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ABSTRACT

This paper proposes a neural network for classification and regression, without the
need to learn layout structures in the output space. Standard solutions such as soft-
max cross-entropy and mean squared error are effective but parametric, meaning
that known inductive structures such as maximum margin separation and simplic-
ity (Occam’s Razor) need to be learned for the task at hand. Instead, we propose
polar prototype networks, a class of networks that explicitly states the structure,
i.e., the layout, of the output. The structure is defined by polar prototypes, points
on the hypersphere of the output space. For classification, each class is described
by a single polar prototype and they are a priori distributed with maximal sep-
aration and equal shares on the hypersphere. Classes are assigned to prototypes
randomly or based on semantic priors and training becomes a matter of minimiz-
ing angular distances between examples and their class prototypes. For regression,
we show that training can be performed as a polar interpolation between two pro-
totypes, arriving at a regression with higher-dimensional outputs. From empirical
analysis, we find that polar prototype networks benefit from large margin sep-
aration and semantic class structure, while only requiring a minimal amount of
output dimensions. While the structure is simple, the performance is on par with
(classification) or better than (regression) standard network methods. Moreover,
we show that we gain the ability to perform regression and classification jointly in
the same space, which is disentangled and interpretable by design.

1 INTRODUCTION

This paper strives for classification and regression in neural networks. Current standards in classifi-
cation (with softmax cross-entropy) and regression (with mean squared error) yield effective perfor-
mance, but do so in a parametric manner. They do not use inductive biases such as maximum class
separation, minimal description length, and domain knowledge (Mitchell, 1980). The awareness of
such inductive biases then need to be learned while optimizing the task at hand. Instead, we propose
to structure the network output space before learning, such that the class structure is both as simple
as possible and maximally separable.

We are inspired by prototype-based networks, which divide an output metric space into Voronoi cells
around a prototype per class (Guerriero et al., 2018; Hasnat et al., 2017; Jetley et al., 2015; Snell
et al., 2017; Wen et al., 2016). The Voronoi division tackles the notion of simplicity and minimal
description length, while enabling fast generalization and learning from new classes (Snell et al.,
2017). However, by mapping examples to prototypes during training, and defining the prototypes as
the mean of the examples, the output space is continually modified, altering the true prototype loca-
tion. Obtaining prototypes is computationally expensive, as it requires a full pass over the training
data. As a result, current prototype networks either focus exclusively on the few-shot classification
setting (Snell et al., 2017) or resort to coarse approximations of the prototype locations (Hasnat
et al., 2017; Guerriero et al., 2018). In this paper we question the need to learn prototypes.

By adopting a polar coordinate system, we show that classes can be positioned with (near) optimal
separation a priori. This is achieved by finding an equal distribution of points on the hypersphere
SD−1 for a D-dimensional output space. Fig. 1a shows an example for a 3D output space. By
distributing classes based on maximal angular discrepancy, we arrive at an output space with large-
margin class separation and an equal division of the output space over classes. Learning simplifies to
minimizing the cosine distance between training examples and their class polar prototype. The struc-
turing of the output space prior to learning alleviates the need to obtain and update the prototypes
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(a) Classification. (b) Regression.

Figure 1: Illustrative overview of polar prototype networks for classification and regression
with a 3-dimensional output space. For classification, we position class polar prototypes (six in
Fig. 1a) in the output space with maximal separation prior to learning. The output space is deter-
mined by maximal polar similarity to the prototypes. For regression, we perform a polar interpo-
lation of two opposing prototypes, denoting the lower and upper regression bounds (pl and pu in
Fig. 1b). Note that the output space is visualized as a sphere for ease of visualization. We do not
need to project output vectors explicitly onto the hypersphere during training or inference.

themselves. We consider two approaches to optimally distribute prototypes on the hypersphere.
Furthermore, we investigate how to assign classes to prototypes by exploiting semantic priors.

Where the literature on prototype networks focuses exclusively on classification, we also propose a
method for regression based on polar prototype networks (Fig. 1b). Two opposing polar prototypes
are maintained for regression, denoting the lower and upper regression bounds. During training, we
minimize for each example the difference between the expected and measured cosine similarities to
the polar upper bound. Since the cosine similarities can be computed in higher-dimensional spaces,
our approach is a direct generalization of standard regression, which learns on the one-dimensional
line. Regression in polar prototype networks yields a more robust and better regression performance.
What is more, as regression and classification now form a coherent unity, we show that in polar
prototype networks we gain the ability to learn both tasks jointly within the same output, rather than
separate outputs per task.

