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Abstract

Policy gradient methods have achieved remarkable successes in solving challenging
reinforcement learning problems. However, it still often suffers from sparse reward
tasks, which leads to poor sample efficiency during training. In this work, we propose
a guided adaptive credit assignment method to do effectively credit assignment for
policy gradient methods. Motivated by entropy regularized policy optimization,
our method extends the previous credit assignment methods by introducing a more
general credit assignment named guided adaptive credit assignment(GACA). The
benefit of GACA is a principled way of utilizing off-policy samples. The effectiveness
of proposed algorithm is demonstrated on the challenging WikiTableQuestions
and WikiSQL benchmarks and an instruction following environment. The task is
generating action sequences or program sequences from natural language questions
or instructions, where only final binary success-failure execution feedback is available.
Empirical studies show that our method significantly improves the sample efficiency
of the state-of-the-art policy optimization approaches.

1 Introduction

Deep reinforcement learning (RL) provides a general framework for solving challenging goal-oriented
sequential decision-making problems, it has recently achieved remarkable successes in advancing
the frontier of AI technologies (Silver et al., 2016; Mnih & Kavukcuoglu, 2013; Silver et al., 2017;
Andrychowicz et al., 2017). Policy gradient (PG) (Kakade, 2002; Mnih et al., 2016; Schulman
et al., 2015) is one of the most successful model-free RL approaches that has been widely applied
to high dimensional continuous control, vision-based robotics, playing video games, and program
synthesis (Liang et al., 2018; Guu et al., 2017; Bunel et al., 2018).

Despite these successes, a key problem of policy gradient methods is that it often suffers from high
sample complexity in sparse reward tasks. In sparse reward tasks, there is only a binary signal which
indicate successful task completion but without carefully shaped reward function to properly guide
the policy optimization. A naive yet effective solution to address this challenge is by exploring many
diverse samples and re-labelling visited states as goal states during training (see e.g. Andrychowicz
et al., 2017; Pong et al., 2019). Regardless of the cost of generating large samples and the bias
introduced during comparison, in many practical applications like program synthesis, it may not
even be possible to compare between different states. A variety of credit assignment techniques have
been proposed for policy gradient methods in settings where comparison of states is not available
(See e.g. Liang et al. 2018, Agarwal et al. 2019, and Norouzi et al. 2016).

In this work, we focus on entropy regularized reinforcement learning. Instead of directly optimizing
the RL objective, which is hard in sparse reward tasks, we sort to optimize policy to approximate a
learnable prior distribution called guiding prior distribution. By using so-called f -divergence (Csiszár
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et al., 2004; Liese & Vajda, 2006; Nowozin et al., 2016; Wang et al., 2018) which defines a broad
class of divergence(e.g., KL and reverse KL divergence) that are sufficient to fully characterize
the distributions under consideration, we construct a class of gradient estimator that allow us to
generalize previous credit assignment methods. The neat property is that the gradient estimator
can adaptively optimize policy based on divergence between itself and the prior distribution. It
is natural to expect this more flexible gradient estimator provide an adaptive trade-off between
different credit assignment methods, in addition, it also has a good property such that all off-policy
samples are utilized to compute gradient, which can yield powerful credit assignment. Our approach
tremendously extends the existing credit assignment used including REINFORCE (Sutton et al.,
2000; Williams, 1992), maximum marginal likelihood(MML) (Dempster et al., 1977; Guu et al.,
2017), MAPO (Liang et al., 2018), iterative maximum likelihood(IML) (Liang et al., 2017; Abolafia
et al., 2018), and RAML (Norouzi et al., 2016).

We evaluate our method on a variety of tasks, including the challenging WikiSQL (Zhong et al.,
2017) and WikiTableQuestions (Pasupat & Liang, 2015) program synthesis benchmarks, and an
instruction following navigation task TextWorld (Agarwal et al., 2019). Our experiments show
that GACA greatly improves the sample efficiency of the entire policy optimization, and leads to
significant higher asymptotic performance over previous state-of-the-art methods.

2 Background

2.1 Reinforcement Learning and Policy Optimization

Reinforcement learning(RL) considers the problem of finding an optimal policy for an agent that
interacts with an uncertain environment and collects reward per action. The goal of the agent is
to maximize its cumulative reward. Formally, this problem can be viewed as a Markov decision
process over the environment states s ∈ S and agent actions z ∈ Z , with the environment dynamics
defined by the transition probability T (s′|s, z) and reward function r(st, zt), which yields a reward
immediately following the action zt performed in state st. The agent’s action z is selected by a
conditional probability distribution π(z|s) called policy.

In policy gradient methods, we consider a set of candidate policies πθ(z|s) parameterized by θ and
obtain the optimal policy by maximizing the expected cumulative reward or return

J(θ) = Es∼ρπ,z∼π(z|s) [r(s, z)] ,

where ρπ(s) = E∞t=1γ
t−1Pr(st = s) is the normalized discounted state visitation distribution with

discount factor γ ∈ [0, 1).

2.2 Sparse Reward Reinforcement Learning and Credit Assignment

Auto-regressive model is often used as a policy in many real world applications including program
synthesis and combinational optimization (Liang et al., 2018; Guu et al., 2017). In this work, we
consider the following form of policy distribution.

πθ(z|s0) =
∏|z|

i=t
π(zt | z<t, s0), (1)

where z<t = (z1, . . . , zt−1) denotes a prefix of the action sequence z, s0 ∈ Z denotes some context
information about the task, such as initial state or goal state (Andrychowicz et al., 2017). And
πθ(z|s0) satisfy ∀z ∈ Z : πθ(z|s0) ≥ 0 and Ez∈Zπθ(z|s0) = 1.

