
Under review as a conference paper at ICLR 2020

SPROUT: SELF-PROGRESSING ROBUST TRAINING

Anonymous authors
Paper under double-blind review

ABSTRACT

Enhancing model robustness under new and even adversarial environments is
a crucial milestone toward building trustworthy and reliable machine learning
systems. Current robust training methods such as adversarial training explicitly
specify an “attack” (e.g., `∞-norm bounded perturbation) to generate adversarial
examples during model training in order to improve adversarial robustness. In this
paper, we take a different perspective and propose a new framework SPROUT,
self-progressing robust training. During model training, SPROUT progressively
adjusts training label distribution via our proposed parametrized label smoothing
technique, making training free of attack generation and more scalable. We also
motivate SPROUT using a general formulation based on vicinity risk minimization,
which includes many robust training methods as special cases. Compared with state-
of-the-art adversarial training methods (PGD-`∞ and TRADES) under `∞-norm
bounded attacks and various invariance tests, SPROUT consistently attains superior
performance and is more scalable to large neural networks. Our results shed new
light on scalable, effective and attack-independent robust training methods.

1 INTRODUCTION

While deep neural networks (DNNs) have achieved unprecedented performance on a variety of
datasets and across domains, developing better training algorithms that are capable of strengthening
model robustness is the next crucial milestone toward trustworthy and reliable machine learning
systems. In recent years, DNNs trained by standard algorithms (i.e., the natural models) are shown to
be vulnerable to adversarial input perturbations (Biggio et al., 2013; Szegedy et al., 2014). Adversarial
examples crafted by designed input perturbations can easily cause erroneous decision making of
natural models (Goodfellow et al., 2015) and thus intensify the demand for robust training methods.

State-of-the-art robust training algorithms are primarily based on the methodology of adversarial
training (Goodfellow et al., 2015; Madry et al., 2018), which calls specific attacking algorithms to
generate adversarial examples during model training in order to learn robust models. Albeit effective,
adversarial training based methods have the following limitations: (i) poor scalability – the process
of generating adversarial examples incurs considerable computation overhead. For instance, our own
experiments show that, with the same computation resources, standard adversarial training (with 7
attack iterations per sample in every minibatch) of Wide ResNet on CIFAR-10 consumes 10 times
more clock time per training epoch when compared with standard training; (ii) attack specificity
– adversarially trained models are usually most effective against the same attack they trained on,
and the robustness may not generalize well to other types of attacks (Tramèr & Boneh, 2019; Kang
et al., 2019); (iii) preference toward wider network – adversarial training are more effective when the
networks have sufficient capacity (e.g., having more neurons in network layers) (Madry et al., 2018).

To address the aforementioned limitations, in this paper we propose a new robust training method
named SPROUT, which is short for self-progressing robust training. We motivate SPROUT by intro-
ducing a general framework that formulates robust training objectives via vicinity risk minimization
(VRM), which includes many robust training methods as special cases. It is worth noting that the
robust training methodology of SPROUT is fundamentally different from adversarial training, as
SPROUT features self-adjusted label distribution during training instead of attack generation. In
addition to our proposed parametrized label smoothing technique for progressive adjustification of
training label distribution, SPROUT also adopts Gaussian augmentation and Mixup (Zhang et al.,
2018) to further enhance robustness. In contrast to adversarial training, SPROUT spares the need for
attack generation and thus makes its training scalable by a significant factor, while attaining better or

1

Under review as a conference paper at ICLR 2020

L_inf Acc

C&W Acc
Scalibility

Invariance
Clean Acc

0%
20%

40%
60%

80%

(a) Natural

L_inf Acc

C&W Acc
Scalibility

Invariance
Clean Acc

0%
20%

40%
60%

80%

(b) Adversarial training

L_inf Acc

C&W Acc
Scalibility

Invariance
Clean Acc

0%
20%

40%
60%

80%

(c) TRADES

L_inf Acc

C&W Acc
Scalibility

Invariance
Clean Acc

0%
20%

40%
60%

80%

(d) SPROUT (ours)

Figure 1: Multi-dimensional performance comparison of four training methods using VGG-16
network and CIFAR-10 dataset. All dimensions are separately normalized by the best-performance
method. The average score of each method is 0.6718 for natural (standard training), 0.6900 for
PGD-`∞ based adversarial training (Madry et al., 2018), 0.7107 for PGD-`∞ based TRADES (Zhang
et al., 2019), and 0.8798 for SPROUT (ours). The exact numbers are reported in Table 6 in Appendix.

comparable robustness performance on a variety of experiments. We also show that SPROUT can
find robust models from either randomly initialized models or pretrained models, and its robustness
performance is less sensitive to network width.

