
Learning Non-Parametric Invariances from Data
with Permanent Random Connectomes

Anonymous Author(s)
Affiliation
Address
email

Abstract

One of the fundamental problems in supervised classification and in machine learn-1

ing in general, is the modelling of non-parametric invariances that exist in data.2

Most prior art has focused on enforcing priors in the form of invariances to para-3

metric nuisance transformations that are expected to be present in data. Learning4

non-parametric invariances directly from data remains an important open problem.5

In this paper, we introduce a new architectural layer for convolutional networks6

which is capable of learning general invariances from data itself. This layer can7

learn invariance to non-parametric transformations and interestingly, motivates8

and incorporates permanent random connectomes, thereby being called Permanent9

Random Connectome Non-Parametric Transformation Networks (PRC-NPTN).10

PRC-NPTN networks are initialized with random connections (not just weights)11

which are a small subset of the connections in a fully connected convolution layer.12

Importantly, these connections in PRC-NPTNs once initialized remain permanent13

throughout training and testing. Permanent random connectomes make these archi-14

tectures loosely more biologically plausible than many other mainstream network15

architectures which require highly ordered structures. We motivate randomly ini-16

tialized connections as a simple method to learn invariance from data itself while17

invoking invariance towards multiple nuisance transformations simultaneously. We18

find that these randomly initialized permanent connections have positive effects19

on generalization, outperform much larger ConvNet baselines and the recently20

proposed Non-Parametric Transformation Network (NPTN) on benchmarks that21

enforce learning invariances from the data itself.22

1 Introduction23

Learning Invariances from Data using Deep Architectures. The study of machine learning over24

the years has resulted in the identification of a few core problems that many other problems are25

compositions of. Learning invariances to nuisance transformations in data is one such task. A26

class of architectures have been recently proposed that explicitly attempt to learn the transformation27

invariances directly from the data, with the only prior being the structure that allows them to do so.28

One of the earliest attempts to do this using backpropagation was the SymNet [4], which utilized29

kernel based interpolation to learn general invariances. Although given the interesting nature of the30

study, the method was limited in scalability. Spatial Transformer Networks [5] were also designed31

to learn activation normalization from data itself, however the transformation invariance learned32

was parametric in nature. A more recent effort was through the introduction of the Transformation33

Network paradigm [7]. Non-Parametric Transformation Networks (NPTN) were introduced as an34

generalization of the convolution layer to model general symmetries from data [7]. It was also35

introduced as an alternate direction of network development other than skip connections, as is36

common in ResNets, DenseNets and their variants. The convolution operation followed by pooling37

Submitted to 33rd Conference on Neural Information Processing Systems (NeurIPS 2019). Do not distribute.

Input Activation

Output Activation

Channel Max
Pooling

G

Intermediate
Activation Bank

Input Activation

Output Activation
Vanilla Convolution layer

PRC-NPTN layerTransformation Networks

Parametric Invariances
ConvNets

Non-Parametric Invariances
NPTN

PRC-NPTN

In
va

ria
nc

e
in

 D
ee

p
N

et
w

or
ks

Parametric Invariances
ConvNets, G-CNN, FRPC,
ScatNet, DREN, Warped

CNN, SiCNN, Steerable CNN

Non- Parametric
Invariances

Deep SymNets, NPTN
PRC-NPTN

Figure 1: Left: Architecture of the vanilla convolution layer. Left bottom: Transformation
Networks were introduced as a general framework for modelling feed forward convolutional networks.
NPTNs and PRC-NPTNs can model non-parametric invariances within the TN framework. Center:
Architecture of the PRC-NPTN layer. Each input channel is convolved with a number of filters
(parameterized by G). Each of the resultant activation maps is connected to a one of the channel max
pooling units randomly (initialized once, fixed during training and testing). Each channel pooling
unit pools over a fixed random support of a size parameterized by CMP. Right: Explicit invariances
enforced within deep networks in prior art are mostly parametric in nature. The important problem of
learning non-parametric invariances from data has not received a lot of attention.

