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ABSTRACT

Relational databases store a significant amount of the worlds data. However, ac-
cessing this data currently requires users to understand a query language such as
SQL. We propose Seq2SQL, a deep neural network for translating natural lan-
guage questions to corresponding SQL queries. Our model uses rewards from in-
the-loop query execution over the database to learn a policy to generate the query,
which contains unordered parts that are less suitable for optimization via cross en-
tropy loss. Moreover, Seq2SQL leverages the structure of SQL to prune the space
of generated queries and significantly simplify the generation problem. In addition
to the model, we release WikiSQL, a dataset of 80654 hand-annotated examples
of questions and SQL queries distributed across 24241 tables from Wikipedia that
is an order of magnitude larger than comparable datasets. By applying policy-
based reinforcement learning with a query execution environment to WikiSQL,
Seq2SQL outperforms a state-of-the-art semantic parser, improving execution ac-
curacy from 35.9% to 59.4% and logical form accuracy from 23.4% to 48.3%.

1 INTRODUCTION

Relational databases store a vast amount of today’s information and provide the foundation of ap-
plications such as medical records (Hillestad et al., 2005), financial markets (Beck et al., 2000),
and customer relations management (Ngai et al., 2009). However, accessing relational databases
requires an understanding of query languages such as SQL, which, while powerful, is difficult to
master. Natural language interfaces (NLI), a research area at the intersection of natural language
processing and human-computer interactions, seeks to provide means for humans to interact with
computers through the use of natural language (Androutsopoulos et al., 1995). We investigate one
particular aspect of NLI applied to relational databases: translating natural language questions to
SQL queries.

Our main contributions in this work are two-fold. First, we introduce Seq2SQL, a deep neural
network for translating natural language questions to corresponding SQL queries. Seq2SQL, shown
in Figure 1, consists of three components that leverage the structure of SQL to prune the output
space of generated queries. Moreover, it uses policy-based reinforcement learning (RL) to generate
the conditions of the query, which are unsuitable for optimization using cross entropy loss due
to their unordered nature. We train Seq2SQL using a mixed objective, combining cross entropy
losses and RL rewards from in-the-loop query execution on a database. These characteristics allow
Seq2SQL to achieve state-of-the-art results on query generation.

Next, we release WikiSQL, a corpus of 80654 hand-annotated instances of natural language ques-
tions, SQL queries, and SQL tables extracted from 24241 HTML tables from Wikipedia. Wik-
iSQL is an order of magnitude larger than previous semantic parsing datasets that provide logi-
cal forms along with natural language utterances. We release the tables used in WikiSQL both in
raw JSON format as well as in the form of a SQL database. Along with WikiSQL, we release a
query execution engine for the database used for in-the-loop query execution to learn the policy.
On WikiSQL, Seq2SQL outperforms a previously state-of-the-art semantic parsing model by Dong
& Lapata (2016), which obtains 35.9% execution accuracy, as well as an augmented pointer net-
work baseline, which obtains 53.3% execution accuracy. By leveraging the inherent structure of
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Figure 1: Seq2SQL takes as input a question and the columns of a table. It generates the cor-
responding SQL query, which, during training, is executed against a database. The result of the
execution is utilized as the reward to train the reinforcement learning algorithm.
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Figure 2: An example in WikiSQL. The inputs consist of a table and a question. The outputs consist
of a ground truth SQL query and the corresponding result from execution.

SQL queries and applying policy gradient methods using reward signals from live query execution,
Seq2SQL achieves state-of-the-art performance on WikiSQL, obtaining 59.4% execution accuracy.

2 MODEL

The WikiSQL task is to generate a SQL query from a natural language question and table schema.
Our baseline model is the attentional sequence to sequence neural semantic parser proposed by Dong
& Lapata (2016) that achieves state-of-the-art performance on a host of semantic parsing datasets
without using hand-engineered grammar. However, the output space of the softmax in their Seq2Seq
model is unnecessarily large for this task. In particular, we can limit the output space of the generated
sequence to the union of the table schema, question utterance, and SQL key words. The resulting
model is similar to a pointer network (Vinyals et al., 2015) with augmented inputs. We first describe
the augmented pointer network model, then address its limitations in our definition of Seq2SQL,
particularly with respect to generating unordered query conditions.