1.1 CONTRIBUTIONS

Multi-dimensional performance enhancement. To illustrate the advantage of SPROUT over ad-
versarial training and its variations, Figure 1 compares the model performance of different training
methods with the following five dimensions summarized from our experimental results: (i) Clean Acc
– standard test accuracy, (ii) L inf Acc – accuracy under `∞-norm projected gradient descent (PGD)
attack (Madry et al., 2018), (iii) C&W Acc – accuracy under `2-norm Carlini-Wagner (C&W) attack,
(iv) scalability – per epoch clock run-time, and (v) invariance – invariant transformation tests includ-
ing rotation, brightness, contrast and gray images. Comparing to PGD-`∞ based adversarial training
(Madry et al., 2018) and TRADES (Zhang et al., 2019), SPROUT attains at least 20% better L inf
Acc, 2% better Clean Acc, 5× faster run-time (scalability), 2% better invariance, while maintaining
C&W Acc, suggesting a new robust training paradigm that is scalable and comprehensive.

We further summarize the main contributions of this paper as follows:
•We propose SPROUT, a self-progressing robust training method composed of three modules that
are efficient and free of attack generation: parametrized label smoothing, Gaussian augmentation
and Mixup (Section 3). They altogether attain the state-of-the-art robustness performance and are
scalable to large-scale networks. In Section 4.6 we will show that these modules are complimentary
to enhancing robustness. We also perform an ablation study to demonstrate that our proposed
parametrized label smoothing technique contributes to the major gain in boosting robustness.
• To provide technical explanations for SPROUT, in Section 2 we motivate its training methodology
based on the framework of vicinity risk minimization (VRM). We show that many robust training
methods, including attack-specific and attack-independent approaches, can be characterized as a
specific form of VRM. The superior empirical results of SPROUT provide new insights on developing
efficient robust training methods and theoretical justification based on VRM.
•We evaluate the multi-dimensional performance of different training methods on (wide) ResNet
and VGG networks using CIFAR-10 and ImageNet datasets. Notably, although SPROUT is attack-
independent during training, we find that SPROUT significantly outperforms two major adversarial
training methods, PGD-`∞ adversarial training (Madry et al., 2018) and TRADES (Zhang et al.,
2019), against the same type of attacks they used during training (Section 4.2). Moreover, SPROUT
is more scalable and runs at least 5× faster than adversarial training methods (Section 4.5). It also
attains higher clean accuracy and generalizes better to various invariance tests (Section 4.4) and is
less sensitive to network width (Section 4.6).

1.2 RELATED WORK

Attack-specific robust training. The seminal work of adversarial training with a first-order attack
algorithm for generating adversarial examples (Madry et al., 2018) has greatly improved adversarial
robustness under the same threat model (e.g., `∞-norm bounded perturbations) as the attack algorithm.
It has since inspired many advanced adversarial training algorithms with improved robustness. For
instance, TRADES (Zhang et al., 2019) is designed to minimize a theoretically-driven upper bound

2

Under review as a conference paper at ICLR 2020

on prediction error in adversarial examples, which led to the first-ranked defense in the NeurIPS
2018 Adversarial Vision Challenge. Bilateral adversarial training (Wang, 2019) finds robust models
by adversarially perturbing the data samples as well as the associated data labels using attack
algorithms. A feature-scattering based adversarial training method is proposed in (Zhang & Wang,
2019). Different from attack-specific robust training methods, our proposed SPROUT is free of
attack generation, yet it can outperform attack-specific methods. Another line of recent works uses an
adversarially trained model along with additional unlabeled data (Carmon et al., 2019; Stanforth et al.,
2019) or self-supervised learning with adversarial examples (Hendrycks et al., 2019) to improve
robustness, which in principle can also be used in SPROUT but is beyond the scope of this paper.