was re-framed as pooling across outputs from the translated versions of a filter. Translation forming38

a unitary group generates invariance through group symmetry as investigated using computational39

models of the primary visual cortex [1]. The NPTN framework has the important advantage of40

learning general invariances without any change in architecture while being scalable. Given this is an41

important open problem, we introduce an extension of the Transformation Network (TN) paradigm42

with an enhanced ability to learn non-parametric invariances through permanent random connectivity.43

Relaxed Biological Motivation for Randomly Initialized Connectomes. Although not central to44

our motivation, the observation that the cortex lacks precise local pathways for back-propagation45

provided the initial inspiration for this study. It further garnered pull from the observation that46

random unstructured local connections are indeed common in many parts of the cortex [2, 8]. Though47

we do not explore these biological connections in more detail, it is still an interesting observation.48

The common presence of random connections in the cortex at a local level leads us to ask: Is it49

possible that such locally random connectomes improve generalization in deep networks? We provide50

evidence for answering this question in the positive.51

2 Permanent Random Connectome NPTNs52

Representation Learning through Pooling. Over the years, the idea of pooling across transformed53

features to generate invariance towards that particular transformation has been one of the central tools54

in algorithm design for invariance properties [3]. Similar ideas have also been explored in a more55

general setting. For instance, a pose-tolerant feature can be generated by pooling over dot-products56

of the input face with multiple template faces undergoing pose (and other) variation.57

Invoking Invariance through Pooling. In previous years a number of theories have emerged on58

the mechanics of generating invariance through pooling. [1] develop a framework in which the59

transformations are modelled as a group comprised of unitary operators denoted by {g ∈ G}. These60

operators transform a given filter w through the operation gw1, following which the dot-product61

between these transformed filters and an novel input x is measured through 〈x, gw〉. It is shown62

by [1] that any moment such as the mean or max (infinite moment) of the distribution of these63

dot-products in the set {〈x, gw〉|g ∈ G} is an invariant. These invariants will exhibit robustness to64

the transformation in G encoded by the transformed filters in practice, as confirmed by [1].65

The PRC-NPTN layer. Fig. 1(b) shows the the architecture of a single PRC-NPTN layer. The66

PRC-NPTN layer consists of a set of Nin ×G filters of size k × k where Nin is the number of input67

channels and G is the number of filters connected to each input channel. More specifically, each of68

the Nin input channels connects to |G| filters. Then, a number of channel max pooling units randomly69

1The action of the group element g on w is denoted by gw to promote clarity.

2

Rotation 0◦ *** 30◦ *** 60◦ *** 90◦ ***

ConvNet (36) 0.70±0.03 - 0.92±0.03 - 1.32±0.07 - 1.93±0.02 -
ConvNet (36) FC 0.66±0.05 - 0.80±0.03 - 1.08±0.02 - 1.58±0.01 -
ConvNet (512) 0.65±0.04 - 0.80±0.02 - 1.14±0.03 - 1.54±0.03 -
NPTN (12,3) 0.68±0.06 - 0.84±0.02 - 1.19±0.01 - 1.64±0.02 -
PRCN (36,1) 0.62±0.08 0.62±0.06 0.84±0.01 0.83±0.03 1.17±0.05 1.19±0.02 1.72±0.05 1.73±0.06
PRCN (18,2) 0.61±0.02 0.57±0.02 0.68±0.02 0.73±0.02 0.93±0.04 0.99±0.04 1.24±0.01 1.33±0.02
PRCN (12,3) 0.58±0.03 0.62±0.04 0.72±0.02 0.74±0.02 0.95±0.01 1.04±0.04 1.28±0.01 1.33±0.01
PRCN (9,4) 0.63±0.02 0.62±0.04 0.75±0.03 0.77±0.02 0.99±0.03 1.05±0.03 1.31±0.03 1.40±0.03