2.1 AUGMENTED POINTER NETWORK

The augmented pointer network generates the SQL query token-by-token by selecting from an input
sequence. In our case, the input sequence is the concatenation of the column names, required for the
selection column and the condition columns of the query, the question, required for the conditions
of the query, and the limited vocabulary of the SQL language such as SELECT, COUNT etc. In
the example shown in Figure 2, the column name tokens consist of “Pick”, “#”, “CFL”, “Team”
etc.; the question tokens consist of “How”, “many”, “CFL”, “teams” etc.; the SQL tokens consist of
SELECT, WHERE, COUNT, MIN, MAX etc. With this augmented input sequence, the pointer network
can produce the SQL query by selecting exclusively from the input.

Suppose we have a list of N table columns and a question such as in Figure 2, and want to produce
the corresponding SQL query. Let xc

j = [xc
j,1, x

c
j,2, ...x

c
j,Tj

] denote the sequence of words in the
name of the jth column, where xc

j,i represents the ith word in the jth column and Tj represents the
total number of words in the jth column. Similarly, let xq and xs respectively denote the sequence
of words in the question and the set of unique words in the SQL vocabulary.

We define the input sequence x as the concatenation of all the column names, the question, and the
SQL vocabulary:

x = [<col>;xc
1;xc

2; ...;xc
N ;<sql>;xs;<question>;xq] (1)
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where [a; b] denotes the concatenation between the sequences a and b and we add sentinel tokens
between neighbouring sequences to demarcate the boundaries.

The network first encodes x using a two-layer, bidirectional Long Short-Term Memory net-
work (Hochreiter & Schmidhuber, 1997). The input to the encoder are the embeddings correspond-
ing to words in the input sequence. We denote the output of the encoder by henc, where henc

t is the
state of the encoder corresponding to the tth word in the input sequence. For brevity, we do not write
out the LSTM equations, which are described by Hochreiter & Schmidhuber (1997). We then apply
a pointer network similar to that proposed by Vinyals et al. (2015) to the input encodings henc.

The decoder network uses a two layer, unidirectional LSTM. During each decoder step s, the decoder
LSTM takes as input ys−1, the query token generated during the previous decoding step, and outputs
the state gs. Next, the decoder produces a scalar attention score αptr

s,t for each position t of the input
sequence:

αptr
s,t = W ptrtanh

(
Uptrgs + V ptrht

)
(2)

We choose the input token with the highest score as the next token of the generated SQL query,
ys = argmax(αptr

s ).

2.2 SEQ2SQL

Seq2SQL

COUNT

SELECT

Engine

WHERE 
Driver = 
Val Musetti

How many 
engine types did 
Val Musetti use?

Entrant
Constructor
Chassis
Engine
No
Driver

Aggregation 
classifier
SELECT column 
pointer
WHERE clause 
pointer 
decoder

Figure 3: The Seq2SQL model has three components,
corresponding to the three parts of a SQL query (right).
The input to the model are the question (top left) and
the table column names (bottom left).

While the augmented pointer network can
solve the SQL generation problem, it does
not leverage the structure inherent in SQL.
Typically, a SQL query such as that shown
in Figure 3 consists of three components.
The first component is the aggregation op-
erator, in this case COUNT, which pro-
duces a summary of the rows selected by
the query. Alternatively the query may re-
quest no summary statistics, in which case
an aggregation operator is not provided.
The second component is the SELECT
column(s), in this case Engine, which
identifies the column(s) that are to be in-
cluded in the returned results. The third
component is the WHERE clause of the query, in this case WHERE Driver = Val Musetti,
which contains conditions by which to filter the rows. Here, we keep rows in which the driver is
“Val Musetti”.