We make three contributions in this work: (i) we propose networks with simple, maximally sepa-
rated, and semantic class structures in the output space defined prior to learning, (ii) we outline how
to perform both classification and regression from the imposed output structures, and (iii) we show
how to learn both tasks in the same output space in a disentangled and unified outputs. We will make
the code and computed polar prototypes publicly available.

2 CLASSIFICATION AND REGRESSION WITH POLAR PROTOTYPES

2.1 CLASSIFICATION WITH POLAR PROTOTYPES

In a classification setup, we are given N training examples {(xi, yi)}Ni=1, where xi ∈ RI and
yi ∈ C denote the inputs and class labels of the ith training example, C = {1, ..,K} the set
of K labels, and I the input dimensionality. Furthermore, we have a set of D-dimensional polar
prototypes P = {p1, ...,pK}, where each polar prototype pk ∈ SD−1 denotes a point on the D-
dimensional hypersphere. The polar prototypes are maximally separated from each other a priori,
i.e., the prototypes provide an (approximately) equal separation of the output space. We first present
the main loss function with the backpropagation and decision rule at inference. Then we outline
how to obtain polar prototypes prior to learning and how to assign classes to prototypes.

2.1.1 LOSS FUNCTION, BACKPROPAGATION, AND INFERENCE

For a training example (xi, yi), let zi = fφ(xi) denote the D-dimensional output vector givenva
network fφ(·). Since the output space is subdivided by the polar prototypes, we propose to train a
classification network by minimizing the angle between the output vector and the polar prototype
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pyi for ground truth label yi , so that the classification loss Lpolar-c to minimize is given as:

Lpolar-c = −
N∑
i=1

cos θzi,pyi = −
N∑
i=1

|zi · pyi |
||zi|| ||pyi ||

. (1)

The polar loss function yields a loss of minus one if the ouput vector and prototype point in the
same direction. The loss increases as the angle becomes larger and equals one if the vectors point
in opposite directions. We note that unlike common classification losses in deep networks, our loss
function is only concerned with the mapping from training examples to a structured layout of the
output space, the space itself does not need to be learned.

Since the polar prototypes do not require updating, we only have to backpropagate the error with
respect to the training examples. The partial derivative of the loss function of Eq. 1 with respect to
zi is given as:

d

dzi
− cos θzi,pyi = −

pyi · (||zi|| · ||pyi ||)− zi · |zi · pyi | · ||pyi || · ||zi||−1

||zi||2 · ||pyi ||2

=
cos θzi,pyi · zi
||zi||2

− pyi
||zi|| · ||pyi ||

.

(2)

The remaining layers in the network are backpropagated in the conventional manner given the error
backpropagation of the training examples of Eq. 2.

The network minimizes the angle between projected features and polar prototypes. For a new data
point x̃, the cosine similarity to all class prototypes is computed and the class with the highest
similarity serves as the prediction:

c∗ = argmax
c∈C

(
cos θfφ(x̃),pc

)
. (3)

2.1.2 OBTAINING AND ASSIGNING POLAR PROTOTYPES

The loss function and corresponding optimization of polar prototype networks hinges on the pres-
ence of polar prototypes that separate the output space prior to learning. For D output dimensions
and K classes, this amounts to a spherical code problem of optimally separating K classes on the
D-dimensional unit-hypersphere SD−1 (Saff & Kuijlaars, 1997). For D = 2, this can be easily
solved by splitting the unit-circle S1 into equal slices, separated by an angle of 2π

K . Then, for each
angle ψ, the 2D coordinates are obtained as (cosψ, sinψ).

For D ≥ 3, no such optimal separation algorithm exists. This is known as the Tammes prob-
lem (Tammes, 1930), for which exact solutions only exist for optimally distributing a handful of
points on S2 and none for S3 and up (Musin & Tarasov, 2015). To obtain polar prototypes for any
output dimension and number of classes, we observe that the optimal set of prototypes, P ∗, is the one
where the largest cosine similarity between two class prototypes pi, pj from the set is minimized:

P ∗ = argmin
P ′∈P

(
max

(k,l,k 6=l)∈C
cos θ(p′

k,p
′
l)

)
, (4)

where P contains all sets of K vectors on SD−1.

