Multi-Task Learning via Task Multi-Clustering

Andy Yan'! Xin Wang' Ion Stoica! Joseph Gonzalez

Abstract

Multi-task learning has the potential to facilitate
learning of shared representations between tasks,
leading to better task performance. Some sets of
tasks are related, and can share many features that
are useful latent representations for these tasks.
Other sets of tasks are less related, possibly shar-
ing some features, but also competing on the rep-
resentational resources of shared parameters. We
propose to discover how to share parameters be-
tween related tasks and split parameters between
conflicting tasks, by learning a multi-clustering of
the tasks. We present a mixture-of-experts model,
where each cluster is an expert that extracts a
feature vector from the input, and each task be-
longs to a set of clusters whose experts it can
mix. In experiments on the CIFAR-100 MTL do-
main, multi-clustering outperforms a model that
mixes all experts in accuracy and computation
time. The results suggest that the performance
of our method is robust to regularization that in-
creases the model’s sparsity when sufficient data
is available, and can benefit from sparser models
as data becomes scarcer.

1. Introduction

Multi-task learning (MTL) is the process of jointly learning
to perform multiple tasks (Ruder, 2017). When different
tasks are related to each other, we might expect joint learn-
ing to provide benefits such as achieving better performance
at the tasks, requiring less data, and improving generaliza-
tion and robustness. The reasons why MTL might lead to
such benefits go beyond the mere availability of more train-
ing data or supervision signal: MTL can facilitate structured
representation, i.e., have some parameters shared between
related tasks. In this work, we focus on tasks that are related
in the sense that they share featurizations of the input —i.e.,

"Department of Electrical Engineering and Computer Science,
University of California, Berkeley. Correspondence to: Andy Yan
<yan.andy4 @berkeley.edu>.

Proceedings of the 1°* Adaptive & Multitask Learning Workshop,
Long Beach, California, 2019. Copyright 2019 by the author(s).

' Roy Fox!

latent representations — from which each task’s output can
be computed. A standard hypothesis is that learning models
with shared parameters has the potential to lead to better
performance.

However, when models for unrelated tasks are forced to
share parameters, they compete on the same representa-
tional resources, which may hurt their performance. Ideally,
we would learn models jointly for tasks that share useful fea-
tures, and separately for tasks that do not; but this principle
meets two obstacles. First, a pair of tasks may share some
useful features but not others, so that a simple binary deci-
sion — whether to learn the two tasks jointly or separately —
may be too coarse. Second, it is often unclear how one could
obtain prior information about the degree to which different
tasks are related or competing in the structural sense.

In this work, we propose to overcome these obstacles by dis-
covering a multi-clustering of the tasks, i.e., an assignment
of each task to multiple clusters of tasks to which it is par-
tially related. Each cluster corresponds to an “expert” that
extracts a vector of features from the input. A model for the
task is then obtained by a mixture of the experts to which the
task is clustered. Our gradient-based method jointly learns
the experts, the multi-clustering, and the mixtures.

We present experimental results on the CIFAR-100 MTL
domain suggesting that our method has both computational
and performance benefits over existing methods with the
same neural architecture and number of experts. The results
further provide evidence that regularizing for model spar-
sity, which decreases the number of experts used by tasks,
can improve performance when data is somewhat scarce.
Experimenting with a range of regularization coefficients
when data is more abundant indicates that performance is
largely insensitive to small changes in that hyper-parameter,
and that our method of selecting experts during evaluation
time outperforms simpler baselines.

In summary, this paper contributes: (1) a method for multi-
task learning via task multi-clustering using discrete gating;
(2) an evaluation of the computational and performance
benefits of this method; and (3) evidence that the method’s
performance is robust to variations in the regularization
hyper-parameter in the high-data regime and can benefit
from sparsity regularization in the lower-data regime.

