research Society, 48
(3):334–334, 1997.

[5] Åke Björck and Clazett Bowie. An iterative algorithm for computing the best estimate of an
orthogonal matrix. SIAM Journal on Numerical Analysis, 8(2):358–364, 1971.

[6] Wieland Brendel, Jonas Rauber, and Matthias Bethge. Decision-based adversarial attacks:
Reliable attacks against black-box machine learning models. In International Conference on
Learning Representations, 2018. URL https://openreview.net/forum?id=SyZI0GWCZ.

[7] Nicholas Carlini and David Wagner. Towards evaluating the robustness of neural networks. In
2017 IEEE Symposium on Security and Privacy (SP), pages 39–57. IEEE, 2017.

[8] Nicholas Carlini, Anish Athalye, Nicolas Papernot, Wieland Brendel, Jonas Rauber, Dimitris
Tsipras, Ian Goodfellow, and Aleksander Madry. On evaluating adversarial robustness. arXiv
preprint arXiv:1902.06705, 2019.

[9] Xi Chen, Yan Duan, Rein Houthooft, John Schulman, Ilya Sutskever, and Pieter Abbeel. Infogan:
Interpretable representation learning by information maximizing generative adversarial nets. In
Advances in neural information processing systems, pages 2172–2180, 2016.

[10] Chih-Hong Cheng, Georg Nührenberg, and Harald Ruess. Maximum resilience of artificial
neural networks. In International Symposium on Automated Technology for Verification and
Analysis, pages 251–268. Springer, 2017.

[11] Artem Chernodub and Dimitri Nowicki. Norm-preserving orthogonal permutation linear unit
activation functions (oplu). arXiv preprint arXiv:1604.02313, 2016.

[12] Moustapha Cisse, Piotr Bojanowski, Edouard Grave, Yann Dauphin, and Nicolas Usunier.
Parseval networks: Improving robustness to adversarial examples. In Proceedings of the 34th
International Conference on Machine Learning-Volume 70, pages 854–863. JMLR. org, 2017.

[13] Jeremy EJ Cohen, Todd Huster, and Ra Cohen. Universal Lipschitz approximation in bounded
depth neural networks. arXiv preprint arXiv:1904.04861, 2019.

[14] Jeremy M Cohen, Elan Rosenfeld, and J Zico Kolter. Certified adversarial robustness via
randomized smoothing. arXiv preprint arXiv:1902.02918, 2019.

[15] David Cox and Nicolas Pinto. Beyond simple features: A large-scale feature search approach to
unconstrained face recognition. In Face and Gesture 2011, pages 8–15. IEEE, 2011.

[16] Francesco Croce and Matthias Hein. Provable robustness against all adversarial lp-perturbations
for p ≥ 1. arXiv preprint arXiv:1905.11213, 2019.

10

http://proceedings.mlr.press/v97/anil19a.html
http://proceedings.mlr.press/v97/anil19a.html
https://openreview.net/forum?id=SyZI0GWCZ


[17] Francesco Croce, Maksym Andriushchenko, and Matthias Hein. Provable robustness of relu
networks via maximization of linear regions. In Kamalika Chaudhuri and Masashi Sugiyama,
editors, Proceedings of Machine Learning Research, volume 89 of Proceedings of Machine
Learning Research, pages 2057–2066. PMLR, 16–18 Apr 2019. URL http://proceedings.
mlr.press/v89/croce19a.html.

[18] Mevlana Gemici, Zeynep Akata, and Max Welling. Primal-dual wasserstein gan. arXiv preprint
arXiv:1805.09575, 2018.

[19] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil
Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In Advances in neural
information processing systems, pages 2672–2680, 2014.

[20] Henry Gouk, Eibe Frank, Bernhard Pfahringer, and Michael Cree. Regularisation of neural
networks by enforcing Lipschitz continuity. arXiv preprint arXiv:1804.04368, 2018.

[21] Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, and Aaron C Courville.
Improved training of wasserstein gans. In Advances in neural information processing systems,
pages 5767–5777, 2017.

[22] Matthias Hein and Maksym Andriushchenko. Formal guarantees on the robustness of a classifier
against adversarial manipulation. In Advances in Neural Information Processing Systems, pages
2266–2276, 2017.

[23] Todd Huster, Cho-Yu Jason Chiang, and Ritu Chadha. Limitations of the Lipschitz constant as
a defense against adversarial examples. In Joint European Conference on Machine Learning
and Knowledge Discovery in Databases, pages 16–29. Springer, 2018.

[24] Jörn-Henrik Jacobsen, Arnold W.M. Smeulders, and Edouard Oyallon. i-RevNet: Deep in-
vertible networks. In International Conference on Learning Representations, 2018. URL
https://openreview.net/forum?id=HJsjkMb0Z.