Seq2SQL, as shown in Figure 3, has three parts that correspond to the aggregation operator, the
SELECT column, and the WHERE clause. First, the network classifies an aggregation operation
for the query, with the addition of a null operation that corresponds to no aggregation. Next, the
network points to a column in the input table corresponding to the SELECT column. Finally, the
network generates the conditions for the query using a pointer network. The first two components
are supervised using cross entropy loss, whereas the third generation component is trained using
policy gradient to address the unordered nature of query conditions (we explain this in the subse-
quent WHERE Clause section). Utilizing the structure of SQL allows Seq2SQL to further prune
the output space of queries, which leads to higher performance than Seq2Seq and the augmented
pointer network.

Aggregation Operation. The aggregation operation depends on the question. For the example
shown in Figure 3, the correct operator is COUNT because the question asks for “How many”. To
compute the aggregation operation, we first compute the scalar attention score, αinp

t = W inphenc
t ,

for each tth token in the input sequence. We normalize the vector of scores αinp = [αinp
1 , αinp

2 , ...] to
produce a distribution over the input encodings, βinp = softmax

(
αinp

)
. The input representation

κagg is the sum over the input encodings henc weighted by the normalized scores βinp:

κagg =
∑
t

βinp
t henc

t (3)
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Let αagg denote the scores over the aggregation operations such as COUNT, MIN, MAX, and the no-
aggregation operation NULL. We compute αagg by applying a multi-layer perceptron to the input
representation κagg:

αagg = W agg tanh (V aggκagg + bagg) + cagg (4)

We apply the softmax function to obtain the distribution over the set of possible aggregation opera-
tions βagg = softmax (αagg). We use cross entropy loss Lagg for the aggregation operation.

SELECT Column. The selection column depends on the table columns as well as the question.
Namely, for the example in Figure 3, “How many engine types” indicates that we need to retrieve
the “Engine” column. SELECT column prediction is then a matching problem, solvable using a
pointer: given the list of column representations and a question representation, we select the column
that best matches the question.

In order to produce the representations for the columns, we first encode each column name with a
LSTM. The representation of a particular column j, ec

j , is given by:

hc
j,t = LSTM

(
emb

(
xc
j,t

)
, hc

j,t−1

)
ec
j = hc

j,Tj
(5)

Here, hc
j,t denotes the tth encoder state of the jth column. We take the last encoder state to be ec

j ,
column j’s representation.

To construct a representation for the question, we compute another input representation κsel us-
ing the same architecture as for κagg (Equation 3) but with untied weights. Finally, we apply a
multi-layer perceptron over the column representations, conditioned on the input representation, to
compute the a score for each column j:

αsel
j = W sel tanh

(
V selκsel + V cec

j

)
(6)

We normalize the scores with a softmax function to produce a distribution over the possible SELECT
columns βsel = softmax

(
αsel

)
. For the example shown in Figure 3, the distribution is over the

columns “Entrant”, “Constructor”, “Chassis”, “Engine”, “No”, and the ground truth SELECT col-
umn “Driver”. We train the SELECT network using cross entropy loss Lsel.

WHERE Clause. We can train the WHERE clause using a pointer decoder similar to that
described in Section 2.1. However, there is a limitation in using the cross entropy loss
to optimize the network: the WHERE conditions of a query can be swapped and the query
yield the same result. Suppose we have the question “which men are older than 18”
and the queries SELECT name FROM insurance WHERE age > 18 AND gender =
"male" and SELECT name FROM insurance WHERE gender = "male" AND age
> 18. Both queries obtain the correct execution result despite not having exact string match. If
the former is provided as the ground truth, using cross entropy loss to supervise the generation
would then wrongly penalize the latter. To address this problem, we apply reinforcement learning to
learn a policy to directly optimize the expected correctness of the execution result (Equation 7).