We consider two approaches to approximating the objective of Eq. 4. The first employs Monte
Carlo sampling, where a multifold (1e7) of polar prototype sets are sampled from a uniform dis-
tribution and the set which maximizes the objective is maintained. The second is an evolutionary
algorithm (Eiben et al., 2003) that optimizes for polar prototype separation. For a set of class polar
prototypes P , the evolutionary algorithm has a fitness function g(P ), which returns the minimum
cosine distance between the pairs of prototypes in the individual. For every new generation (300 in
total), we sample parents (30% from population of 3,000) using fitness proportionate selection and
offsprings are produced using single-point row crossover (each parent pair produces 300 offsprings).
Before insertion into the population, each new individual undergoes uniform mutation (each feature
is replaced by uniform sample with p = 0.01). The final population size is decreased back to the
original size by sampling individuals for survival, again proportional to g(P ).
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Both Monte Carlo sampling and the evolutionary algorithm yield a set of polar prototypes with a
large margin separation. However, the algorithms do not specify which classes should be repre-
sented by which prototypes. We consider two ways for class to prototype assignment. The first is to
assign classes randomly to polar prototypes. The second is to structure the polar prototypes such that
semantically similar classes point in similar directions. To achieve this we adapt our evolutionary
algorithm to exploit word2vec (Mikolov et al., 2013) representations of the class names. To encour-
age finding polar prototypes that incorporate semantic information, we add a similarity score to the
fitness function of the algorithm. This similarity score describes how similar the neighbourhoods
of classes in a set of prototypes are to the neighbourhoods in the word2vec representations. For
every class prototype pi, sorting the class prototypes based on the cosine similarity of both polar
prototypes induces a ranking of ‘closeness’ to each other prototype pj . To compute the rank-based
distance between the word2vec representations and the found polar prototypes, we can compute
the distance between the word2vec order wij and the ranks induced by the polar prototype order
pij as: dr(w, p) =

∑
i,j |rank(wij)− rank(pij)|. The similarity score is defined to be the inverse

of dr(w, p) and is added to the fitness function with a weight parameter λ = 10 that allows us to
balance the importance of the semantics and of the separation. Since the best ordering is given by
the word2vec representations, we use Principal Component Analysis to reduce these to the desired
number of dimensions and use the resulting representations to initialize our population. This evolu-
tionary algorithm results in a set of polars with large margin separation and with a semantic structure
from prior knowledge.

2.2 REGRESSION WITH POLAR PROTOTYPES

While current prototype-based works focus exclusively on classification, we show here that regres-
sion can be naturally handled in polar prototype networks as well.
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Figure 2: Illustration of polar proto-
type networks for regression with 3D
outputs. For a training example, we
compute the cosine similarity between
the output prediction (zi) and polar up-
per bound (pu). This value is compared
to the expected similarity (ri) and dif-
ference between the values determines
the gradient direction and magnitude.

In a regression setup, we are given N training examples
{(xi, yi)}Ni=1, where yi ∈ R now denotes a real-valued
regression value. The upper and lower bounds on the re-
gression task are denoted as vu and vl respectively and
are typically the maximum and minimum regression val-
ues of the training examples. To perform regression with
polar prototypes, we first observe that training examples
should no longer point towards a specific prototype as
done in classification. Rather, we posit that for regression
we maintain two prototypes: pu ∈ SD−1 which denotes
the regression upper bound and pl ∈ SD−1 which denotes
the lower bound. Their specific direction is irrelevant, as
long as the two prototypes are diametrically opposed, i.e.,
cos θpl,pu = −1. The idea behind polar prototype regres-
sion is to perform a polar-based interpolation between the
lower and upper prototypes. We propose the following
loss function for regression with polar prototypes:

Lpolar-r =

N∑
i=1

(ri − cos θzi,pu)
2, (5)

ri = 2 · yi − vl
vu − vl

− 1. (6)