In environments where dense reward function is not available, only a small fraction of the agents’
experiences will be useful to compute gradient to optimize policy, leading to substantial high
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sample complexity. Therefore, it is of great practical importance to develop algorithms which can
learn from binary signal indicating successful task completion or other unshaped reward signal.

Rank Player County
1 Nicky English Tipperary
2 Mark Corrigan Offaly
3 Joe Hennessy Kerry
3 Finbarr Delaney Cork
5 Nicky English Tipperary
5 Adrian Ronan Kilkenny
7 Nicky English Tipperary

x = “Which player
ranked the most?”
R(z) =
I{Execute(z) ==
“Nicky English”}

Figure 1: An example of the program synthesis task, where
an agent is presented with a context s0 consists of a natural
language question and a table, and is asked to generate a
program z = (z1, z2, .., zn). The agent receives a reward of
1 if execution of z on the relevant data table leads to the
correct answer g (e.g., “Nicky English”).

In Section 3, we will describe a method
to efficiently utilize high-reward and
zero-reward trajectories to address
this challenge. We will evaluate the
method on program synthesis and in-
structions following navigation, both
are particular sparse reward tasks.
Figure 1 shows an example of sparse
reward program synthesis. The model
needs to discover the programs that
can generate the correct answer in a
given context and generalizes over un-
seen context.

We consider goal-conditioned rein-
forcement learning from sparse re-
wards. This constitutes a modification
to the reward function such that it depends on a goal g ∈ G , such that r(z, g, s) : S × Z ×G → R.
Every episode starts with sampling a state-goal pair from some distribution p(s0, g). Unlike the
state, the goal stays fixed for the whole episode. At every time step, an action is chosen according to
some policy π, which is expressed as a function of the state and the goal, π : S ×G → Z . Therefore,
we apply the following sparse reward function:

r(z, g, s) =

{
1, if F (z) = g

0, otherwise
(2)

where g is a goal and F (z) denotes evaluating action sequence z on the task that controls when the
goal is considered completed. The objective is given by

J(θ) = Es0,g∼p(s0,g),z∼Z [r(z, g, s0)] = Es0,g∼p(s0,g)Ez∼Z [r(z, g, s0)πθ(z|s0)] (3)

= Es0,g∼p(s0,g)Ez∼Z [r(z, g, s0)
∏H

t=1
π(zt | z<t, s0)], (4)

where H is the length of the trajectory. We can calculate the gradient of Equation 4 with REIN-
FORCE (Williams, 1992) and estimate it using Monte Carlo samples.

∇θJ(θ) = Es0,g∼p(s0,g)Ez∼Z [∇θ log πθ(z|s0)r(z, g, s0)], (5)

Unfortunately, since the search space of programs is very large, most samples z have reward R(z) = 0,
thus have no contribution to the gradient estimation in Equation 5. Besides, because the variance of
score function estimators is very high, it is challenging to estimate the gradient in Equation 5 with
a small number of successful programs. Previous method Liang et al. (2018) propose to estimate
gradient as a combination of expectations inside and outside successful programs buffer, however
it’s still restricted to use successful programs only, and suffers from high sample complexity.

3 Method

In this section, we fist introduce entropy regularized reinforcement learning and describe optimizing
policy via minimizing a discrepancy between itself and a prior in Section 3.1, and then introduce
learnable prior to guide policy optimization in Section 3.2, finally we introduce a class of flexible
adaptive gradient estimator Section 3.3.
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3.1 Entropy Regularized Reinforcement Learning.

We consider a general entropy regularized objective (Ziebart et al., 2008) which favors stochastic
policies by augmenting the objective with the relative entropy of the policy,

J(θ) = Es0,g∼p(s0,g)Ez∼Z [πθ(z|s0)r(z, g, s0) + λH(πθ(z|s0))], (6)

where λ is a regularization weight, H(πθ(z|s0)) is the entropy regularization term. Entropy based
policy optimization is a general framework that has gained many successes in a variety of tasks (see
e.g., Haarnoja et al., 2018; Teh et al., 2017). Maximizing Equation 6 is equivalent to minimizing the
Kullback–Leibler discrepancy between policy πθ(z|s0) and an energy based prior distribution.

Lemma 1. Maximizing Equation 6 is equivalent to minimizing the following objective,

L(θ) = Es0,g∼p(s0,g)Ez∼Z [λDKL (πθ(z|s0)‖π̄(z)) , π̄(z)] = exp

(
1

λ
(r(z, g, s0)− V (s0))

)
(7)

where V (s0) = λ log
∫
z∼Z exp(R(z, g, s0)/λ) is a ’soft-version’ of value function, serving as a nor-

malization constant here. From Equation 7, we aim to approximate the distribution π̄(z) with a
distribution from a family {πθ(z|s0) : θ ∈ Θ}, where θ is the parameter that we want to optimize,
and πθ(z|s0) is represented as an autoregressive policy in Equation 1. In environments where only
sparse reward function is available, only a small fraction of the agent’s samples will be useful to
compute gradient to optimize policy, thus Equation 6 often leads to a substantial sample complexity.
Equation 7 seems would be a better objective since all of the agent’s samples can contribute to the
minimization of KL-divergence, however, for a given s0, the prior distribution is simply a binary
value function over z which is not suitable. Intuitively, we would like π̄(z) weighs higher on ‘almost
success‘ action sequences z and weighs lower on ‘far from success‘ action sequences z.

3.2 Guiding Prior Distribution.

In this part, we will describe how to learn the prior distribution π̄(z) to guide policy optimization.