Attack-independent robust training. Here we discuss related works on Gaussian data augmentation,
Mixup and label smoothing. Gaussian data augmentation during training is a commonly used baseline
method to improve model robustness (Zantedeschi et al., 2017). It is revisited in (Cohen et al., 2019)
as a scalable and certifiable defense method called random smoothing. Mixup (Zhang et al., 2018)
and its variants (Verma et al., 2018; Thulasidasan et al., 2019) are a recently proposed approach to
improve model robustness and generalization by training a model on convex combinations of data
sample pairs and their labels. Label smoothing was originally proposed in (Szegedy et al., 2016)
as a regularizer to stabilize model training. The main idea is to replace one-hot encoded labels
by assigning non-zero (e.g., uniform) weights to every label other than the original training label.
Although label smoothing is also shown to benefit model robustness (Shafahi et al., 2018; Goibert &
Dohmatob, 2019), its robustness gain is relatively marginal when compared to adversarial training.
In contrast to current static (i.e., pre-defined) label smoothing function, in SPROUT we propose
a novel parametrized label smoothing scheme, which enables adaptive sampling of training labels
from a parameterized distribution on the label simplex. The parameters of the label distribution are
progressively adjusted according to the updates of model weights.

2 GENERAL FRAMEWORK FOR FORMULATING ROBUST TRAINING

In supervised learning, the task is essentially learning a K-class classification function f ∈ F that
has a desirable mapping between a data sample x ∈ X and the corresponding label y ∈ Y . Consider
a loss function L that penalizes the difference between the prediction f(x) and the true label y from
an unknown data distribution P , (x,y) ∼ P . The population risk can be expressed as

R(f) =

∫
L(f(x),y)P (x,y)dxdy (1)

However, as the distribution P is unknown, in practice machine learning uses empirical risk mini-
mization (ERM) with the empirical data distribution of n training data {xi, yi}ni=1

Pδ(x,y) =
1

n

n∑
i=1

δ(x = xi,y = yi) (2)

to approximate P (x,y), where δ is a Dirac mass. However, a more principled approach is to use
Vicinity Risk Minimization (VRM) (Chapelle et al., 2001), which is

Pν(x,y) =
1

n

n∑
i=1

ν(x̃, ỹ|xi,yi) (3)

where ν is a vicinity distribution that measures the probability of finding the virtual sample-label pair
(x̃, ỹ) in the vicinity of the training sample-label pair (xi,yi). Therefore, ERM can be viewed as a
special case of VRM when ν = δ. VRM has also been used to motivate Mixup training (Zhang et al.,
2018). Based on VRM, we propose a general framework that encompasses the objectives of many
robust training methods as the following generalized cross entropy loss:

H(x̃, ỹ, f) = −
K∑
k=1

[log g(f(x̃)k)]h(ỹk) (4)

where f(x̃)k is the model’s k-th class probability output of the input x̃, g(·) : R→ R is a mapping
adjusting the output probability, and h(·) : R → R is a mapping adjusting the training label
distribution. When x̃ = x, ỹ = y and g = h = I, where I denotes the identity mapping function,
the loss in (4) degenerates to the conventional cross entropy loss used in ERM.

3

Under review as a conference paper at ICLR 2020

Table 1: Summary of several robust training methods using VRM formulation in (4). PGDε(·) means
(multi-step) PGD attack with perturbation budget ε and Dirichlet(b) is the Dirichlet distribution
parameterized by b. GA stands for Gaussian Augmentation and LS stands for Label Smoothing.

Methods g(·) h(·) x̃ ỹ attack-specific

Natural I I x y ×
GA (Zantedeschi et al., 2017) I I N (x,∆2) y ×
LS (Szegedy et al., 2016) I (1− α)y + αu x y ×
Adversarial training (Madry et al., 2018) I I PGDε(x) y X
TRADES (Zhang et al., 2019) I (1− α)y + αf(x̃) PGDε(x) y X
Stable training (Zheng et al., 2016) f(x) ◦ f(x̃) I N (x,∆2) y ×
Mixup (Zhang et al., 2018) I I (1− λ)xi + λxj (1− λ)yi + λyj ×
LS+GA (Shafahi et al., 2018) I (1− α)y + αu N (x,∆2) y ×
Bilateral Adv Training (Wang, 2019) I I PGDε(x) (one or two step) (1− α)yi + αPGDε′(y) X
SPROUT (ours) I Dirichlet((1− α)y + αβ) (1− λ)N (xi,∆