The loss function of Eq. 5 computes a squared loss be-
tween two values. The first value denotes the ground truth
regression value, normalized based on the upper and lower bounds. The second value denotes the
cosine similarity between the output vector of the training example and the polar upper bound. The
intuition behind the loss function is shown in Figure 2 for 3D output space. Shown is an artificial
training example for which the ground truth regression value ri is zero. Due to the symmetric nature
of the cosine similarity with respect to the polar upper bound, any output prediction of the training
example on the turquoise circle is equally correct. As such, the loss function of Eq. 5 adjusts the
angle of the output prediction either away or towards the polar upper bound, based on the difference
between the expected and measured cosine similarity to the polar upper bound.
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CIFAR-10
Semantic Separation Accuracy

min max

Baseline prototypes
One-hot vectors (Chintala et al., 2017) 1.00 1.00 91.1 ± 0.2
word2vec (Mikolov et al., 2013) X 0.72 1.40 91.0 ± 0.2

Our prototypes
Monte Carlo 0.77 1.76 90.9 ± 0.1
Evolutionary 0.89 1.81 90.7 ± 0.2
Evolutionary X 0.91 1.40 91.2 ± 0.1

CIFAR-100
Separation Accuracy
min max

1.00 1.00 51.5 ± 0.4
0.26 1.32 61.2 ± 0.7

0.73 1.36 64.9 ± 0.1
0.73 1.40 64.8 ± 0.3
0.73 1.36 65.0 ± 0.3

Table 1: The effect of maximum margin separation and semantic priors for classification in
polar prototype networks. Separation is quantified by the minimum and maximum cosine distance
among the polar prototypes. We find that an approximate maximum margin separation using our
Monte Carlo or evolutionary algorithm is sufficient for effective classification. Furthermore, we find
that incorporating semantic priors in our evolutionary algorithms results in polar prototypes with
large margin separation, semantic structure, and effective classification performance.

Standard regression computes and backpropagates a loss directly on one-dimensional outputs. In the
context of this work, this corresponds to an optimization on the line from pl to pu. Our approach
generalizes regression to higher dimensional output spaces. While we still try to find an interpo-
lation between two points on the line, the ability to project to higher dimensional outputs provides
additional degrees of freedom to help the regression optimization. As shown in the experiments, this
generalization results in a better and more robust performance than mean squared error.

2.3 LEARNING MULTIPLE TASKS IN THE SAME OUTPUT SPACE

To underline that classification and regression form a coherent unity in polar prototype networks,
we show that both tasks can be optimized not only with the same base network, as is common in
multi-task learning (Caruana, 1997), but can even be done in the same output space. To combine
regression and classification in a shared D-dimensional output space, all that is required is to place
the upper and lower polar bounds for regression in opposite direction along one axis. The other axes
can then be used to maximally separate the class polar prototypes for classification. Optimization is
as simple as summing the losses of Eq. 1 and 5. In this manner the regression and classification are
unraveled and interpretable by design, while being jointly optimized in the same space. This allows
us to obtain classification and regression results at the same time and to visualize and interpret results
from multiple tasks in the same space.

3 EXPERIMENTAL EVALUATION

3.1 CLASSIFICATION

We first evaluate polar prototype networks for classification, where we investigate the importance
of the inductive and semantic priors that are incorporated in our network outputs: maximum margin
separation, semantic class similarity, and minimum description length. We evaluate on CIFAR-10
and CIFAR-100 using ResNet32 (He et al., 2016) as the base network, optimized using SGD
(learning rate: 0.01, momentum: 0.9) for 250 epochs. The learning rate is decreased by a factor 10
after 150 and 200 epochs. For all experimental settings, we perform five runs and report the mean
and standard deviation of the top-1 accuracy.

Maximum margin separation. First, we investigate the importance of separation with polar
prototypes. We evaluate our Monte Carlo and evolutionary algorithms, with a comparison to
baseline prototypes as proposed in (Chintala et al., 2017). In the baseline each prototype is a
vertex of the standard simplex, i.e., each prototype is a unique one-hot vector where all entries
are zero except one. The baseline prototypes are optimally separated but on the positive quadrant
only, while our prototypes are approximately optimally separated on the full hypersphere. For all
approaches, we perform random assignments between classes and polar prototypes. Using these
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Figure 3: Minimal amount of output dimensions in polar prototype networks. For CIFAR-10 and
CIFAR-100, we can largely reduce the output space with minimal loss in performance. We also com-
pare to softmax cross-entropy and find that the performance is similar. This experiment highlights
the ability of our approach to provide effective results with the simplest of output structures.

three approaches, we relate the separation to the classification performance in polar prototype
networks. For this experiment, we use 10 and 100 output dimensions for CIFAR-10 and CIFAR-100
respectively.