Multi-Task Learning via Task Multi-Clustering

2. Related Work

Extensive research has been done in multi-task learning,
seeking to improve task performance (Misra et al., 2016;
Pinto & Gupta, 2017) and reduce the requirement of com-
putational (Shazeer et al., 2017) and memory resources
(Mallya & Lazebnik, 2018). As a result, many creative mod-
els and algorithms have been proposed, including ones that
cluster tasks in a top-down fashion (Lu et al., 2017), learn
relationships between tasks using matrix priors (Long et al.,
2017), and more (Ruder, 2017).

Our proposed model uses the mixture-of-experts (MoE)
principle for multi-task learning. Two related models are
the cross-stitch network (Misra et al., 2016), where outputs
from all experts are mixed together by a task-specific linear
combination, and the routing network (Rosenbaum et al.,
2017), where one expert per gating layer is selected, de-
pending on the input and the task. Routing and cross-stitch
networks can be viewed as two extremes of a spectrum, with
the former making gating decisions that are hard (yes / no)
and sparse (exactly one expert), and the latter performing
soft and dense “gating”. Our method enjoys the best of both
approaches, by learning how many experts to select for each
task, as well as task-specific linear combinations that mix
the selected experts. This paper only studies networks with a
single gating layer, but our method can be straightforwardly
extended to multiple gating layers.

A similar approach is taken in Shazeer et al. (2017) in the
single-task setting, where the gating layer selects a prede-
termined number of experts. In contrast, we learn a task-
specific number of experts in the multi-task setting, which
requires a different mechanism for expert selection (Sec-
tion 3). During training time, our gating is a variant of
dropout (Srivastava et al., 2014) in which entire experts are
dropped out rather than single neurons, and the dropout
probabilities are learned and task-specific rather than fixed.

Another MoE model for the single-task setting is DeepMoE
(Wang et al., 2018), which uses ReLU activation to encour-
age sparsity in input-dependent gating weights. In contrast,
we make discrete gating choices using a probabilistic model
that is conditioned only on the task. After training, we
fix the set of experts that contribute to each task, facilitat-
ing efficient model deployment, and improving the model’s
interpretability (Section 4.3).

3. Task Multi-Clustering

A task is a tuple (X, Y, P, L), with X and), respectively,
input and output domains, P a distribution over X x),
and £ : Y x Y — R aloss function. We say that a model
m : X — Y achieves good performance if it has low ex-
pected loss B,)~ p[£(m(x),y)]. In multi-task learning
(MTL), we assume some distribution () over a set of tasks

T, and a dataset of tuples (¢, x,y), such that t ~ @ and
(z,y) |t ~ P;. In our experiments, () is the uniform distri-
bution over N tasks.

We propose a mixture-of-experts (MoE) model for MTL
in which the tasks in T are clustered into M experts. The
binary gating variables b;(t) € {0, 1} are functions of the
task representation ¢ indicating whether task ¢ is clustered
into expert 7. Intuitively, we would like a subset of the tasks
T: = {t|b;(t)=1} to be clustered into expert i if these tasks,
and only these tasks, share useful features f;(x) of the input
x. The expert should learn to extract such features.

Given the expert featurizations f;(x) and the multi-
clustering b; (), we compute for each task ¢ a task-specific
representation z(t, x) as a mixture of the experts into which
it is clustered

2(t,x) = sz‘(ﬂwi(t)fi(l‘): (D

where w; (t) are the mixture weights. We learn a task head g
mapping from the latent representation z(t,) to the output

m(t,z) = g(t, 2(t, z)).
Our training objective is to minimize the expected loss be-
tween the predicted output and the true output

b%}i}lg Et“‘Q E(z,y)~Pt [‘Ct(m(t’ x),y)] 2

We note that, during both training and evaluation time, only
the experts of the mixture (1) for which b;(¢) = 1 need to be
called. Sparsity of the multi-clustering can therefore yield
significant computational efficiency.

To perform gradient-based optimization of the objective
(2), we can choose differentiable parametrizations of all
w;’s, fi’s, and g as neural networks. Unfortunately, the
multi-clustering indicators b; are inherently discrete. To
relax this modeling assumption, we introduce the prob-
ability p;(t) that expert ¢ will be used for task ¢, and
have b;(t) ~ Bernoulli(p;(t)). This makes z(¢, x;b) and
m(t,xz; b) random variables, requiring special care in the
optimization.