Instead of teacher forcing at each step of query generation, we sample from the output distribution to
obtain the next token. At the end of the generation procedure, we execute the generated SQL query
against the database to obtain a reward. Let y = [y1, y2, ..., yT ] denote the sequence of generated
tokens in the WHERE clause. Let q (y) denote the query generated by the model and qg denote the
ground truth query corresponding to the question. We define the reward R (q (y) , qg) as

R (q (y) , qg) =


−2, if q (y) is not a valid SQL query
−1, if q (y) is a valid SQL query and executes to an incorrect result
+1, if q (y) is a valid SQL query and executes to the correct result

(7)

The loss, Lwhe = −Ey[R (q (y) , qg)], is the negative expected reward over possible WHERE clauses.
We derive the policy gradient for Lwhe as shown by Sutton et al. (2000) and Schulman et al. (2015).
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∇Lwhe
Θ = −∇Θ

(
Ey∼py

[R (q (y) , qg)]
)

(8)

= −Ey∼py

[
R (q (y) , qg)∇Θ

∑
t

(log py (yt; Θ))

]
(9)

≈ −R (q (y) , qg)∇Θ

∑
t

(log py (yt; Θ)) (10)

Here, py(yt) denotes the probability of choosing token yt during time step t. In equation 10, we
approximate the expected gradient using a single Monte-Carlo sample y

Mixed Objective Function. We train the model using gradient descent to minimize the objective
function L = Lagg + Lsel + Lwhe. Consequently, the total gradient is the equally weighted sum of
the gradients from the cross entropy loss in predicting the SELECT column, from the cross entropy
loss in predicting the aggregation operation, and from policy learning.

3 WIKISQL

Figure 4: Distribution of questions in WikiSQL.

WikiSQL is a collection of questions, corre-
sponding SQL queries, and SQL tables. A sin-
gle example in WikiSQL, shown in Figure 2,
contains a table, a SQL query, and the natu-
ral language question corresponding to the SQL
query. Table 1 shows how WikiSQL compares
to related datasets. Namely, WikiSQL is the
largest hand-annotated semantic parsing dataset
to date - it is an order of magnitude larger than
other datasets that have logical forms, either in
terms of the number of examples or the number
of tables. The queries in WikiSQL span over
a large number of tables and hence presents an
unique challenge: the model must be able to not only generalize to new queries, but to new table
schema. Finally, WikiSQL contains realistic data extracted from the web. This is evident in the dis-
tributions of the number of columns, the lengths of questions, and the length of queries, respectively
shown in Figure 5. Another indicator of the variety of questions in the dataset is the distribution of
question types, shown in Figure 4.

Figure 5: Distribution of table, question, query sizes in WikiSQL.

We collect WikiSQL by crowd-sourcing on Amazon Mechanical Turk in two phases. First, a worker
paraphrases a generated question for a table. We form the generated question using a template,
filled using a randomly generated SQL query. We ensure the validity and complexity of the tables
by keeping only those that are legitimate database tables and sufficiently large in the number of
rows and columns. Next, two other workers verify that the paraphrase has the same meaning as
the generated question. We discard paraphrases that do not show enough variation, as measured
by the character edit distance from the generated question, as well as those both workers deemed
incorrect during verification. Section A of the Appendix contains more details on the collection
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of WikiSQL. We make available examples of the interface used during the paraphrase phase and
during the verification phase in the supplementary materials. The dataset is available for download
at [MASK].

Dataset Size LF Schema

WikiSQL 80654 yes 24241
Geoquery 880 yes 8
ATIS 5871 yes* 141
Freebase917 917 yes 81*

Overnight 26098 yes 8
WebQuestions 5810 no 2420
WikiTableQuestions 22033 no 2108

Table 1: Comparison between WikiSQL
and existing datasets. The datasets are
GeoQuery880 (Tang & Mooney, 2001),
ATIS (Price, 1990), Free917 (Cai & Yates,
2013), Overnight (Wang et al., 2015), WebQues-
tions (Berant et al., 2013), and WikiTableQues-
tions (Pasupat & Liang, 2015). “Size” denotes
the number of examples in the dataset. “LF”
indicates whether it has annotated logical forms.
“Schema” denotes the number of tables. ATIS is
presented as a slot filling task. Each Freebase API
page is counted as a separate domain.

The tables, their paraphrases, and SQL queries
are randomly slotted into train, dev, and test
splits, such that each table is present in exactly
one split. In addition to the raw tables, queries,
results, and natural utterances, we also release
a corresponding SQL database and query exe-
cution engine.