The results are shown in Table 1, where the approaches of interest are the non-semantic ones.
We observe that the baseline has an equal separation among all classes, as the prototypes form
an orthonormal basis. However, this also means only a quarter of the space of the hypersphere is
used. Our approaches make full use of the space of the hypersphere. We find that the evolutionary
algorithm yields a better separation than the Monte Carlo algorithm, especially in lower dimensions.
The importance of exploiting the full hypersphere for polar prototypes becomes evident when
evaluating the classification performance. While the CIFAR-10 performance is roughly equal
for all three, the baseline only reaches an average accuracy of 51.5% on CIFAR-100, compared
to 64.9% and 64.8% for our polar prototypes. Interestingly, the larger margins of our evolution-
ary algorithm do not result in better performance. These results indicate that for classification, a
large margin separation on the full hypersphere is preferred, but a maximum separation is not a must.

Samples per class
5 20 50 all

Ours (w/o semantics) 8.3 16.4 28.7 64.8
Ours (w/ semantics) 8.9 17.7 30.4 65.0

Table 2: Classification for few training examples on
CIFAR-100. Adding semantic priors to our polar pro-
totypes aids classification performance when examples
are more limited.

Learning with semantic priors. Second,
we investigate the effect of enhancing
our evolutionary algorithm with semantic
class knowledge. We use the word2vec
embeddings of the class names as the
baseline approach for semantic polar
prototypes. The word embeddings are a
natural baseline, as the cosine similarity
is the common similarity measure for the
embedding vectors. We perform PCA
reduction on the word embeddings to
make them of equal dimensionality as
our polar prototypes. The results of this
experiment are in Table 1, with the semantic approaches check-marked. We observe that the
word2vec baseline yields a desirable separation and accuracy on CIFAR-10. However, when
increasing the output dimensionality and number of classes in CIFAR-100 the separation decreases,
which has a negative effect on the performance (mean accuracy of 61.2%). For our evolutionary
algorithm, we obtain polar prototypes with both a semantic structure and large class separation. The
performance on CIFAR-10 and CIFAR-100 benefits from the semantics, leading us to conclude that
semantic priors aid the classification abilities. In Table 2, we also investigate the use of semantic
priors in polar prototype networks when training examples are scarce. When training examples
are scarce our approach benefits from the semantic class correlations for classification. To show
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OmniArt
Output dimensions Optimizer

SGD Adam

Baseline regression
(Strezoski & Worring, 2017) 1 88.3 -

Square loss regression 1 199.7 ± 31.7 81.0 ± 1.4
Square loss regression 2+1 236.2 ± 74.3 78.7 ± 0.7
Square loss regression 3+1 207.2 ± 35.8 80.0 ± 0.6

Our regression
Polar prototypes 2 74.8 ± 6.8 71.9 ± 3.6
Polar prototypes 3 72.3 ± 3.9 71.6 ± 2.7

Table 3: Regression performance of polar prototype networks for predicting creation year in
paintings. Shown are the mean absolute error rates. Polar prototype networks largely outperform
standard network regression when using SGD. With Adam, we also report better performance. Polar
prototype networks are an effective and robust solution for regression in neural networks.

that our approach also benefits from deeper architectures, we have also applied our approach with
semantic priors on a DenseNet121 architecture (Huang et al., 2017). This improved the results to
93.2% (CIFAR-10) and 73.1% (CIFAR-100). We expect further improvements with strategies such
as pre-training and extensive hyperparameter tuning.

Towards minimal amount of dimensions in the network outputs. Where the penultimate
layer of networks with softmax cross-entropy is described by an unbounded K-dimensional
output space for K classes, our polar prototype networks reduces the description to a bounded
(K × K)-dimensional matrix when using the same number of output dimensions. Contrary to
softmax cross-entropy however, we are not restricted to a fixed-size output space. In the third study,
we evaluate the classification performance when using lower-dimensional output spaces, to arrive
at a minimal amount of dimensions in the output space. We use our evolutionary algorithm with
semantic priors. We also use this study to compare to softmax cross-entropy.