Because the discrete gating variables are not differentiable,
in order to optimize the gating distribution, we can either re-
lax it into a reparametrizable distribution using the Gumbel-
softmax trick (Jang et al., 2016), or use the score-function
trick to sample from the same gating distribution that we
optimize. Sampling from a relaxed gating distribution gen-
erates soft gating values b;(t) € (0, 1), and does not enjoy
the computational benefits of sparsity during training time.
We therefore choose the score-function trick

V Eypep) [Le(m(t, z;0), y)]

= Byp(ey | VL + L0 Viogpi(bist) |, (3)

Multi-Task Learning via Task Multi-Clustering

where p;(b;;t) is p;(t) if b;=1, else 1—p;(t). To estimate
the gradient (3) in each optimizer step, we sample a single
gating combination b for each element of the mini-batch.

We define the density of each task as the expected number
of experts used in its computation, k() = > . p;(t), and
refer to its complement M — k(t) as the sparsity. We desire
sparser representations for faster training and evaluation, as
long as task performance does not degrade much.

To our optimization objective, we add the expected task
density, in our case the mean = >V k(t), as a regulariza-
> N 2ut=1) g
tion term, namely L, regularization on p. The coefficient
of this term, A, can be viewed as the relative marginal cost
of computing one expert and incurring a unit of loss. By
tuning A, we can control the trade-off between computation
and loss.

During evaluation time, given an input = for task ¢, we
wish to keep the same task density k() as in training time.
Moreover, efficient model deployment and computation
may require a fixed, deterministic multi-clustering b. We
therefore round k() to the nearest integer, and pick the set
of k(t) most likely experts

arg max Z bi(t)pi(t). 4)
b: Zz 171 (t):k)(t) i

Other approaches to choosing the fixed multi-clustering b
from the learned distribution p could be rounding the proba-
bilities to 1 or 0, or sampling from them. However, rounding
would induce a different expert density at evaluation time
than in training time, which may create a covariate shift
for the downstream network, and sampling from the gat-
ing distribution may not select the most likely experts, thus
degrading performance.

As a result of our gating discretization technique (4), the
model computation time is O(k), where regularization in-
duces selection of only k experts. This is generally much
more efficient than mixing all M experts in O(M) compu-
tation time. As the diversity of the set of tasks 7 increases,
we must also increase the total number of experts M, but
not the task density k, contributing to the advantage of the
multi-clustering method over naive MoE.

4. Experiments

‘We evaluate our method on the CIFAR-100 MTL dataset,
in which each task is to classify an image into one of 5
classes, with cross-entropy loss between the true class and
the predicted class distribution. There are N = 20 tasks,
corresponding to 20 non-overlapping super-classes (fish,
flowers, etc.). Each image in the dataset is involved in
exactly one task and has exactly one true label for that task.

The deep network architecture of each of the experts f;(x)

- Ungated MoE, 1 experts
-+~ Ungated MoE, 20 experts
-+=- Ungated MoE, 60 experts

Ungated MoE, 100 experts
—}— Multi-clustering A = 0.05
—}— Multi-clustering A = 0.1
—}— Multi-clustering A = 0.15

accuracy

0 10000 20000 30000 40000 50000
dataset size

Figure 1. Accuracy of models trained with different amounts of
data. Task multi-clustering with sufficiently large sparsity coeffi-
cient)\ outperforms ungated mixture-of-experts, when sufficient
data is available. Some 1-std error bars are too small to be visible.

is four sequential convolutional layers, each with 32 filters,
ReLU activation, and 2 x 2 max pooling. Each task head
g(t, z) is a fully connected layer that takes the mixture of ex-
perts z(t,) and outputs classification logits. Two N x M
matrices represent w; (t) and the logits of p;(t), with each
element of w initialized by a standard Gaussian, and p ini-
tialized uniformly as O logits. We optimize the mean task
loss (2) using Adam with an initial learning rate of 10~3.