3.1 EVALUATION

Let N denote the total number of ex-
amples in the dataset, Nex the number
of queries that, when executed, result in
the correct result, and Nlf the number of
queries has exact string match with the
ground truth query used to collect the para-
phrase. We evaluate using the execution
accuracy metric Accex = Nex

N . One
downside of Accex is that it is possible
to construct a SQL query that does not
correspond to the question but neverthe-
less obtains the same result. For exam-
ple, the two queries SELECT COUNT(name)
WHERE SSN = 123 and SELECT COUNT(SSN) WHERE SSN = 123 produce the same re-
sult if no two people with different names share the SSN 123. Hence, we also use the logical form
accuracy Acclf = Nlf

N . However, as we showed in Section 2.2, Acclf incorrectly penalizes queries
that achieve the correct result but do not have exact string match with the ground truth query. Due
to these observations, we use both metrics to evaluate the models.

4 EXPERIMENTS

We tokenize the dataset using Stanford CoreNLP (Manning et al., 2014). We use the normalized
tokens for training and revert into original gloss before outputting the query so that generated queries
are executable on the database. We use fixed GloVe word embeddings (Pennington et al., 2014) and
character n-gram embeddings (Hashimoto et al., 2016). Letwg

x denote the GloVe embedding andwc
x

the character embedding for word x. Here, wc
x is the mean of the embeddings of all the character n-

grams in x. For words that have neither word nor character embeddings, we assign the zero vector.
All networks are run for a maximum of 300 epochs with early stopping on dev split execution
accuracy. We train using ADAM (Kingma & Ba, 2014) and regularize using dropout (Srivastava
et al., 2014). All recurrent layers have a hidden size of 200 units and are followed by a dropout of
0.3. We implement all models using PyTorch 1. To train Seq2SQL, we first train a version in which
the WHERE clause is supervised via teacher forcing (i.e. the policy is not learned from scratch) and
then continue training using reinforcement learning. In order to obtain the rewards described in
Section 2.2, we use the query execution engine described in Section 3.

4.1 RESULT

We compare results against the attentional sequence to sequence neural semantic parser proposed
by Dong & Lapata (2016). This model achieves state of the art results on a variety of semantic pars-
ing datasets, outperforming a host of non-neural semantic parsers despite not using hand-engineered
grammars. To make this baseline even more competitive on our new dataset, we augment their input
with the table schema such that the model can generalize to new tables. We describe this baseline in
detail in Section 2 of the Appendix. Table 2 compares the performance of the three models.
1https://pytorch.org
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Model Dev Acclf Dev Accex Test Acclf Test Accex

Baseline (Dong & Lapata, 2016) 23.3% 37.0% 23.4% 35.9%
Aug Ptr Network 44.1% 53.8% 43.3% 53.3%

Seq2SQL (no RL) 48.2% 58.1% 47.4% 57.1%
Seq2SQL 49.5% 60.8% 48.3% 59.4%

Table 2: Performance on WikiSQL. Both metrics are defined in Section 3.1. For Seq2SQL (no RL),
the WHERE clause is supervised via teacher forcing as opposed to reinforcement learning.
Reducing the output space by utilizing the augmented pointer network improves upon the baseline
by 17.4%. Leveraging the structure of SQL queries leads to another improvement of 3.8%, as is
shown by the performance of Seq2SQL without RL compared to the augmented pointer network.
Finally, training using reinforcement learning based on rewards from in-the-loop query executions
on a database leads to another performance increase of 2.3%, as is shown by the performance of the
full Seq2SQL model.

4.2 ANALYSIS

Limiting the output space via pointer network leads to more accurate conditions. Compared
to the baseline, the augmented pointer network generates higher quality WHERE clause. For ex-
ample, for “in how many districts was a successor seated on march 4, 1850?”, the baseline gen-
erates the condition successor seated = seated march 4 whereas Seq2SQL generates
successor seated = seated march 4 1850. Similarly, for “what’s doug battaglia’s
pick number?”, the baseline generates Player = doug whereas Seq2SQL generates Player
= doug battaglia. The conditions tend to contain rare words (e.g. “1850”), but the baseline
is inclined to produce common words in the training corpus, such as “march” and “4” for date, or
“doug” for name. The pointer is less affected since it selects exclusively from the input.