Proposition 1. Given a policy πθ(z|s0), new guiding prior distribution π̄(z) that minimizes the
discrepancy in Equation 7 is given by,

π̄(z) = Es0,g∼p(s0,g) [πθ(z|s0)] , (8)

and the minimization of Equation 7 equals to mutual information between s0 and z:

Es0,g∼p(s0,g)[DKL (πθ(z|s0) ‖ π̄(z))] = I(s0; z) (9)

Proof. See Appendix C for details.

Proposition 1 indicates that alternatively optimizing πθ(z|s0) and π̄(z) leads to a complex mixture
distribution of π̄(z), increasing the expressive power of prior for credit assignment. Since Equation 8
minimizes DKL (πθ(z|s0) ‖ π̄(z)) and leads to a mutual information between s0 and z, therefore the
entropy regularized objective becomes the following mutual information regularized objective,

J(θ) = Es0,g∼p(s0,g)Ez∼Zπθ(z|s0)r(z, g, s0)− λI(s0; z), (10)

Equation 10 draws connection with rate distortion theory (Shannon, 1959; Cover & Thomas, 2012),
intuitively, the policy πθ(z|s0) is encouraged to discard reward-irrelevant information in context s0

subject to a limited channel capacity given by I(s0; z). In the next section, we will present a class of
gradient estimator that can adaptively update policy distribution to approximate the guiding prior.
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3.3 Adaptive Gradient Estimation.

While DKL(πθ(z|s0) || π̄(z)) is the typical divergence measure widely used in variational inference
and reinforcement learning (see e.g. Wainwright et al., 2008; Abdolmaleki et al., 2018; Hoffman
et al., 2013), it often leads to model collapse because of its mode-seeking property. Therefore,
directly optimizing Equation 7 often gives a suboptimal model πθ(z|s0). It is therefore natural to
consider alternative divergence measures. We approach this problem by minimizing the general
f -divergence (Ali & Silvey, 1966; Morimoto, 1963) between π̄(z) and πθ(z|s0). f -divergence includes
a large spectrum of divergences (e.g., KL and reverse KL divergence) and is shown to be powerful
in various settings (Nowozin et al., 2016; Wang et al., 2018; Ghasemipour et al., 2019),

DF(π̄(z) || πθ(z|s0)) = Ez∼πθ(z|s0)

[
f

(
π̄(z)

πθ(z|s0)

)
− f(1)

]
, (11)

where f : R+ → R is any twice-differentiable convex function. It can be shown by Jensen’s
inequality that DF(p || q) ≥ 0 for any p and q. Further, if f(t) is strictly convex at t = 1, then
DF(π̄(z) || πθ(z|s0)) = 0 implies π̄(z) = πθ(z|s0). We use stochastic optimization to minimizing
Equation 11, then gradient of Equation 11 is given by:

Lemma 2. Assume f is a differentiable convex function and log πθ(z|s0) is differentiable w.r.t. θ.
For f-divergence defined in equation 11, we have

∇θDF(π̄(z) || πθ(z|s0)) = −Ez∼πθ(z|s0)

[
ρf

(
πθ(z|s0)

π̄(z)

)
∇θ log πθ(z|s0)

]
, (12)

where ρf (t) = f ′(t)t− f(t).

Proof. See Appendix B for details or Wang et al. (2018).

Equation 12 shows that the gradient of f -divergence between πθ(z|s0) and π̄(z) can be specified
through ρf or f . In next section, we will describe how to adaptive choose ρf or f based on the
discrepancy between πθ(z|s0) and π̄(z). Since the space of Z is enumerable and the environment is
deterministic, the expectation over z ∼ πθ(z|s0) can be efficiently computed through sampling in
replay buffer. We proceed to describe how to estimate this gradient with samples.

3.4 Final Algorithm.

Given Equation 12, it’s natural to ask how to estimate the gradient, a naive way is simply store
past trajectories in a replay buffer and sample random mini-batch from it to compute the gradient.
However this approach suffers from the fact that a large fraction of sampled trajectories have
zero-reward, which leads to high sample complexity. We propose to save high-reward trajectories
and zero-reward trajectories into two separated replay buffers and estimate the following gradient:

Proposition 2. Given replay buffers B and C for saving high-reward and zero-reward trajectories,
an unbiased and low variance estimation is given by,

∇θD̂F (π̄(z) || πθ(z|s0)) =

wBEz∼π+
θ (z|x)ρf

(
πθ(z|s0)

π̄(z)

)
∇θ log πθ(z|s0) + wCEz∼π−θ (z|x)ρf

(
πθ(z|s0)

π̄(z)

)
∇θ log πθ(z|s0) (13)
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where wB and wB represent the total probability of trajectories in replay buffers B and C respectively,
wB + wC = 1, and

π+
θ (z | x) =

{
πθ(z|s0)/wB if z ∈ B
0 if z ∈ C , π−θ (z | x) =

{
0 if z ∈ B
πθ(z|s0)/wC if z ∈ C (14)

Proof. See Appendix D for details.

The gradient estimation uses high-reward trajectories thus πθ(z|s0) will not forget them,
the estimation also utilize zero-reward trajectories in the past, which improves sample effi-
ciency. The corresponding framework is shown in Figure 2. Note that different from MAPO
where they also use a buffer to save successful programs, Equation 13 differs in that all off-
policy samples can be used to estimate gradient, which leads to a higher sample efficiency.

Figure 2: Overview of GACA: it consists of mul-
tiple actors for sampling and storing high reward
episodes into buffer B and zero reward episodes
into buffer C, gradient is estimated at central
learner periodically using samples from both B, C
based on Equation 13.

We follow Wang et al. (2018) in choosing
f -divergence such that it achieve a trade-off
between exploration and exploitation, specifi-
cally, let {zi} be drawn from buffers B and C
and wi = π(zi|s0)/π̄(zi), then we substitute
ρf (πθ(z|s0)/π̄(z)) with the inverse of approxi-
mate tail probability given by 1

nE
n
i=1I(wi ≥ t).