2) + λN (xj ,∆
2) (1− λ)yi + λyj ×

Based on the general VRM loss formulation in (4), in Table 1 we summarize a large body of
robust training methods in terms of different expressions of g(·), h(·) and (x̃, ỹ). For example,
the vanilla adversarial training in (Madry et al., 2018) aims to minimize the loss of adversarial
examples generated by the (multi-step) PGD attack with perturbation budget ε, denoted by PGDε(·).
Its training objective can be rewritten as x̃ = PGDε(x), ỹ = y and g = h = I. In addition
to adversarial training only on perturbed samples of x, Wang (2019) designs adversarial label
perturbation where it uses x̃ = PGDε(x), ỹ = (1 − α)y + αPGDε(y), and α ∈ [0, 1] is a
mixing parameter. TRADES (Zhang et al., 2019) improves adversarial training with an additional
regularization on the clean examples, which is equivalent to replacing the label mapping function
h(·) from identity to (1 − α)y + αf(x̃). Label smoothing (LS) alone is equivalent to the setup
that g = I, x̃ = x, ỹ = y and h(·) = (1 − α)y + αu, where u is often set as a uniform vector
with value 1/K for a K-class supervised learning task. Joint training with Gaussian augmentation
(GA) and label smoothing (LS) as studied in (Shafahi et al., 2018) is equivalent to the case when
x̃ = N (x,∆2), ỹ = y, g = I and h(y) = (1 − α)y + α/K. We defer the connection between
SPROUT and VRM to the next section.

3 SPROUT: SCALABLE ROBUST AND GENERALIZABLE TRAINING

In this section, we formally introduce SPROUT, a novel robust training method that automatically
finds a better vicinal risk function during model training in a self-progressing manner.

3.1 SELF-PROGRESSING TRAINING VIA PARAMETRIZED LABEL SMOOTHING

To stabilize training and improve model generalization, Szegedy et al. (2016) introduces label
smoothing that converts “one-hot” label vectors into “one-warm” vectors representing low-confidence
classification, in order to prevent a model from making over-confident predictions. Specifically, the
one-hot encoded label y is smoothed using

ỹ = (1− α)y + αu (5)

where α ∈ [0, 1] is the smoothing parameter. A common choice is the uniform distribution u = 1
K ,

where K is the number of classes. Later works (Wang, 2019; Goibert & Dohmatob, 2019) use an
attack-driven label smoothing function u to further improve adversarial robustness. However, both
uniform and attack-driven label smoothing disregard the inherent correlation between labels. To
address the label correlation, we propose to use the Dirichlet distribution parametrized by β ∈ RK+
for label smoothing. Our SPROUT learns to update β to find a training label distribution that is most
uncertain to current model weights θ, by solving

max
β

L(x̃, ỹ,β; θ) (6)

where ỹ = Dirichlet((1 − α)y + αβ). Notably, instead of using a pre-defined or attack-driven
function for u in label smoothing, our Dirichlet label smoothing approach automatically finds a label
simplex by optimizing β. Dirichlet distribution indeed takes label correlation into consideration as its
generated label z = [z1, . . . , zK] has the statistical properties

E[zs] =
βs
β0
, Cov[zs, zt] =

−βsβt
β2
0(β0 + 1)

,

K∑
s=1

zs = 1 (7)

where β0 =
∑K
k=1 βk and s, t ∈ {1, . . . ,K}, s 6= t. Moreover, one-hot label and uniform label

smoothing are special cases of our Dirichlet label smoothing when β = y and β = u, respectively.

4

Under review as a conference paper at ICLR 2020

Our Dirichlet label smoothing co-trains with the update in model weights θ during training (see
Algorithm 1). The advantage of our proposed self-progressing Dirichlet label smoothing over uniform
label smoothing will be justified in our ablation study (see Figure 5 in Section 4.6). In addition, we
illustrate the label correlation learned from our Dirichlet label smoothing in Appendix A.2.