Model Precision Recall F1

Aug Ptr Network 66.3% 64.4% 65.4%
Seq2SQL 72.6% 66.2% 69.2%

Table 3: Performance on the COUNT operator.

Incorporating structure reduces invalid
queries. Seq2SQL without RL directly pre-
dicts selection and aggregation and reduces
invalid SQL queries generated from 7.9% to
4.8%. A large quantity of invalid queries
result from column names – the generated
query refers to selection columns that are not present in the table. This is particularly helpful when
the column name contain many tokens, such as “Miles (km)”, which has 4 tokens. Introducing a
classifier for the aggregation also reduces the error rate. Table 3 shows that adding the aggregation
classifier improves the precision, recall, and F1 for predicting the COUNT operator. For more queries
produced by the different models, please see Section 3 of the Appendix.

RL generates higher quality WHERE clause that are ordered differently than ground truth.
Training with policy-based RL obtains correct results in which the order of conditions is differs
from the ground truth query. For example, for “in what district was the democratic candidate first
elected in 1992?”, the ground truth conditions are First elected = 1992 AND Party =
Democratic whereas Seq2SQL generates Party = Democratic AND First elected
= 1992. When Seq2SQL is correct and Seq2SQL without RL is not, the latter tends to produce an
incorrect WHERE clause. For example, for the rather complex question “what is the race name of the
12th round trenton, new jersey race where a.j. foyt had the pole position?”, Seq2SQL trained without
RL generates WHERE rnd = 12 and track = a.j. foyt AND pole position =
a.j. foyt whereas Seq2SQL trained with RL correctly generates WHERE rnd = 12 AND
pole position = a.j. foyt.

5 RELATED WORK

Semantic Parsing. In semantic parsing for question answering (QA), natural language questions
are parsed into logical forms that are then executed on a knowledge graph (Zelle & Mooney, 1996;
Wong & Mooney, 2007; Zettlemoyer & Collins, 2005; 2007). Other works in semantic parsing
focus on learning parsers without relying on annotated logical forms by leveraging conversational
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logs (Artzi & Zettlemoyer, 2011), demonstrations (Artzi & Zettlemoyer, 2013), distant supervi-
sion (Cai & Yates, 2013; Reddy et al., 2014), and question-answer pairs (Liang et al., 2011). Seman-
tic parsing systems are typically constrained to a single schema and require hand-curated grammars
to perform well2. Pasupat & Liang (2015) addresses the single-schema limitation by proposing
the floating parser, which generalizes to unseen web tables on the WikiTableQuestions task. Our
approach is similar in that it generalizes to new table schema. However, we do not require access
to table content, conversion of table to an additional graph, hand-engineered features, nor hand-
engineered grammar.

Semantic parsing datasets. Previous semantic parsing systems were designed to answer complex
and compositional questions over closed-domain, fixed-schema datasets such as GeoQuery (Tang
& Mooney, 2001) and ATIS (Price, 1990). Researchers also investigated QA over subsets of large-
scale knowledge graphs such as DBPedia (Starc & Mladenic, 2017) and Freebase (Cai & Yates,
2013; Berant et al., 2013). The dataset “Overnight” (Wang et al., 2015) uses a similar crowd-
sourcing process to build a dataset of natural language question, logical form pairs, but has only 8
domains. WikiTableQuestions (Pasupat & Liang, 2015) is a collection of question and answers, also
over a large quantity of tables extracted from Wikipedia. However, it does not provide logical forms
whereas WikiSQL does. WikiTableQuestions focuses on the task of QA over noisy web tables,
whereas WikiSQL focuses on generating SQL queries for questions over relational database tables.
We intend to build a natural language interface for databases, and do not use table content apart from
evaluation.