[25] Hyeonwoo Kang. pytorch-generative-model-collections, 2016. URL https://github.com/
znxlwm/pytorch-generative-model-collections.

[26] Guy Katz, Clark Barrett, David L Dill, Kyle Julian, and Mykel J Kochenderfer. Reluplex:
An efficient SMT solver for verifying deep neural networks. In International Conference on
Computer Aided Verification, pages 97–117. Springer, 2017.

[27] Jaroslav Kautsky and Radka Turcajová. A matrix approach to discrete wavelets. In Wavelet
Analysis and Its Applications, volume 5, pages 117–135. Elsevier, 1994.

[28] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[29] Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. CIFAR-10 (canadian institute for advanced
research). URL http://www.cs.toronto.edu/~kriz/cifar.html.

[30] Yann LeCun. The MNIST database of handwritten digits. http://yann. lecun. com/exdb/mnist/,
1998.

[31] Stamatios Lefkimmiatis, John Paul Ward, and Michael Unser. Hessian schatten-norm regular-
ization for linear inverse problems. IEEE transactions on image processing, 22(5):1873–1888,
2013.

[32] Mario Lezcano-Casado and David Martínez-Rubio. Cheap orthogonal constraints in neu-
ral networks: A simple parametrization of the orthogonal and unitary group. In Kama-
lika Chaudhuri and Ruslan Salakhutdinov, editors, Proceedings of the 36th International
Conference on Machine Learning, volume 97 of Proceedings of Machine Learning Re-
search, pages 3794–3803, Long Beach, California, USA, 09–15 Jun 2019. PMLR. URL
http://proceedings.mlr.press/v97/lezcano-casado19a.html.

[33] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.
Towards deep learning models resistant to adversarial attacks. In International Conference on
Learning Representations, 2018. URL https://openreview.net/forum?id=rJzIBfZAb.

11

http://proceedings.mlr.press/v89/croce19a.html
http://proceedings.mlr.press/v89/croce19a.html
https://openreview.net/forum?id=HJsjkMb0Z
https://github.com/znxlwm/pytorch-generative-model-collections
https://github.com/znxlwm/pytorch-generative-model-collections
http://www.cs.toronto.edu/~kriz/cifar.html
http://proceedings.mlr.press/v97/lezcano-casado19a.html
https://openreview.net/forum?id=rJzIBfZAb


[34] John Milnor and James D Stasheff. Characteristic Classes. (AM-76), volume 76, pages 55–57.
Princeton University Press, 1974.

[35] Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and Yuichi Yoshida. Spectral normalization
for generative adversarial networks. In International Conference on Learning Representations,
2018. URL https://openreview.net/forum?id=B1QRgziT-.

[36] Jeffrey Pennington, Samuel Schoenholz, and Surya Ganguli. Resurrecting the sigmoid in deep
learning through dynamical isometry: theory and practice. In Advances in neural information
processing systems, pages 4785–4795, 2017.

[37] Jeffrey Pennington, Samuel Schoenholz, and Surya Ganguli. The emergence of spectral
universality in deep networks. In Amos Storkey and Fernando Perez-Cruz, editors, Proceedings
of the Twenty-First International Conference on Artificial Intelligence and Statistics, volume 84
of Proceedings of Machine Learning Research, pages 1924–1932, Playa Blanca, Lanzarote,
Canary Islands, 09–11 Apr 2018. PMLR. URL http://proceedings.mlr.press/v84/
pennington18a.html.

[38] Gabriel Peyré and Marco Cuturi. Computational optimal transport. arXiv preprint
arXiv:1803.00567, 2018.

[39] Haifeng Qian and Mark N. Wegman. L2-nonexpansive neural networks. In International
Conference on Learning Representations, 2019. URL https://openreview.net/forum?
id=ByxGSsR9FQ.

[40] Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised representation learning with
deep convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434, 2015.

[41] Jonas Rauber, Wieland Brendel, and Matthias Bethge. Foolbox: A Python toolbox to benchmark
the robustness of machine learning models. arXiv preprint arXiv:1707.04131, 2017. URL
http://arxiv.org/abs/1707.04131.

[42] Hadi Salman, Greg Yang, Jerry Li, Pengchuan Zhang, Huan Zhang, Ilya Razenshteyn, and
Sebastien Bubeck. Provably robust deep learning via adversarially trained smoothed classifiers.
arXiv preprint arXiv:1906.04584, 2019.

[43] Lukas Schott, Jonas Rauber, Matthias Bethge, and Wieland Brendel. Towards the first adver-
sarially robust neural network model on MNIST. In International Conference on Learning
Representations, 2019. URL https://openreview.net/forum?id=S1EHOsC9tX.

[44] Hanie Sedghi, Vineet Gupta, and Philip M. Long. The singular values of convolutional layers.
In International Conference on Learning Representations, 2019. URL https://openreview.
net/forum?id=rJevYoA9Fm.
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