The benefit of doing this is policy distribution
πθ(z|s0) can adaptively coverage and approxi-
mate prior distribution π̄(z).

In practice, to overcome cold start problem
in sparse reward policy optimization, we fol-
low Liang et al. (2018) to clip wB to a given
range such that wB = max(wB, wl) and wB =
min(wB, wu) where wl ≤ wu. Note that Equa-
tion 13 generalizes previous work in credit assign-
ment including REINFORCE, MML (Dempster
et al., 1977; Berant et al., 2013; Guu et al., 2017),

MAPO (Liang et al., 2018), RAML (Norouzi et al., 2016), and IML (Liang et al., 2017; Abolafia
et al., 2018). It is natural to expect this more flexible gradient estimator provide an adaptive
trade-off between different credit assignment methods and can yield powerful credit assignment.
Due to page limit, we leave discussions and proofs around generalization in Appendix E. Combining
Proportion 1 and Proportion 2 together, we summarize the main algorithm in Algorithm 1.

4 Experiment

We first introduce the set up of experiments, then evaluate GACA on two sparse reward program
synthesis benchmarks WikiTableQuestions and WikiSQL, and an instruction following sparse
reward navigation task.

4.1 Experimental setup

WikiTableQuestions (Pasupat & Liang, 2015) contains 2,108 tables and 18,496 question-answer
pairs build from tables extracted from Wikipedia. WikiSQL (Zhong et al., 2017) is a recent
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Algorithm 1 Guided Adaptive Credit Assignment for Sample Efficient Policy Optimization

Require: Training data p(s0, g), random initialized policy πθ(z|s0), uniform initialized prior π̄(z),
high-reward and zero-reward trajectory buffers B and C, and clipping thresholds wl and wu.
repeat
Sample initial states and goals {s0, g} from data distribution p(s0, g)
Collect trajectories with πθ(z|s0) given {s0, g} and push trajectories into replay buffers B and
C according to their rewards.
Draw {zi} from buffers B and C through stratified sampling, compute wB and wC
Compute tail probability 1

nE
n
i=1I(wi ≥ t), where wi = π(zi | x)/π̄(zi)

Update policy distribution πθ(z|s0) with Equation 13 by substituting ρf (πθ(z|s0)/π̄(z)) with
the inverse of tail probability
Compute new guiding prior distribution π̄(z) = Es0,g∼p(s0,g) [πθ(z|s0)]

until converge or early stop

large scale dataset on learning natural language interfaces for databases. It contains 24,241
tables extracted from Wikipedia and 80,654 question-program pairs. It is annotated with pro-
grams (SQL). In both datasets, question-answers are split into train, validation, and test sets.
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Figure 3: Comparing GACA and baselines on benchmarks. The plot
is average of 5 runs with a bar of one standard deviation.

Examples of generated pro-
grams are shown in Fig-
ure 5. The policy needs
to generate correct pro-
grams from binary feed-
back, making these two
benchmarks very challeng-
ing. We also evaluate
GACA on an instruction fol-
lowing navigation environ-
ment TextWorld (Agar-
wal et al., 2019). The task
is an instruction following
navigation in a maze of size
N ×N with K deadly traps
distributed randomly over
the maze. An agent is given

need a language instruction which outlines an optimal path that the agent can take to reach the
goal, the agent needs to generate a sequence of actions and the agent receives a reward of 1 if it
succeeds in reaching the goal within a certain number of steps, otherwise 0. An example of this task
is shown in Figure 5. For details in experiments, refer to Appendix F.

4.2 Comparing GACA with baselines

Firstly, we compare GACA with several baseline methods that are special cases of GACA, to show
the effectiveness of guiding prior and adaptive gradient estimation. We briefly introduce each
baseline method here and leave the detailed discussion and proof of generalization in Appendix E.
REINFORCE: REINFORCE maximizes expected return, we use on-policy samples to estimate
the gradient ∇θJRL = Es0,g∼p(s0,g)Ez∼πθ(z|s0),[∇θ log πθ(z|s0)r(z, s0, g)].
IML: Iterative maximize likelihood (Liang et al., 2017; Abolafia et al., 2018) uniformly maxi-
mizes the likelihood of all the high-reward trajectories in past experience, the gradient is given by
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∇θJIML = Es0,g∼p(s0,g)
∑

z∈B∇θ log πθ(z|s0)r(z, s0, g).
RAML: Reward Augmented Maximum Likelihood (Norouzi et al., 2016) is a more general variant
of IML, which weights off-policy samples with an energy based prior distribution in Equation 7,
JRAML = Es0,g∼p(s0,g)Ez∼Zπ̄(z) log πθ(z|s0)r(z, s0, g), where π̄(z) = exp

(
1
λ (r(z, s0, g)− V (x))

)
.

MML: Maximize Marginal Likelihood (Dempster et al., 1977; Berant et al., 2013) maximizes
the marginal probability of the replay buffer B. The gradient of JMML is given by ∇θJMML =

Es0,g∼p(s0,g)
∑

z∈B
πθ(z|s0)∑

ẑ∈B πθ(ẑ|s0)r(z, s0, g)∇θ log πθ(z|s0).
MAPO/MAPOX: Memory Augmented Policy Optimization (Liang et al., 2018) is a
recent method for reusing high-reward trajectories, it maximizes the expected reward
and estimate the gradient with off-policy high-reward trajectories: ∇θJMAPO = (1 −
α)Es0,g∼p(s0,g)Ez∼π(z|x)[∇θ log πθ(z|s0)r(z, s0, g)] + αEz∼B[∇θ log πθ(z|s0)r(z, s0, g)], where α is a
weight equals to the total probability of high-reward trajectory z in buffer B. MAPOX (Agarwal
et al., 2019) improves MAPO by running MAPO on data collected by IML.