Representation learning for sequence generation. Dong & Lapata (2016)’s attentional sequence
to sequence neural semantic parser, which we use as the baseline, achieves state-of-the-art results
on a variety of semantic parsing datasets despite not utilizing hand-engineered grammar. Unlike
their model, Seq2SQL uses pointer based generation akin to Vinyals et al. (2015) to achieve higher
performance, especially in generating queries with rare words and column names. Pointer mod-
els have also been successfully applied to tasks such as language modeling (Merity et al., 2017),
summarization (Gu et al., 2016), combinatorial optimization (Bello et al., 2017), and question an-
swering (Seo et al., 2017; Xiong et al., 2017). Another interesting neural semantic parsing model is
the Neural Programmar by Neelakantan et al. (2017). Our approach is different than their work in
that we do not require access to the table content during inference, which may be unavailable due to
privacy concerns. We also do not hand-engineer model architecture for query execution and instead
leverage existing database engines to perform efficient query execution. In contrast to both Dong
& Lapata (2016) and Neelakantan et al. (2017), we train our model using policy-based RL, which
helps Seq2SQL achieve state-of-the-art performance.

Natural language interface for databases. One of the prominent works in natural language in-
terfaces is PRECISE (Popescu et al., 2003), which translates questions to SQL queries and identifies
questions that it is not confident about. Giordani & Moschitti (2012) translate questions to SQL
by first generating candidate queries from a grammar then ranking them using tree kernels. Both
of these approaches rely on high quality grammar and are not suitable for tasks that require gener-
alization to new schema. Iyer et al. (2017) also translate to SQL, but with a Seq2Seq model that
is further improved with human feedback. Seq2SQL outperforms Seq2Seq and uses reinforcement
learning instead of human feedback during training.

6 CONCLUSION

We proposed Seq2SQL, a deep neural network for translating questions to SQL queries. Our model
leverages the structure of SQL queries to reduce the output space of the model. To train Seq2SQL,
we applied in-the-loop query execution to learn a policy for generating the conditions of the SQL
query, which is unordered and unsuitable for optimization via cross entropy loss. We also introduced
WikiSQL, a dataset of questions and SQL queries that is an order of magnitude larger than compa-
rable datasets. Finally, we showed that Seq2SQL outperforms a state-of-the-art semantic parser
on WikiSQL, improving execution accuracy from 35.9% to 59.4% and logical form accuracy from
23.4% to 48.3%.
2For simplicity, we define table schema as the names of the columns in the table.
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A COLLECTION OF WIKISQL

WikiSQL is collected in a paraphrase phases as well as a verification phase. In the paraphrase
phase, we use tables extracted from Wikipedia by Bhagavatula et al. (2013) and remove small tables
according to the following criteria:

• the number of cells in each row is not the same

• the content in a cell exceed 50 characters

• a header cell is empty

• the table has less than 5 rows or 5 columns

• over 40% of the cells of a row contain identical content

We also remove the last row of a table because a large quantity of HTML tables tend to have sum-
mary statistics in the last row, and hence the last row does not adhere to the table schema defined by
the header row.

For each of the table that passes the above criteria, we randomly generate 6 SQL queries according
to the following rules:

• the query follows the format SELECT agg op agg col from table where
cond1 col cond1 op cond1 AND cond2 col cond2 op cond2 ...

• the aggregation operator agg op can be empty or COUNT. In the event that the aggregation
column agg col is numeric, agg op can additionally be one of MAX and MIN

• the condition operator cond op is =. In the event that the corresponding condition column
cond col is numeric, cond op can additionally be one of > and <

• the condition cond can be any possible value present in the table under the corresponding
cond col. In the event that cond col is numerical, cond can be any numerical value
sampled from the range from the minimum value in the column to the maximum value in
the column.

We only generate queries that produce a non-empty result set. To enforce succinct queries, we
remove conditions from the generated queries if doing so does not change the execution result.

For each query, we generate a crude question using a template and obtain a human paraphrase via
crowdsourcing on Amazon Mechanical Turk. In each Amazon Mechanical Turk HIT, a worker is
shown the first 4 rows of the table as well as its generated questions and asked to paraphrase each
question.

After obtaining natural language utterances from the paraphrase phase, we give each question-
paraphrase pair to two other workers in the verification phase to verify that the paraphrase and
the original question contain the same meaning.