Figure 3 shows the classification performance as a function of the output description length on
CIFAR-10 and CIFAR-100. For both datasets, we observe that we can reduce the output space for
a large part with minimal effect on the performance. We also provide a comparison to softmax
cross-entropy with identical settings, which yields a similar performance on both datasets. Next
to being competitive to softmax cross-entropy, our approach is also competitive to the prototype-
based approach of Guerriero et al. (2018), with the benefit that our approach not longer needs to
continuously re-esitmate and update the class prototypes. A direct comparison to e.g. Schnell et
al. (2017) is not possible, since it is optimized for few-shot learning only. We conclude that polar
prototype networks deliver effective performance with the simplest of output structures, embodying
Occam’s Razor in enabling predictive interpretation (Grünwald et al., 2005).

3.2 REGRESSION

In the second experiment, we evaluate polar prototype networks for regression. We perform an
evaluation on the challenging task of predicting the creation year of paintings. We focus on paintings
from the 20th century available as part of the large-scale OmniArt dataset (Strezoski & Worring,
2017). This results in a dataset with 15,000 training examples and 8,353 test examples1. We employ
a ResNet16 network architecture (He et al., 2016) trained in similar fashion to the classification
setup. The Mean Absolute Error is used as the evaluation metric. We compare our approach to a
squared loss regression baseline, where we both normalize and clamp the outputs between 0 and 1
using the bounds to provide a fair comparison to our regression. For this baseline, we also include
variants where the output layer has more dimensions, followed by an additional layer to a one-
dimensional output.

1The dataset, regression labels, and train/test split will be made available online to enable reproduction.
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The results are shown in Table 3. When we employ the same setup as in our classification ex-
periments, i.e., with SGD as the optimizer, the squared loss regression baselines all fail to con-
verge, resulting in high error rates. Our approach using SGD does converge and yields far better
results. Given the large difference in performance, we also ran the baselines and our approaches
using Adam (Kingma & Ba, 2014). With this setting, the baselines do converge. However, our
approach also works better. We find that, using Adam, our approach with a two-dimensional output
significantly outperforms the baseline with a two-dimensional plus an additional one-dimensional
layer (p = 0.02 for a two sample t-test, H0 = both samples have same mean). This also holds for
the comparison with three dimensions (p = 0.01). With our approach, we observe that using three
dimensions over two results in slightly better performance, but not significantly (p = 0.9). Lastly,
we find that our error rate of 71.6 outperforms the regression baseline of (Strezoski & Worring,
2017) (MAE of 88.3, other info on paintings is excluded for a more fair comparison to our work).
We conclude that polar prototype networks provide an effective and robust solution for regression.

3.3 JOINT REGRESSION AND CLASSIFICATION IN THE SAME OUTPUT SPACE

To underline the unification of regression and classification in polar prototype networks, we
have performed an experiment where both tasks are optimized within the same output space.
We use the MNIST dataset, where we aim to both classify the digits and regress the rota-
tion of the examples. We use the digits 2, 3, 4, 5, and 7, where we apply a random ro-
tation between 0 and 180 degrees to each example. The other digits were not of interest
given the rotational range. We employ a 3-dimensional output space, where the classes are
optimally separated along the (x, y) plane and the regression bounds are projected along the
z-axis. We use a simple network with two convolutional and two fully connected layers.
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Figure 4: Joint regression and classification in the same output
space on a rotated MNIST subset. The regression and classification
structure is shown separately for ease of visualization, we explicitly
note that the space is identical. Rotation is along the z-axis (color
denotes regression value), while classification is on the (x, y)-plane
(color denotes class). With polar prototype networks, the output
space can disentangle different tasks in a structured manner.

In Figure 4, we visualize pro-
jections of data points in the
output space of our network
after 20 epochs. We pro-
vide separate visualizations
for regression and classifica-
tion for clarity and empha-
size that they are the same
output space. For regression,
we observe a smooth interpo-
lation between the minimum
and maximum rotation, high-
lighting our regression ability.
For classification, we observe
that the digits from each class
form slices with large separa-
tion to other classes. The joint
optimization results in a space
that unravels the inter-class
separation from the intra-class
rotations by design.