We present three experiments: (1) a comparison between
different gating techniques in terms of accuracy, (2) a com-
parison between different ways to select experts during eval-
uation time; and (3) a qualitative evaluation of the multi-
clustering similarity between tasks.

4.1. Comparison of Gating Techniques

To compare with cross-stitch networks (Misra et al., 2016),
we generalize their method to have more than 2 tasks and 2
experts by representing the mixture weights as an N x M
matrix. This is equivalent to setting b = 1 in our model, and
compares sparse gating to dense, ungated MoE.

The results are summarized in Figure 1. With sufficient
data, multi-clustering outperforms ungated MoE with the
same number of parameters. While MoE is largely insen-
sitive to the number of experts in a wide range (20—100),
multi-clustering benefits from sparser gating as the amount
of data decreases, presumably due to a regularization ef-
fect. Our results consistently outperform those reported in
Rosenbaum et al. (2017): routing networks achieve 60%
accuracy, whereas our model with A = 0.1, using the same
architecture, achieves 62.7% accuracy.

4.2. Expert Selection during Evaluation Time

We turn to the question of how task-specific subsets of
experts should be selected during evaluation time, based
on the learned distribution p. We wish to fix the multi-

Multi-Task Learning via Task Multi-Clustering

68 1

o
<

o
o
s

accuracy

o
@
s

—}— ungated MoE
64 1 —}— meank
—}— task-specific k¢

6 2‘0 4‘0 60 8‘0 160
experts
Figure 2. Performance over number of experts used during evalu-
ation time on the full dataset of 50K images. Using task-specific
selection of k(t), the number of experts per task, outperforms
using mean k over all tasks and ungated mixture of all experts.

clustering after training to deploy a fixed model for each task
with only the selected experts. This has the potential to make
the model more computationally efficient and interpretable.

Prior works predefined the number of experts per task as a
hyper-parameter k. In Shazeer et al. (2017), the k experts
with the largest (noisy) weights are selected. In contrast, we
choose the task-specific k(¢) to be the expected number of
experts selected during training time for task . We speculate
that this choice of k(¢) reduces the covariate shift in the
distribution of z(t, z) experienced by the task head g(t, z),
thus improving its performance. Given k(t), we select the
maximum-posterior subset of experts for the task, which is
the k(¢) most likely experts.

We compare this method of selecting the final multi-
clustering to choosing k to be mean expected number of
experts over all tasks. The results, summarized in Figure 2,
suggest that choosing task-specific k(t) outperforms choos-
ing the mean k. We speculate that the performance degrada-
tion is more pronounced in sparser multi-clustering because
this increases the risk of having too few features for tasks
that need more features than the average.

Figure 2 also compares the performance of ungated MoE as
a function of the total number of experts M. Performance
is largely insensitive to the number of experts, if there are
sufficiently many, but forcing all M experts to be mixed
does degrade performance. This suggests that tasks do
benefit from our discrete multi-clustering formulation.

4.3. Task Similarity

Using hard gating enables interpretable task relatedness in-
volving how similarly tasks share experts. In our evaluation
of this property, after adding sparsity regularization with
coefficient A = 0.1, we find that some tasks have a strong
preference for some experts, as depicted in Figure 3. The
left maps show the probabilities of the M experts being

10
08
0.6
0.4
02
0.0

0246610121A1618

10
0.8
0.6
04
02
0.0

uzasalouulem

10
08
06
0.4
02
0.0
0 20 40 60 80 100
expert
10
08
0.6
0.4
02
0.0
0 20 40 60 80 100

8
6
4
2
0

Figure 3. Gating representations for multl—clustermg with sparsity
regularization coefficient A = 0.1, trained on 12.5K (top) and 50K
(bottom) data points. Left: probabilities of selecting each expert
for each task. Right: normalized correlation between the tasks.

used for the IV tasks. The right maps display the normalized
correlation in gating probabilities between pairs of tasks
(rows in the left maps). With the larger dataset (bottom),
there is a clear correlation in gating probabilities between
tasks, such as tasks 3 and 6, which are “food containers”
and “household furniture”, respectively. With the smaller
dataset (top), such correlations between tasks are unclear.