Dataset
Method

WikiTableQuestions WikiSQL
Val Test Improvement Val Test Improvement

REINFORCE < 10 < 10 < 10 < 10
IML 35.4± 0.6 36.8± 0.4 +7.8 69.3± 0.5 70.1± 0.2 +6.2
RAML 35.4± 0.7 35.9± 0.6 +8.7 57.5± 0.3 61.4± 0.3 +14.9
MML 37.8± 0.7 39.7± 0.3 +4.9 68.7± 0.2 70.7± 0.1 +5.6
MAPO 42.3± 0.1 42.8± 0.3 +1.8 71.9± 0.6 72.5± 0.1 +3.8
MAPOX 42.5± 0.4 43.6± 0.4 +1.1 74.4± 0.5 74.9± 0.3 +1.4

GACA w/o GP 43.8± 0.4 44.2± 0.2 74.6± 0.3 75.3± 0.2
GACA w/o AG 44.1± 0.5 44.1± 0.3 74.9± 0.3 75.2± 0.1
GACA 45.1± 0.3 44.6± 0.2 75.7± 0.3 76.3± 0.1

Table 1: Comparison to various credit assignment methods on WikiTableQuestions and WikiSQL
benchmarks. We report mean accuracy, and its standard deviation on test sets based on 5 runs.

Method Val. Test

Oracle 95.7(±1.3) 92.6(±1.0)
MAPO 73.1(±2.1) 68.5(±2.6)
MeRL 75.3(±1.6) 72.3(±2.2)
BoRL 83.0(±3.6) 74.5(±2.5)
GACA 87.3(±4.1) 80.1(±2.8)

Figure 4: Evaluation of GACA on
TextWorld with state-of-the-art.

We first compare GACA with its various special cases on sparse
reward program synthesis benchmarks, results are shown in Fig-
ure 3 and Table 1, the comparison shows that noticeably improves
upon previous methods in terms of both sample efficiency and
asymptotic performance significantly by performing better credit
assignment. The ablation study shows that both adaptive gradient
estimation(AG) and guiding prior(GP) improve performance. The
improvement over MAPO demonstrates that reusing all off-policy
trajectories can greatly improve policy, the improvement over IML
and MAPOX shows that encouraging exploration with reverse
KL-divergence is not enough because it’s simply impossible to

explore such a large state space, while guiding prior and adaptive gradient estimation provide an
efficient way of exploration and exploitation. We also analyzed a trained model qualitatively on
program synthesis tasks and see that it can generate fairly complex programs, see Appendix G for
some examples of generated programs. Our experiments follow the settings of MAPO (Liang et al.,
2018) and MeRL (Agarwal et al., 2019), refer to Appendix F for more details in experiments.

4.3 Comparing GACA with state-of-the-art

We present the results on sparse reward program synthesis in Table 3 and Table 2. The results of
TextWorld are shown in Table 4. GACA outperforms most recent state-of-the-art methods BoRL
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and MeRL proposed in Agarwal et al. (2019) by a large margin. The results demonstrate the efficacy
of the proposed credit assignment compared to previous SOTA credit assignment methods. We
would like to point out that GACA is a general method and can be combined with these techniques
to further boost performance.

Method E.S. Val. Test

MAPO 1 42.3 42.8 +5.8
MeRL 1 44.1 43.2 +5.4
BoRL 1 42.9 43.8 +4.8
MAPO (ensemble) 10 - 46.3 +2.3
MeRL (ensemble) 10 - 46.9 +1.7

GACA 1 45.1 44.6
GACA (ensemble) 10 - 48.6

Table 2: Evaluation of GACA with state-of-the-art
on WikiTableQuestions.

Method E.S. Val. Test

MAPO 1 71.9 72.5 +6.3
MeRL 1 74.9 74.8 +4.0
BoRL 1 74.6 74.2 +4.6
MAPO (ensemble) 10 - 74.9 +3.9
MeRL (ensemble) 10 - 77.1 +1.7

GACA 1 75.7 76.3
GACA (ensemble) 10 - 78.8

Table 3: Evaluation of GACA with state-of-the-art
on WikiSQL.

5 Related Work

Credit assignment is a critical part of various sequential decision making methods. Guu et al.
(2017) builds connection between REINFORCE and MML by proposing hybrid approaches to take
advantages of both MML and REINFORCE. Entropy based policy optimization is widely used in
reinforcement learning (Ziebart et al., 2008; Schulman et al., 2017), recently entropy based off-policy
policy optimization is also proposed to approximate optimal policy distribution by minimizing the
Kullback–Leibler(KL) divergence between policy and optimal distribution (Haarnoja et al., 2018),
Norouzi et al. (2016) considers an alternative direction of the KL divergence, where samples from
exponential payoff distribution are used to estimate gradient. Recent work Grau-Moya et al. (2019)
also propose to learn the prior distribution for Q-learning and show that this leads to a mutual
information regularization. Experience replay is widely used in sparse reward reinforcement learning
in order to exploit past high reward trajectories (Gangwani et al., 2019; Liang et al., 2018; Oh et al.,
2018; Abolafia et al., 2018). Andrychowicz et al. (2017) proposes to re-label visited states as goal
states during training. More recent progress includes meta-learning the reward(such as discount
factor) (Xu et al., 2018). Weber et al. 2019 provides a comprehensive review of credit assignment
methods in stochastic computation graph. Recently, there are a surge of interest in applying policy
optimization in program synthesis through sparse supervision (Krishnamurthy et al., 2017; Guu
et al., 2017; Liang et al., 2017; 2018; Agarwal et al., 2019). GACA differs from previous methods by
enabling reusing off-policy samples through learned prior and generalized gradient estimation.