4 RELATED WORK

Our approach builds upon prototype-based networks, which have recently gained traction under
various names, including centers (Wen et al., 2016), proxies (Movshovitz-Attias et al., 2017),
means (Guerriero et al., 2018), prototypical concepts (Jetley et al., 2015), and prototypes (Snell
et al., 2017). In general, these works adhere to the Nearest Mean Classifier paradigm (Mensink
et al., 2013) by assigning training examples to a vector in the output space of the network, which
is defined to be the mean vector of the training examples. A few works have also investigated
multiple prototypes per class (Movshovitz-Attias et al., 2017; Yang et al., 2018). Prototype-based
networks have shown to enforce a more coherent output structure (Wen et al., 2016) and to enable a
generalization to new classes (Guerriero et al., 2018; Snell et al., 2017; Yang et al., 2018).
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While promising, the training of prototype networks is currently faced with a chicken-and-egg prob-
lem. Training examples are mapped to class prototypes, while class prototypes are defined as the
mean of the training examples. Because the projection from input to output changes continuously
during network training, the true location of the prototypes changes with each mini-batch update.
This holds for methods with both one, or multiple prototypes per class. Obtaining the true location
of the prototypes is expensive, as it requires a pass over the complete dataset. As such, prototype
networks currently either focus on the few-shot setting (Boney & Ilin, 2017; Snell et al., 2017),
or on approximating the prototypes. Approximations include alternating the example mapping and
prototype learning (Hasnat et al., 2017) or updating the prototypes online as a function of the mini-
batches (Guerriero et al., 2018). We propose to bypass the prototype learning altogether by structur-
ing the output space prior to training. By defining polar prototypes as points on the hypersphere, they
are maximally separated a priori. Optimization simplifies to minimizing a polar distance between
training examples and their corresponding prototype, alleviating the need to continuously obtain and
learn prototypes. Moreover, we provide a unification between classification and regression.

Bojanowski and Joulin (Bojanowski & Joulin, 2017) recently showed that unsupervised learning is
possible by projecting examples to random prototypes on the unit hypersphere. Here, we similarly
employ prototypes on the hypersphere, but do so in a supervised setting, without the need to ex-
plicitly project network outputs to the hypersphere. Perrot and Habrard (Perrot & Habrard, 2015)
have previously explored the notion of pre-defined prototypes in the context of metric learning. We
also employ pre-defined prototypes, but on the hypersphere in a deep learning setting using polar
distances, for both classification and regression.

Several works have shown the benefit of optimizing networks using angles for classification. Liu et
al. (2016) aim to improve the separation in softmax cross-entropy by increasing the angular margin
between classes. In similar fashion, several works project network outputs to the hypersphere for
classification through `2 normalization, which forces softmax cross-entropy to optimize for angular
separation (Hasnat et al., 2017; Liu et al., 2017a; Wang et al., 2018; Zheng et al., 2018). The
work of (Gidaris & Komodakis, 2018) shows that using cosine similarity in the output helps the
generalization to new categories. The potential of angular similarities has also been investigated
in other layers of deep networks (Liu et al., 2017b; Luo et al., 2017). In this work, we combine
large margin separation from an angle-based perspective with the minimal description length from
a prototype-based perspective and arrive at polar prototype networks, a simple and effective unified
solution for classification and regression.

5 CONCLUSIONS

We propose polar prototype networks for unified classification and regression by imposing output
structures that are both simple and with maximum margin separation. For classification, prototypes
are distributed as uniformly as possible on the hypersphere prior to learning. We also show how to
incorporate a semantic structure in the prototype distribution from prior knowledge. The network in
turn only requires a polar minimization between training examples and their class prototypes. The
simplicity of the output structure furthermore enables us to generalize to regression. Rather than
directly minimizing an angle to fixed prototype locations, as done in classification, we maintain two
diametrically opposed prototypes; the lower and upper regression bound. We outline how to perform
regression in this setting as an interpolation between the polar lower and upper bounds. Experimen-
tally, we show that our classification approach benefits from large-margin class separation and a
semantic structure, resulting in effective classifiers with a minimal description length. Our regres-
sion outperforms standard squared error optimization, highlighting its expressive abilities. Since
regression and classification are unified in the same network, we enable the capability to optimize
both tasks in the same output, resulting in a common space with disentangled factors. We conclude
that polar prototype networks provide a unified solution at least as effective as softmax cross-entropy
and mean squared error, while having simpler and more interpretable output structures.
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