3.2 INCORPORATING GAUSSIAN DATA AUGMENTATION AND MIXUP

Gaussian augmentation. Adding Gaussian noise to data samples during training (i.e., Gaussian
augmentation) is a common pracitice to improve model robustness. Its corresponding vicinal function
is the Gaussian vicinity function ν(x̃i, ỹi|xi,yi) = N (xi,∆

2)δ(ỹi = yi), where ∆2 is the variance
of a standard normal random vector. However, the gain of Gaussian augmentation in robustness is
marginal when compared with adversarial training (see our ablation study in Section 4.6). Shafahi et al.
(2018) finds that combining uniform or attack-driven label smoothing with Gaussian smoothing can
further improve adversarial robustness. Therefore, we propose to incorporate Gaussian augmentaion
with Dirichlet label smoothing. The joint vicinity function becomes

ν(x̃i, ỹi|xi,yi,β) = N (xi,∆
2)δ(ỹi = Dirichlet((1− α)yi + αβ)) (8)

Training with equation (8) means drawing labels from the parameterized Dirichlet distribution for the
original data sample xi and its neighborhood characterized by Gaussian augmentation.

Mixup. To further improve model generalization, SPROUT also integrates Mixup (Zhang et al., 2018)
that performs convex combination on pairs of training data samples (in a minibatch) and their labels
during training. The vicinity function of Mixup is ν(x̃, ỹ|xi,yi) = δ(x̃ = (1− λ)xi + λxj , ỹ =
(1− λ)yi + λyj), where λ ∼ Beta(a, a) is the mixing parameter drawn from the Beta distribution
and a > 0 is the shape parameter. The Mixup vicinity function can be generalized to multiple data
sample pairs. Unlike Gaussian augmentation which is irrespective of the label (i.e., only adding noise
to xi), Mixup aims to augment data samples on the line segments of training data pairs and assign
them convexly combined labels during training.

Vicinity function of SPROUT. With the aforementioned techniques integrated in SPROUT, the
overall vicinity function of SPROUT can be summarized as

ν(x̃, ỹ|xi,yi,β) (9)

= δ(x̃ = λN (xi,∆
2) + (1− λ)N (xj ,∆

2), ỹ = Dirichlet((1− α)((1− λ)yi + λyj) + αβ)

In Section 4.6, we will show that Dirichlet label smoothing, Gaussian augmentation and Mixup are
complimentary to enhancing robustness by showing their diversity in input gradients.

3.3 SPROUT ALGORITHM

Using the VRM framework, the training objective of SPROUT is

min
θ

max
β

n∑
i=1

L(ν(x̃i, ỹi|xi,yi,β); θ), (10)

where θ denotes the model weights, n is the number of training data, L is the generalized cross
entropy loss defined in (4) and ν(x̃, ỹ|xi,yi,β) is the vicinity function defined in (9). Our SPROUT
algorithm co-trains θ and β via stochastic gradient descent/ascent to solve the outer minimization
problem on θ and the inner maximization problem on β. In particular, for calculating the gradient gβ
of the parameter β, we use the Pytorch implementation based on (Figurnov et al., 2018). SPROUT
can either train a model from scratch with randomly initialized θ or strengthen a pre-trained model.
As will be evident in Section 4.2, when evaluated against PGD-`∞ attack with different ε perturbation
constraints, we find that training from either randomly initialized or pre-trained natural models using
SPROUT can yield substantially robust models that are resilient to large ε values. The training steps
of SPROUT are summarized in Algorithm 1.

We also note that our min-max training methodology is different from the min-max formulation
in adversarial training (Madry et al., 2018), which is minθ

∑n
i=1 maxδi:‖δi‖p≤ε L(xi + δi,yi; θ),

where ‖δi‖p denotes the `p norm of the adversarial perturbation δi. While the outer minimization
step for optimizing θ can be identical, the inner maximization of adversarial training requires running
multi-step PGD attack to find adversarial perturbations {δi} for each data sample in every minibatch
(iteration) and epoch, which is attack-specific and time-consuming (see our scalability analysis in

5

Under review as a conference paper at ICLR 2020

Algorithm 1 SPROUT algorithm

Input: Training dataset (X,Y), Mixup parameter λ, Gaussian augmentation variance ∆2, model
learning rate γθ, Dirichlet label smoothing learning rate γβ and parameter α, cross entropy loss L
Initial model θ: random initialization (train from scratch) or pre-trained model checkpoint
Initial β: random initialization
for epoch=1, . . . , N do

for minibatch XB ⊂ X,YB ⊂ Y do
XB ← N (XB ,∆

2)
Xmix, Ymix ←Mixup(XB , YB , λ)
Ymix ← Dirichlet(αYmix + (1− α)β)
gθ ← ∇θL(Xmix, Ymix, θ)
gβ ← ∇βL(Xmix, Ymix, θ)
θ ← θ − γθgθ
β ← β + γβgβ

end for
end for
return θ

Table 5). On the other hand, our inner maximization is upon the Dirichlet parameter β, which is
attack-independent and only requires single-step stochastic gradient ascent with a minibatch to update
β. We have explored multi-step stochastic gradient ascent on β and found no significant performance
enhancement but increased computation time.