6 Conclusion

We developed the Guided Adaptive Credit Assignment(GACA), a new and general credit assignment
method for obtaining sample efficiency of policy optimization in sparse reward setting. Our method
generalizes several previous approaches. We demonstrated its practical advantages over existing
methods, including MML, IML, REINFORCE, etc, on several challenging sparse reward tasks. In
the future, we will investigate how to extend GACA to stochastic environments and apply it to
robot learning from binary reward feedback. We would also like to point out that our method can be
useful in other challenging tasks with deterministic environments such as combinational optimization
and structural prediction where credit assignment from binary feedback remains a major challenge.
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A Proof of Lemma 1

Proof. To derive Lemma 1, consider the KL divergence between πθ(z|s0) and π̄(z) =
exp

(
1
λ (r(z, g, s0)− V (s0))

)
, where V (s0) = λ log

∫
z∼Z exp(r(z, g, s0)/λ) is a ’soft-version’ of value

function, serving as a normalization constant here.

DKL (πθ(z|s0) ‖ π̄(z))

= Ez∼πθ(z|s0) [log πθ(z|s0)− log π̄(z)]

= Ez∼πθ(z|s0)

[
log πθ(z|s0)− r(z, g, s0)/λ+ log V (s0)

]
= Ez∼πθ(z|s0) [log πθ(z|s0)− r(z, g, s0)/λ] + log V (s0),

Rearranging,

Ez∼πθ(z|s0) [r(z, g, s0)] + λH(πθ(z|s0))

= −λDKL (πθ(z|s0) ‖ π̄(z)) + λ log V (s0),

thus maximizing left hand side Ez∼πθ(z|s0) [r(z, g, s0)] + λH(πθ(z|s0)) is equivalent to minimizing
DKL (πθ(z|s0) ‖ π̄(z)).

B Proof of Lemma 2

Proof. To derive Lemma 2, consider that ∇θπθ(z|s0) = πθ(z|s0)∇θ log πθ(z|s0), then we have

∇θDf (π̄(z) || πθ(z|s0))

= Eπθ(z|s0)

[
∇θf

(
π̄(z)

πθ(z|s0)

)
+ f

(
π̄(z)

πθ(z|s0)

)
∇θ log πθ(z|s0)

]

= Eπθ(z|s0)

[
f ′
(

π̄(z)

πθ(z|s0)

)
∇θ
(

π̄(z)

πθ(z|s0)

)
+ f

(
π̄(z)

πθ(z|s0)

)
∇θ log πθ(z|s0)

]

= Eπθ(z|s0)

[
− f ′

(
π̄(z)

πθ(z|s0)

)(
π̄(z)

πθ(z|s0)

)
∇θ log πθ(z|s0) + f

(
π̄(z)

πθ(z|s0)

)
∇θ log πθ(z|s0)

]

= −Eπθ(z|s0)

[
ρf

(
π̄(z)

πθ(z|s0)

)
log πθ(z|s0)

]
,

where ρf (t) = f ′(t)t− f(t).

For convex function f , we have f ′′(t) ≥ 0, which implies ρ′f (t) = f ′′(t)t ≥ 0 on t ∈ R+, thus ρf is a
monotonically increasing function on R+. If ρt is strictly increasing at t = 1, we have f is strictly
convex at t = 1, which guarantees DF(p || q) = 0 imply p = q.

C Proof of Proposition 1

Let p(s0) and p(z) denote the distribution of s0, and z respectively, for notation simplicity, we omit
g in the following derivation and simply use s0 ∈ p(s0) to represent s0, g ∈ p(s0, g), and denote

13
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π̄(z) = Es0∼p(s0) [πθ(z|s0)], then we have

DKL(p(s0)πθ(z|s0) || p(s0)p(z))−DKL(p(s0)πθ(z|s0) || p(s0)π̄(z))

= Es0∼p(s0)Ez∼Z [p(s0)πθ(z|s0) log
p(s0)πθ(z|s0)

p(s0)p(z)
]

− Es0∼p(s0)Ez∼Z [p(s0)πθ(z|s0) log
p(s0)p(z|s0)

p(s0)π̄(z)
]

= Es0∼p(s0)Ez∼Z [p(s0)πθ(z|s0) log
π̄(z)

p(z)
]

= Es0∼p(s0)Ez∼Z [π̄(z) log
π̄(z)

p(z)
]

= Es0∼p(s0)[DKL (π̄(z) || p(z))]

≥ 0,

thus π̄(z) = Es0∼p(s0)[πθ(z|s0)] = arg minp(z)DKL(p(s0)πθ(z|s0) || p(s0)p(z)). Substituting π̄(z) in
Es0∼p(s0)[DKL(p(s0)πθ(z|s0) || p(s0)p(z))], we have

DKL(p(s0)πθ(z|s0) || p(s0)π̄(z))

= Es0∼p(s0)[p(s0, z) log
p(s0, z)

p(s0)p(z)
]

= I(s0; z)

Thus Es0∼p(s0)[πθ(z|s0)] is the solution of the minimization objective, and
DKL(p(s0)πθ(z|s0) || p(s0)π̄(z)) equals mutual information between state and action.

D Proof of Proposition 2

Proof. To prove Equation 13 is an unbiased estimation of Equation 12, note that we can either
enumerate replay buffers B and C when the size of buffers are small or approximate sampling from
both buffers according to the specified ratio. In any case, this gives us a stratified sampling estimator
of Equation 12, which is unbiased and low variance.

E Proof of generalization of previous credit assignment methods

In this section, we discuss the connection between GACA and each credit assignment method, we
will show that GACA is a unified form of existing credit assignment method. Firstly, we summarize
existing method in Table 4. Then we describe each method and give a proof of how to reduce GACA
to it.