We then filter the initial collection of paraphrases using the following criteria:

• the paraphrase must be deemed correct by at least one worker during the verification phrase

• the paraphrase must be sufficiently different from the generated question, with a character-
level edit distance greater than 10

B ATTENTIONAL SEQ2SEQ NEURAL SEMANTIC PARSER BASELINE

We employ the attentional sequence to sequence model for the baseline. This model by Dong &
Lapata (2016) achieves state of the art results on a variety of semantic parsing datasets despite not
using hand-engineered grammar. We implement a variant using OpenNMT and a global attention
encoder-decoder architecture (with input feeding) described by Luong et al.
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We use the same two-layer, bidirectional, stacked LSTM encoder as described previously. The
decoder is almost identical to that described by Equation 2 of the paper, with the sole difference
coming from input feeding.

gs = LSTM
([

emb (ys−1) ;κdec
s−1

]
, gs−1

)
(11)

where κdec
s is the attentional context over the input sequence during the sth decoding step, computed

as

αdec
s,t = hdec

s

(
W dechenc

t

)ᵀ
βdec
s = softmax

(
αdec
s

)
(12)

κs =
∑
t

βs,th
enc
t (13)

To produce the output token during the sth decoder step, the concatenation of the decoder state and
the attention context is given to a final linear layer to produce a distribution αdec over words in the
target vocabulary

αdec = softmax
(
Udec[hdec

s ;κdec
s ]
)

(14)

During training, teacher forcing is used. During inference, a beam size of 5 is used and generated
unknown words are replaced by the input words with the highest attention weight.

C PREDICTIONS BY SEQ2SQL

Q when connecticut & villanova are the regular season winner how many tournament venues (city) are there?
P SELECT COUNT tournament player (city) WHERE regular season winner city ) = connecticut & villanova
S’ SELECT COUNT tournament venue (city) WHERE tournament winner = connecticut & villanova
S SELECT COUNT tournament venue (city) WHERE regular season winner = connecticut & villanova
G SELECT COUNT tournament venue (city) WHERE regular season winner = connecticut & villanova

Q what are the aggregate scores of those races where the first leg results are 0-1?
P SELECT aggregate WHERE 1st . = 0-1
S’ SELECT COUNT agg. score WHERE 1st leg = 0-1
S SELECT agg. score WHERE 1st leg = 0-1
G SELECT agg. score WHERE 1st leg = 0-1

Q what is the race name of the 12th round trenton, new jersey race where a.j. foyt had the pole position?
P SELECT race name WHERE location = 12th AND round position = a.j. foyt, new jersey AND
S’ SELECT race name WHERE rnd = 12 AND track = a.j. foyt AND pole position = a.j. foyt
S SELECT race name WHERE rnd = 12 AND pole position = a.j. foyt
G SELECT race name WHERE rnd = 12 AND pole position = a.j. foyt

Q what city is on 89.9?
P SELECT city WHERE frequency = 89.9
S’ SELECT city of license WHERE frequency = 89.9
S SELECT city of license WHERE frequency = 89.9
G SELECT city of license WHERE frequency = 89.9

Q how many voters from the bronx voted for the socialist party?
P SELECT MIN % party = socialist
S’ SELECT COUNT the bronx where the bronx = socialist
S SELECT COUNT the bronx WHERE the bronx = socialist
G SELECT the bronx WHERE party = socialist

Q in what year did a plymouth vehicle win on february 9 ?
P SELECT MIN year (km) WHERE date = february 9 AND race time = plymouth 9
S’ SELECT year (km) WHERE date = plymouth 9 AND race time = february 9
S SELECT year (km) WHERE date = plymouth 9 AND race time= february 9
G SELECT year (km) WHERE manufacturer = plymouth AND date = february 9

Table 4: Examples predictions by the models on the dev split. Q denotes the natural language
question and G denotes the corresponding ground truth query. P, S’, and S denote, respectively, the
queries produced by the Augmented Pointer Network, Seq2SQL without reinforcement learning,
Seq2SQL. We omit the FROM table part of the query for succinctness.
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