Advantages of SPROUT. Comparing to adversarial training, the training of SPROUT is more
efficient and scalable, as it only requires one additional back propagation to update β in each iteration
(see Table 5 for a run-time analysis). As highlighted in Figure 1, SPROUT is also more comprehensive
as it automatically improves robustness in multiple dimensions owing to its self-progressing training
methodology. Moreover, we find that SPROUT significantly outperforms adversarial training and
is more effective as network width increases (see Figure 7), which makes SPROUT a promising
approach to support robust training for a much larger set of network architectures.

4 PERFORMANCE EVALUATION

4.1 EXPERIMENT SETUP

Dataset and model structure. We use CIFAR-10 (Krizhevsky et al.) and ImageNet (Deng et al.,
2009) for performance evaluation. For CIFAR-10, we use both standard VGG-16 (Simonyan &
Zisserman, 2015) and Wide ResNet that is used in both vanilla adversarial training (Madry et al., 2018)
and TRADES (Zhang et al., 2019). The Wide ResNet models are pre-trained PGD-`∞ robust models
given by adversarial training and TRADES. For VGG-16, we implement adversarial training with the
standard hyper-parameters and train TRADES with the official implementation. For ImageNet, we
use ResNet-152. All our experiments were implemented in Pytorch-1.2 and conducted using dual
Intel E5-2640 v4 CPUs (2.40GHz) with 512 GB memory with a GTX 1080 GPU.

Implementation details. As suggested in Mixup (Zhang et al., 2018), we set the Beta distribution
parameter a = 0.2 when sampling the mixing parameter λ. For Gaussian augmentation, we set
∆ = 0.1, which is within the suggested range in (Zantedeschi et al., 2017). Also, we set the label
smoothing parameter α = 0.01. A parameter sensitivity analysis on λ and α is given in Appendix
A.4. Unless specified otherwise, for SPROUT we set the model initialization to be a natural model.
An ablation study of model initialization is given in Section 4.6.

4.2 ADVERSARIAL ROBUSTNESS UNDER VARIOUS ATTACKS

White-box attacks. On CIFAR-10, we compare the model accuracy under different strength of
white-box `∞-norm bounded non-targeted PGD attack, which is considered as the strongest first-
order adversary (Madry et al., 2018) with an `∞-norm constraint ε (normalized between 0 to 1). All
PGD attacks are implemented with random starts and we run PGD attack with 20 and 100 steps in our
experiments. The (robust) accuracy under different ε values are shown in Figure 2. When ε = 0.03

6

Under review as a conference paper at ICLR 2020

and under PGD attack with 20 steps, we find SPROUT achieves 62.24% and 66.23% robust accuracy
on VGG16 and Wide ResNet respectively, while TRADES and adversarial training are 10-20% worse
than SPROUT. We also find that SPROUT is significantly more robust to PGD-`∞ attacks with large
ε values. In addition to the substantially improved robustness, the clean accuracy (i.e., when ε = 0)
of SPROUT is 5-10 % higher than TRADES and adversarial training, and it is only 2-4% lower than
natural model, suggesting SPROUT better balances the robustness-accuracy trade-off. Similar trends
are observed in robust accuracy under PGD attack with 100 steps. On Wide ResNet we also report
the robust accuracy of the “free adversarial training” (Free Adv train) method (Shafahi et al., 2019),
which features similar robust accuracy as adversarial training but greatly reduced training time.

