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Abstract

The purpose of an encoding model is to predict brain activity given a stimulus.
In this contribution, we attempt at estimating a whole brain encoding model of
auditory perception in a naturalistic stimulation setting. We analyze data from
an open dataset, in which 16 subjects watched a short movie while their brain
activity was being measured using functional MRI. We extracted feature vectors
aligned with the timing of the audio from the movie, at different layers of a Deep
Neural Network pretrained on the classification of auditory scenes. fMRI data
was parcellated using hierarchical clustering on 500 parcels, and encoding models
were estimated using a fully connected neural network with one hidden layer,
trained to predict the signals for each parcel from the DNN features. Individual
encoding models were successfully trained and predicted brain activity on unseen
data, in parcels located in the superior temporal lobe, as well as dorsolateral
prefrontal regions, which are usually considered as areas involved in auditory and
language processing. Taken together, this contribution extends previous attempts
on estimating encoding models, by showing the ability to model brain activity
using a generic DNN (ie not specifically trained for this purpose) to extract auditory
features, suggesting a degree of similarity between internal DNN representations
and brain activity in naturalistic settings.

1 Introduction

One important motivation for incorporating machine learning in neuroscientific discovery is the
establishment of predictive models, as opposed to models based on statistical inference [1]. While
the latter are unable to generalize to a new dataset, the former aim at sucessful generalization. In
particular, encoding models aim at predicting brain activity given a model of the stimulus presented
to the subject. A successful model should enable generalization to unseen data, enabling a better
understanding of the underlying brain functions. Furthermore, an accurate encoding model could
potentially be used to enhance machine learning, by providing an auxiliary source of training data,
as recent evidence suggest that actual brain activity can guide machine learning [2]. In this study,
we tested whether a pretrained network could be used to estimate encoding models, in the case of
naturalistic auditory perception.
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Figure 1: Overview of the proposed method.

2 Material and methods

2.1 Dataset

We downloaded the ds001110 dataset version 3 on openNeuro, in which 36 subjects watched a 20
minute long movie in an fMRI scanner [3]. MRI data was collected on a 3 T full-body scanner
(Siemens Skyra) with a 20-channel head coil. Functional images were acquired using a T2∗-weighted
echo planar imaging pulse sequence (TR 1500 ms, in-plane resolution 3 by 3 mm). Anatomical
images were acquired using a T1-weighted magnetization-prepared rapid-acquisition gradient echo
(MPRAGE) pulse sequence (0.89 mm3 resolution). More details can be found in the original paper [3].
In this study, we report only data from 16 subjects who watched the same episde from the TV show
"Sherlock". At the time of submitting this paper, OpenNeuro included only raw data. Therefore, we
used a preprocessed version1.

2.2 Analysis

An overview of our method is presented in figure 1, and consists in three steps2. First, we extracted
the audio track from the movie, and extracted feature vectors from all seven convolutional layers
of SoundNet [6]. The 20 minute long audio file was fed as input, and we performed interpolations
according to the width of the feature maps in each layer, in order to realign the obtained feature
vectors with the temporal resolution (1.5 second) of the fMRI signal. This procedure yielded a total
of 946 feature vectors, for each SoundNet layer.

Next, in order to reduce the dimensionality of the fMRI data, we applied hierarchical clustering
using Ward criterion [4-5] to parcellate each individual brain into 500 regions of interests (ROI).
We subsequently realigned the fMRI data on the beginning of the movie, yielding 946 vectors of
dimension 500 for each subject.

Finally, encoding models were estimated separately for each subject and layer of SoundNet. We
trained fully connected neural networks with one hidden layer to predict brain activity in the 500
ROI simultaneously. We report results when varying the number of neurons in the hidden layer.
We used ReLu activation for the hidden layer, and linear activation for the output layer. We used a
learning rate of 0.001 and a L2 penalty of 0.0001. Cross validation on the data was performed using

1When we downloaded the data, openneuro had the preprocessed version available.
2Code at https://github.com/vnepveu/neurips19_neuroai_encoding
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four folds without shuffling the data (in order to ensure that the train and test data were as distant as
possible temporally), and for each training fold, 10% of the data was kept for validation. We used
the Adam optimiser with batches of size 50. Mean Square Error (MSE) was used as a loss function,
and we applied an early stopping criterion that stops when validation MSE is not improving for 10
consecutive epochs. The final metric we use for evaluating the results is the R2 score on the test set,
indicating the quality of predicting fMRI data.

Additionally, we also perfomed a control analysis in which we estimated 100 null encoding models by
extrating feature vectors from an untrained SoundNet, using the exact same procedure as described
above. This analysis enables us to estimate the chance level of our dataset, as well as the gain obtained
when using the pretrained network.