Translations 0 pixels *** 4 pixels *** 8 pixels *** 12 pixels ***
ConvNet (36) 0.69±0.04 - 0.72±0.01 - 1.22±0.02 - 4.43±0.05 -
ConvNet (36) FC 0.60±0.02 - 0.64±0.01 - 0.88±0.05 - 3.49±0.11
ConvNet (512) 0.63±0.02 - 0.64±0.01 - 1.00±0.02 - 3.56±0.04 -
NPTN (12,3) 0.66±0.02 - 0.64±0.02 - 1.09±0.04 - 4.19±0.04 -
PRC-NPTN (36,1) 0.65±0.02 0.65±0.05 0.58±0.01 0.61±0.04 1.02±0.03 1.00±0.04 3.85±0.11 3.83±0.10
PRC-NPTN (18,2) 0.59±0.07 0.59±0.03 0.52±0.03 0.58±0.02 0.80±0.03 0.88±0.05 3.23±0.03 3.34±0.06
PRC-NPTN (12,3) 0.63±0.02 0.66±0.08 0.55±0.02 0.59±0.01 0.84±0.04 0.89±0.03 3.35±0.04 3.52±0.12
PRC-NPTN (9,4) 0.65±0.02 0.69±0.03 0.56±0.03 0.56±0.03 0.88±0.02 0.97±0.02 3.49±0.46 3.69±0.08

Table 1: Individual Transformation Results: Test error statistics with mean and standard deviation
on MNIST with progressively extreme transformations with a) random rotations and b) random
pixel shifts. ∗ ∗ ∗ indicates ablation runs without any randomization i.e. without any random
connectomes (applicable only to PRC-NPTNs). For PRC-NPTN and NPTN the brackets indicate the
number of channels in the layer 1 and G. ConvNet FC denotes the addition of a 2-layered pooling
1× 1 pooling network after every layer. Note that for this experiment, CMP=|G|. Permanent Random
Connectomes help with achieving better generalization despite increased nuisance transformations.
select a fixed number of activation maps to pool over. This is parameterized by Channel Max Pool70

(CMP). Note that this random support selection for pooling is the reason a PRC-NPTN layer contains71

a permanent random connectome. These pooling supports once initialized do not change through72

training or testing. Once max pooling over CMP activation maps completes, the resultant tensor is73

average pooled across channels with a average pool size such that the desired number of outputs74

is obtained. After the CMP units, the output is finally fed through a two layered network with the75

same number of channels with 1× 1 kernels, which we call a pooling network. This small pooling76

network helps in selecting non-linear combinations of the invariant nodes generated through the CMP77

operation, thereby enriching feature combinations downstream.78

Invariances in a PRC-NPTN layer. Recent work introducing NPTNs [7] had highlighted the79

Transformation Network (TN) framework in which invariance is generated during the forward pass80

by pooling over dot-products with transformed filter outputs. A vanilla convolution layer with a81

single input and output channel (therefore a single convolution filter) followed by a k × k spatial82

pooling layer can be seen as a single TN node enforcing translation invariance with the number83

of filter outputs being pooled over to be k × k. It has been shown that k × k spatial pooling over84

the convolution output of a single filter is an approximation to channel pooling across the outputs85

of k × k translated filters [7]. The output Υ(x) of such an operation with an input patch x can be86

expressed as Υ(x) = maxg∈G〈x, gw〉 where G is the set of filters whose outputs are being pooled87

over. Thus, G defines the set of transformations and thus the invariance that the TN node enforces.88

In a vanilla convolution layer, this is the translation group (enforced by the convolution operation89

followed by spatial pooling). An NPTN removes any constraints on G allowing it to approximately90

model arbitrarily complex transformations. A vanilla convolution layer would have one filter whose91

convolution is pooled over spatially (for translation invariance). In contrast, an NPTN node has |G|92

independent filters whose convolution outputs are pooled across channel wise leading to general93

invariance.94

A PRC-NPTN layer inherits the property from NPTNs to learn arbitrary transformations and thereby95

arbitrary invariances using G. As Fig. 1(b) shows, individual channel max pooling (CMP) nodes act96

as NPTN nodes sharing a common filter bank as opposed to independent and disjoint filter banks for97

vanilla NPTNs. This allows for greater activation sharing, where transformations learned from data98

through one subset of filters can be used for invoking similar invariances in a parallel computation99

path. This sharing and reuse of activation maps allows for higher parameter and sample efficiency.100