0.00 0.02 0.04 0.06
PGD attack stregth

0

20

40

60

80

Ac
cu

ra
cy

 u
nd

er
 a

tta
ck

VGG PGD 20

SPROUT
TRADES
Natural
Adv train

0.00 0.02 0.04 0.06
PGD attack stregth

0

20

40

60

80

Ac
cu

ra
cy

 u
nd

er
 a

tta
ck

VGG PGD 100

SPROUT
TRADES
Natural
Adv train

0.00 0.02 0.04 0.06
PGD attack stregth

0

20

40

60

80

100

Ac
cu

ra
cy

 u
nd

er
 a

tt
ac

k

Wide ResNet PGD 20

SPROUT
TRADES
Natural
Adv train
Free Adv train

0.00 0.02 0.04 0.06
PGD attack stregth

0

20

40

60

80

100

Ac
cu

ra
cy

 u
nd

er
 a

tt
ac

k
Wide ResNet PGD 100

SPROUT
TRADES
Natural
Adv train
Free Adv train

Figure 2: Robust accuracy under PGD-`∞ attack. SPROUT signigicantly outperforms other methods.

In addition to PGD-`∞ attack, we also compare against `2-norm based C&W attack (Carlini &
Wagner, 2017). We use the default attack setting to do 10 binary search steps with 1000 iterations per
step to find successful attacks while minimizing `2-norm perturbation. Figure 3 shows that the gain
in `2 robustness using SPROUT is less apparent than that in `∞ robustness. SPROUT’s performance
is similar to TRADES but is better than both natural and adversarial training. The results also suggest
that the attack-independent and self-progressing training nature of SPROUT can prevent the drawback
of failing to provide comprehensive robustness to multiple and simultaneous `p-norm adversarial
attacks in adversarial training (Tramèr & Boneh, 2019; Kang et al., 2019).

0.00 0.05 0.10 0.15 0.20 0.25 0.30
C&W attack stregth

20

40

60

80

Ac
cu

ra
cy

 u
nd

er
 a

tta
ck

VGG

SPROUT
TRADES
Natural
Adv train

0.00 0.05 0.10 0.15 0.20 0.25 0.30
C&W attack stregth

0

20

40

60

80

100

Ac
cu

ra
cy

 u
nd

er
 a

tta
ck

Wide Resnet

SPROUT
TRADES
Natural
Adv train

Figure 3: Robust accuracy under C&W-`2 attack

Transfer attack. We follow the criterion of evaluating transfer attacks as suggested by Athalye et al.
(2018) to inspect whether the models trained by SPROUT will cause the issue of obfuscated gradients

7

Under review as a conference paper at ICLR 2020

and give a false sense of model robustness. We generate 10,000 adversarial examples of CIFAR-10
from natural models with ε = 0.03 and evaluate their attack performance on the target model. Table
2 shows SPROUT achieves the best accuracy when compared with adversarial training and TRADES,
suggesting the effectiveness of SPROUT in defending both white-box and transfer attacks.

Table 2: Robust accuracy under transfer attack on CIFAR-10

Method VGG 16 Wide ResNet
Adv train 79.13% 85.84%
TRADES 83.53% 83.9%
SPROUT 86.28% 89.1%

ImageNet results. As many ImageNet class labels carry similar semantic meanings, to generate
meaningful adversarial examples for robustness evaluation, here we follow the same setup as in
(Athalye et al., 2018) that adopts PGD-`∞ attacks with randomly targeted labels. Table 3 compares
the robust accuracy of natural and SPROUT models. SPROUT greatly improves the robust accuracy
across different ε values. For example, when ε = 0.01, SPROUT boosts the robust accuracy of natural
model by over 43%. When ε = 0.015 ≈ 4/255, a considerably large adversarial perturbation on
ImageNet, SPROUT still attains about 35% robust accuracy while the natural model merely has about
2% robust accuracy. Moreover, comparing the clean accuracy, SPROUT is about 4% worse than
the natural model but is substantially more robust. We omit the comparison to adversarial training
methods as we are unaware of any public pre-trained robust ImageNet models prior to the time of
our submission, and it is computationally demanding for us to train and fine-tune such large-scale
networks with adversarial training. On our machine, training a natural model takes 31,158.7 seconds
and training SPROUT takes 59,201.6 seconds. Comparing to the run-time analysis in Section 4.5,
SPROUT has a much better scalability than adversarial training and TRADES.