3 Results and discussion

3.1 Which layers enable the training of an encoding model ?

To begin with, as expected, the null models could not yield any significant training for any SoundNet
layer, as indicated by R2 scores of less than 1e−6 ± 1e−5. Next, the first four layers of SoundNet
could not be used to sucessfully train encoding models, as all R2 were less than 0.03. In the following
analysis, we focus on results from layers conv5, conv6 and conv7.

Table 1 depicts the influence of the number of neurons in the hidden layer on the maximum over
all ROI of R2 scores , averaged across subjects and CV folds. The best results were obtained using
1000 neurons in the hidden layer, which enables succesfully training an encoding model on conv5,
conv6 and conv7. Furthermore, we noticed that maximum R2 scores across folds were much higher

number of neurons 50 100 500 1000 1500

conv5 0.11 (0.08 ) 0.13 (0.08) 0.13 (0.08) 0.13 (0.08) 0.14 (0.08)
conv6 0.11 (0.07) 0.11 (0.07) 0.12 (0.07) 0.12 (0.07) 0.12 (0.07)
conv7 0.14 (0.15) 0.18 (0.15) 0.26 (0.13) 0.28 (0.13) 0.28 (0.12)

Table 1: Hyper parameter exploration: average (standard error of the mean) across all subjects of
maximum R2 score, as a function of transfered layer, and number of neurons in hidden layer.

than the average over folds, and we found that the second fold consistently yielded low R2 scores
(R2 < 0.05), for all subjects, for conv5 and conv6. Regarding conv7, the first two folds yielded an
average of R2 = 0.15 across all subjects. While this issue would demand closer inspection of the
data, we suspect a systematic bias in the feature vectors for conv5 and conv6 in the first half of the
video. Nonetheless, we obtained good generalization for the other three folds, especially for conv7.
As a consequence, in the next section we will select the fold that yielded the maximum R2 in order to
interpret the spatial maps.

3.2 Where in the brain can feature vectors predict brain activity?

For all sixteen subjects, brain activity in ROIs including the superior and middle temporal gyri could
be predicted with R2 > 0.25. The corresponding SoundNet layer for which the R2 was maximal
was conv7 for 14 subjects, conv6 for one subject and conv5 for one subject. This results suggest that
the information in the last layers of SoundNet is linked to the fMRI activity in regions previously
associated with general purpose auditory processing.

Furthermore, for eleven out of sixteen subjects, brain activity in ROIs located in the left dorsolateral
prefrontal cortex was predicted with R2 > 0.15 (8 out of those eleven had a R2 > 0.25). The
corresponding layer was conv7 for 9 subjects and conv5 for 2 subjects. The left dorsolateral prefrontal
cortex has been previously associated to verbal encoding in numerous studies, suggesting that the
information in conv5 and conv7 might be linked to verbal content in the original stimuli, to a certain
extent.

Note that we also found less than five subjects for which brain activity in medial regions of the
Default Mode Network, such as the medial prefrontal cortex, or the anterior cingulate cortex, could
be predicted, but this didn’t seem like a consistent pattern across the majority of subjects. We depict
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Figure 2: Threshold map of R2 > 0.1 predicted by layer conv7 for two exemplar subjects, showing
ROIs in the medial, superior temporal and left dorsolateral prefrontal cortices. We selected those
exemplars to show the different possible cases.

in figure 2 exemplar subjects showing coronal and axial cuts of the R2 maps, locating the ROIs in
temporal, medial and dorsolateral prefrontal cortices.

3.3 General discussion, limitations and perspectives

We were able to train encoding models on individual subjects to predict brain activity using the
deepest layers of SoundNet, using less than 20 minutes of fMRI data. The obtained models best
predicted the activity in brain areas that are part of a language-related network. However, the current
study has the following limitations. First, we extracted features from the auditory part of the stimuli,
while the modeled brain activity involves many other brain functions, namely visual perception, as
well as higher level cognitive functions such as memory and emotional responses. This probably
explains why we obtain R2 = 0.5 in the best case. Providing a richer stimuli representation using
more general purpose feature extractors would probably enable a more complete model of brain
activity. Second, we estimated brain parcellations on single subject data using only 20 minutes of
MRI, which might not be enough to obtain a reliable set of ROIs [6]. Further studies should use either
more repetitions on each subject, or attempt at learning parcellations across subjects, after having
spatially normalized each individual to a template. Third, we didn’t find a clear relationship between
spatial extent of our encoding models as a function of the SoundNet layer. This could be due to the
fact that SoundNet was trained independently of the brain data, and was never optimized for encoding
models. One possible avenue would be to perform fine tuning, or retrain from scratch, in order
to optimize the estimation of encoding models. Finally, in our approach we ignored the temporal
dynamics of both the feature vectors and the fMRI data, as well as the dependencies between ROIs
implied by brain connectivity. In future studies, we will consider the use of recurrent neural networks,
as well as graph representation learning [7], in order to tackle those issues.
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