5. Conclusion

In multi-task domains, tasks are often partially related, in
the sense that they benefit from sharing some but not all of
their latent representation with other tasks. We presented
a method for discovering a multi-clustering of tasks into
feature-extracting experts, such that each task uses a mixture
of the experts it selected. Through these experts, the task
shares each portion of the parameters in its model with a
different cluster of partially related tasks.

The discovered structure of the multi-clustering facilitates
more efficient learning, in terms of both task performance
and computational efficiency. The model’s sparsity allows
evaluating only a subset of the experts per task, both during
training and evaluation time. By fixing the multi-clustering
after training, we enable deployment of smaller models per
task, which only involve the most useful experts. Finally,
with sufficient data, the model’s performance is robust to
significantly increasing the sparsity through regularization.

The single multi-clustering gating layer presented in this
work can be extended to models with multiple such layers.
This extension may require techniques that reduce the con-
siderable variance of the score-function gradient estimator
(3). Our method should further be evaluated on a variety of
domains and architectures.

Multi-Task Learning via Task Multi-Clustering

Acknowledgements

This work was performed at the Real-Time Intelligent Secure Exe-
cution (RISE) Lab and Berkeley Al Research (BAIR). In addition
to NSF CISE Expeditions Award CCF-1730628, this research is
supported by gifts from Alibaba, Amazon Web Services, Ant Fi-
nancial, Arm, CapitalOne, Ericsson, Facebook, Google, Huawei,
Intel, Microsoft, Nvidia, Scotiabank, Splunk and VMware.

References

Jang, E., Gu, S., and Poole, B. Categorical reparameterization with
gumbel-softmax. arXiv preprint arXiv:1611.01144,2016.

Long, M., Cao, Z., Wang, J., and Philip, S. Y. Learning multiple
tasks with multilinear relationship networks. In Advances in
Neural Information Processing Systems, pp. 1594-1603, 2017.

Lu, Y., Kumar, A., Zhai, S., Cheng, Y., Javidi, T., and Feris, R.
Fully-adaptive feature sharing in multi-task networks with appli-
cations in person attribute classification. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition,
pp. 5334-5343, 2017.

Mallya, A. and Lazebnik, S. Packnet: Adding multiple tasks to a
single network by iterative pruning. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pp.
7765-7773, 2018.

Misra, 1., Shrivastava, A., Gupta, A., and Hebert, M. Cross-stitch
networks for multi-task learning. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pp.
3994-4003, 2016.

Pinto, L. and Gupta, A. Learning to push by grasping: Using
multiple tasks for effective learning. In 2017 IEEE International
Conference on Robotics and Automation (ICRA), pp. 2161—
2168. IEEE, 2017.

Rosenbaum, C., Klinger, T., and Riemer, M. Routing networks:
Adaptive selection of non-linear functions for multi-task learn-
ing. arXiv preprint arXiv:1711.01239, 2017.

Ruder, S. An overview of multi-task learning in deep neural
networks. arXiv preprint arXiv:1706.05098, 2017.

Shazeer, N., Mirhoseini, A., Maziarz, K., Davis, A., Le, Q., Hin-
ton, G., and Dean, J. Outrageously large neural networks:
The sparsely-gated mixture-of-experts layer. arXiv preprint
arXiv:1701.06538, 2017.

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, 1., and
Salakhutdinov, R. Dropout: a simple way to prevent neural
networks from overfitting. The Journal of Machine Learning
Research, 15(1):1929-1958, 2014.

Wang, X., Yu, F,, Wang, R., Ma, Y.-A., Mirhoseini, A., Darrell,
T., and Gonzalez, J. E. Deep mixture of experts via shallow
embedding. arXiv preprint arXiv:1806.01531, 2018.