E.1 REINFORCE:

REINFORCE maximizes the expected reward and estimate the gradient with on-policy samples
JRL = Es0,g∼p(s0,g)Ez∼πθ(z|s0)r(z, s0, g), the gradient of REINFORCE objective is given by ∇θJRL =
Es0,g∼p(s0,g)Ez∼πθ(z|s0)∇θ log πθ(z|s0)r(z, s0, g). Apart from high variance issue in REINFORCE, it
also suffers from sparse reward because reward r(z, s0, g) is low for most trajectories z. In contrast,
GACA utilizes off-policy samples and still maintain unbiased gradient estimate. GACA reduces to
REINFORCE by simply choosing ρf as constant 1.
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Method Optimization gradient

REINFORCE ∇θJRL = Es0,g∼p(s0,g)Ez∼πθ(z|s0)[∇θ log πθ(z|s0)r(z, s0, g)]

MML ∇θJMML = Es0,g∼p(s0,g)
∑
z∈B

πθ(z|s0)∑
ẑ∈B πθ(ẑ|s0)

r(z, s0, g)∇θ log πθ(z|s0)

IML ∇θJIML = Es0,g∼p(s0,g)

∑
z∈B∇θ log πθ(z|s0)r(z, s0, g)

MAPO,
MAPOX

∇θJMAPO = Es0,g∼p(s0,g)[(1− α)Ez∼πθ(z|s0)[∇θ log πθ(z|s0)r(z, s0, g)]

+ α
∑
z∼B

[∇θ log πθ(z|s0)r(z, s0, g)]], α ∈ [0, 1]

RAML ∇θJRAML = Es0,g∼p(s0,g)Ez∼Z[log πθ(z|s0)r(z, s0, g)π̄(z)]

GACA
∇θD̂F (π̄(z) || πθ(z|s0)) = wBEz∼π+

θ (z|x)ρf (πθ(z|s0)/π̄(z))∇θ log πθ(z|s0)

+ wCEz∼π−θ (z|x)ρf (πθ(z|s0)/π̄(z))∇θ log πθ(z|s0)

Table 4: The optimization gradient for various credit assignment algorithms. GACA generalizes
existing methods by f -divergence based adaptive gradient estimation.

E.2 MML:

Maximize Marginal Likelihood(MML) (Dempster et al., 1977; Berant et al., 2013) maximizes
the marginal probability of the replay buffer B, the objective of MML is given by JMML =
Es0,g∼p(s0,g) log

∑
z∈B πθ(z|s0)r(z, s0, g). The gradient of JMML has the form:

∇θJMML = Es0,g∼p(s0,g)
∑
z∈B

πθ(z|s0)∑
ẑ∈B πθ(ẑ|s0)

∇θ log πθ(z|s0) (15)

Taking a step in the direction of JMML up-weights the probability of high-reward trajectory z and
thus attempts to up-weight each reward-earning trajectory. More discussion of this objective can be
found in (Guu et al., 2017; Liang et al., 2018).

Choosing wl = 1 in Equation 13, and clearly there exists a monotonically increasing function ρf
satisfy ρf (πθ(z|s0)

π̄(z) ) = πθ(z|s0)∑
ẑ∈B πθ(ẑ|s0) . Choosing such ρf , GACA reduces to MML.

E.3 IML:

Iterative maximize likelihood(IML) (Liang et al., 2017; Abolafia et al., 2018) uniformly maximizes
the likelihood of all the high-reward trajectories in past experience. The objective is given by
JIML = Es0,g∼p(s0,g)Ez∼B [log πθ(z|s0)r(z, s0, g)]. The gradient of IML is given by

∇θJIML = Es0,g∼p(s0,g)[
∑
z∈B
∇θ log πθ(z|s0)r(z, s0, g)] (16)

Choosing ρf = 1 and wB = 1 in Equation 13, GACA reduces to IML. For each given s0, g, IML can
be expressed as optimizing policy distribution by minimizing the reverse KL divergence between
the parameterized policy distribution and an optimal policy distribution, i.e., DKL(π?||π) where π?
is the optimal distribution. It’s well-known that reverse KL-divergence promotes model-covering,
thus IML seeks to explore diverse samples thus will have a higher chance of collecting high-reward
trajectories. Recent work MAPOX (Agarwal et al., 2019) exploits this property of IML by running
IML to collect diverse samples for training.
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E.4 MAPO, MAPOX:

Memory Augmented Policy Optimization(MAPO) (Liang et al., 2018) is a recent method for reusing
high-reward trajectories, it maximizes the expected reward and estimate the gradient with off-policy
high-reward trajectories. The gradient of MAPO is

∇θJMAPO = Es0,g∼p(s0,g)[(1− α)Ez∼π(z|x)∇θ log πθ(z|s0)r(z, s0, g)

+ α
∑
z∈B
∇θ log πθ(z|s0)r(z, s0, g)] (17)

where α is a weight equals to the total probability of high-reward trajectory z in buffer B.
MAPOX (Agarwal et al., 2019) improves MAPO by running MAPO on trajectories collected with
IML for exploration. As shown previously, IML can be viewed as minimizing ‘reverse‘ KL divergence
between policy distribution πθ(z|s0) and the prior distribution, thus IML promotes exploration.
When choosing ρf ( π̄(z)

πθ(z|s0) ) = log( π̄(z)
πθ(z|s0) )− 1 and setting wB = 1, GACA reduces to MAPO.