As we find in our experiments, randomization plays a critical role here, allowing for a simple and101

quick approximation to obtaining high performing invariances.102

3

3 Empirical Evaluation and Discussion103

Efficacy in Learning Arbitrary and Unknown Transformations Invariances from Data. We104

evaluate on one of the most important tasks of any perception system, i.e. being invariant to nuisance105

transformations learned from the data itself. We benchmark our networks based on tasks where106

nuisance transformations such as large amounts of in-plane rotation and translation are steadily107

increased, with no change in architecture whatsoever. For this purpose, we utilize MNIST where108

it is straightforward to add such transformations without any artifacts. We benchmark on such a109

task as described in [7] and for fair comparisons, we follow the exact same protocol. We train and110

test on MNIST augmented with progressively increasing transformations i.e. 1) extreme random111

translations (up to 12 pixels in a 28 by 28 image), 2) extreme random rotations (up to 90◦ rotations).112

Both train and test data were augmented leading to an increase in overall complexity of the problem.113

No architecture was altered in anyway between the two transformations i.e. they were not designed114

to specifically handle either. The same architecture for all networks is expected to learn invariances115

directly from data unlike prior art where such invariances are hand crafted in [6].116

For this experiment, we utilize a two layered network with the intermediate layer 1 having up to 36117

channels and layer 2 having exactly 16 channels for all networks (similar to the architectures in [7])118

except a wider ConvNet baseline with 512 channels. All ConvNet, NPTN and PRC-NPTN models119

have the similar number of parameters (except the ConvNet with 512 channels). For PRC-NPTN,120

the number of channels in layer 1 was decreased from 36, through to 9 while |G| was increased in121

order to maintain similar number of parameters. All PRC-NPTN networks have a two layered 1× 1122

pooling network with same number of channels as that layer. For a fair benchmark, Convnet FC has123

2 two-layered pooling networks with 36 channels each. Average test errors are reported over 5 runs124

for all networks.125

Discussion. We present all test errors for this experiment in Table. 12. It is clear that as more nuisance126

transformations act on the data, PRC-NPTN networks outperform other baselines with the same127

number of parameters. In fact, even with significantly more parameters, ConvNet-512 performs worse128

than PRCN-NPTN on this task for all settings. Since the testing data has nuisance transformations129

similar to the training data, the only way for a model to perform well is to learn invariance to130

these transformations. It is also interesting to observe that permanent random connectomes do131

indeed help with generalization. Indeed, without randomization the performance of PRCN-NPTNs132

drop substantially. The performance improvement of PRC-NPTN also increases with nuisance133

transformations, showcasing the benefits arising from modelling such invariances.134

References135

[1] F. Anselmi, J. Z. Leibo, L. Rosasco, J. Mutch, A. Tacchetti, and T. Poggio. Unsupervised learning136

of invariant representations in hierarchical architectures. arXiv preprint arXiv:1311.4158, 2013.137

[2] J. Corey and B. Scholl. Cortical selectivity through random connectivity. Journal of Neuroscience,138

32(30):10103–10104, 2012.139

[3] S. Dieleman, K. W. Willett, and J. Dambre. Rotation-invariant convolutional neural networks for140

galaxy morphology prediction. Monthly notices of the royal astronomical society, 450(2):1441–141

1459, 2015.142

[4] R. Gens and P. M. Domingos. Deep symmetry networks. In Advances in neural information143

processing systems, pages 2537–2545, 2014.144

[5] M. Jaderberg, K. Simonyan, A. Zisserman, et al. Spatial transformer networks. In Advances in145

Neural Information Processing Systems, pages 2017–2025, 2015.146

[6] J. Li, Z. Yang, H. Liu, and D. Cai. Deep rotation equivariant network. arXiv preprint147

arXiv:1705.08623, 2017.148

[7] D. K. Pal and M. Savvides. Non-parametric transformation networks for learning general149

invariances from data. AAAI, 2019.150

[8] M. Schottdorf, W. Keil, D. Coppola, L. E. White, and F. Wolf. Random wiring, ganglion cell151

mosaics, and the functional architecture of the visual cortex. PLoS computational biology,152

11(11):e1004602, 2015.153

2We display only the (12, 3) configuration for NPTN as it performed the best.

4

	Introduction
	Permanent Random Connectome NPTNs
	Empirical Evaluation and Discussion