E.5 RAML:

Reward Augmented Maximum Likelihood(RAML) (Norouzi et al., 2016) is a more general variant
of IML, which weights off-policy samples with an energy based prior,

∇θJRAML = Es0,g∼p(s0,g)Ez∼Z[π̄(z) log πθ(z|s0)r(z, s0, g)] (18)

where π̄(z) = exp
(

1
λ (r(z, s0, g)− V (x))

)
is the energy based prior distribution defined in Equation 7.

Similar to IML, for each given s0, g, RAML can be expressed as optimizing the policy distribution
by minimizing the KL divergence between the parameterized policy distribution and an energy
based optimal policy distribution defined as exp

(
1
λ (r(z, s0, g)− V (x))

)
. The gradient estimation

is over possible trajectories z ∼ Z, only few of them are high-reward and most trajectories cannot
guide the policy learn good behavior, thus RAML suffers from high sample complexity. Choosing
ρf ( π̄(z)

πθ(z|s0) ) = π̄(z)
πθ(z|s0) and wB = 1 in Equation 13, GACA reduces to RAML.

F Experiments Details

For WikiTableQuestions, we follow the construction in Pasupat & Liang (2015) for converting a
table into a directed graph that can be queried. The rows and cells are converted to graph nodes
while column names become labeled directed edges. Each batch includes samples from 25 examples
For WikiSQL, we follow the setting in Liang et al. (2018) for choosing the sampling batch size. Our
model use a seq2seq model as πθ(z|s0), and two key-variable memory as high-reward buffer B and
zero-reward buffer C, and associated with a domain specific language interpreter (Liang et al., 2017).
Table 1 shows a comparison GACA with various baselines on two challenging sparse reward program
synthesis tasks, where we also present an ablation study of each technique in GACA. Specifically, we
studied the performance of GACA w/o AG which represents GACA without adaptive gradient esti-
mation(Section 3.3), and GACA w/o GP which represents GACA without guiding prior(Section 3.2).
In detail, GACA w/o AG means use standard KL-divergence to calculate gradient in Eq 13 instead
of f-divergence, while GACA w/o GP means don’t learn the prior policy distribution as in 8, but fix
prior policy distribution to the energy based distribution as in 7. Our code is based on open source
implementation of MAPO (Liang et al., 2018) which implements a distributed actor-learner archi-
tecture Espeholt et al. (2018) to accelerate sampling through distributed actors. We also use open
source code from MeRL (Agarwal et al., 2019), tail-adapted variational inference (Wang et al., 2018).
Our experiments follow the settings of MAPO (Liang et al., 2018) and MeRL (Agarwal et al., 2019).
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Figure 5: Instruction following navigation in maze.
An agent is presented with a sequence of (Left,
Right, Up, Down) instructions. Given the input
text, the agent on the blue dot need to perform a
sequence of actions, and only receives a reward of
1 if it reaches the goal at the orange star.

We port their code to PyTorch (Paszke et al.,
2017) and implement GACA on top of them to
conduct experiments. We will release the code
later. Gradients are estimated and periodically
updated through a central learner (Espeholt
et al., 2018). For TextWorld1, we use a set
of 300 randomly generated environments with
training and validation splits of 80% and 20% re-
spectively following Agarwal et al. (2019). The
agent is evaluated on 300 unseen test environ-
ments from the same distribution. An example
of TextWorld is shown in Figure 5. We used
the Adam Optimizer (Kingma & Ba, 2015) for
WikiSQL, WikiTABLE, and TextWorld.
We performed hyper-parameter sweeps via ran-
dom search over the interval

(
10−4, 10−2

)
for

learning rate. All the hyperparameters are tuned
on the evaluation set.

G Qualitative Results

In order to evaluate the qualitative quality of
the proposed method, we compare GACA with the recent state-of-the-art MAPO on WIKITABLE-
QUESTIONS. Figure 5 shows examples of generated programs from natural language queries
using model trained with GACA or MAPO, the difference between generated programs show that
sometimes GACA is capable of generating correct programs that capture the meaning of the natural
language queries while MAPO generates either wrong answer programs or spurious programs.

1https://github.com/google-research/google-research/tree/master/meta_reward_learning/
textworld
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Query/Generated Programs Comment

Query nu-1147: Which opponent of the kansas city
chiefs in 1987 saw a total of more than 70,000 in
attendance?
MAPO: r0 = (argmax all_rows r.attendance-number); rres
= (hop r0 r.opponent-string)
GACA: r0 = (filter> all_rows [70,000] r.attendance-
number); rres = (hop r0 r.opponent-string)

The program generated by MAPO leads to
wrong answer, because it wrongly assume
that the one with largest number of atten-
dance number is the opponent of kansas
city. Instead GACA captures the semantic
meaning of the query and generates correct
program.

Query nu-1167: Who was the first oldest living presi-
dent?
MAPO: r0 = (first all_rows); rans = (hop r0 r.president)
GACA: r0 = (filter_str_contain_any all_rows [oldest living
president’] r.became_oldest_living_president-string ); rres
=( hop r0 r.president-string )

MAPO gets correct answer by chance
because it is spurious program, MAPO
wrongly assumes the data is ordered, in
contrast, GACA generates programs that
capture underlying semantic information.

Query nu-3733: At least how many more people at-
tended gamestorm 15 than gamestrom 13?
MAPO: r0 = (filter_str_contain_any all_rows [13] r.dates-
string); rres = ( hop r0 r.attendance-number )
GACA: r0 = (filter_str_contain_any all_rows [13] r.dates-
string); r1 = (filter_str_contain_any all_rows [13] r.dates-
string); (diff r0 r1 r.attendance-number)

MAPO gets correct answer by chance
because it is spurious program, MAPO
wrongly assumes the data is ordered, in
contrast, GACA generates programs that
capture underlying semantic information.

Table 5: Example of generated programs from models trained using MAPO and GACA on Wik-
iTableQuestions.
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