Table 3: Robust accuracy under PGD-`∞ attack on ImageNet and ResNet-152

Method Clean Acc ε = 0.005 ε = 0.01 ε = 0.015 ε = 0.02
Natural 78.31% 37.13% 9.14% 2.12% 0.78%

SPROUT 74.23% 65.24% 52.86% 35.04% 12.18%

4.3 LOSS LANDSCAPE EXPLORATION

To further verify the superior robustness using SPROUT, we visualize the loss landscape of different
training methods in Figure 4. Following the implementation in (Engstrom et al., 2018), we vary the
data input along a linear space defined by the sign of the input gradient and a random Rademacher
vector, where the x- and y- axes represent the magnitude of the perturbation added in each direction
and the z-axis represents the loss. One can observe that the loss surface of SPROUT is smoother.
Furthermore, it attains smaller loss variation compared with other robust training methods. The
results provide strong evidence for finding more robust models via SPROUT.

0.10 0.050.00 0.05 0.10 0.10
0.05

0.00
0.05

0.10
0.00
2.00
4.00
6.00
8.00

(a) Natural

0.10 0.050.00 0.05 0.10 0.10
0.05

0.00
0.05

0.10
0.00
2.00
4.00
6.00
8.00

(b) Adv train

0.10 0.050.00 0.05 0.10 0.10
0.05

0.00
0.05

0.10
0.00
2.00
4.00
6.00
8.00

(c) TRADES

0.100.050.000.050.10 0.10
0.05

0.00
0.05

0.10
0.00
2.00
4.00
6.00
8.00

0.0

2.5

5.0

7.5

(d) SPROUT

Figure 4: Loss landscape comparison of different training methods

4.4 INVARIANCE TEST

In addition to `p-norm bounded adversarial attacks, here we also evaluate model robustness against
different kinds of input transformations using CIFAR-10 and Wide ResNet. Specifically, we change

8

Under review as a conference paper at ICLR 2020

rotation (with 10 degree), brightness (increase the brightness factor to 1.5), contrast (increase
the contrast factor to 2) and make inputs into grayscale (average all RGB pixel values). The
model accuracy under these invariance tests is summarized in Table 4. Results show that SPROUT
outperforms adversarial training and TRADES. Interestingly, natural model attains the best accuracy
despite the fact that it lacks adversarial robustness, suggesting a potential trade-off between accuracy
in these invariance tests and `p-norm based adversarial robustness.

Table 4: Accuracy under invariance tests

Method Rotation Brightness Contrast Gray
Natural 88.21% 93.4% 91.88 % 91.95%

Adv train 82.66% 83.64% 84.99% 81.08%
TRADES 80.81% 81.5 % 83.08% 79.27%
SPROUT 85.95% 88.26 % 86.98% 81.64%

Table 5: Training-time (seconds) for 10 epochs

Methods CIFAR-10
VGG 16 Wide ResNet

Natural 146.7 1449.6
Adv train 1327.1 14246.1
TRADES 1932.5 22438.4
SPROUT 271.7 2727.8

Free Adv train(m=8) 2053.1 20652.5
4.5 SCALABILITY

As illustrated in Section 3.3, SPROUT enjoys great scalability over adversarial training based
algorithms because its training requires much less number of back-propagations per iteration, which
is a dominating factor that contributes to considerable run-time in adversarial training. Table 5
benchmarks the run-time of different training methods for 10 epochs. On CIFAR-10, the run-time
of adverarial training and TRADES is about 5× more than SPROUT. We also report the run-time
analysis using the default implementation1 from the recent work (Free Adv train) in (Shafahi et al.,
2019). Its 10-epoch run-time with the replay parameter m = 8 is similar to TRADES. However, we
note that Free Adv train may require less number of epochs when training to covergence.

4.6 ABLATION STUDY

Dissecting SPROUT. Here we perform an ablation study using VGG-16 and CIFAR-10 to investigate
and factorize the robustness gain in SPROUT’s three modules: Dirichlet label smoothing (Dirichlet),
Gaussian augmentation (GA) and Mixup. We implement all combinations of these techniques and
include uniform label smoothing (LS) (Szegedy et al., 2016) as another baseline. Their accuracies
under PGD-`∞ attack are shown in Figure 5. We highlight some important findings as follows.
• Dirichlet outperforms uniform LS by a significant factor, suggesting the importance of our proposed
self-progressing label smoothing in improving adversarial robustness.
• Comparing the performance of individual modules alone (GA, Mixup and Dirichlet), our proposed
Dirichlet attains the best robust accuracy, suggesting its crucial role in training robust models.
• No other combinations can outperform SPROUT. Moreover, the robust gains from GA, Mixup and
Dirichlet appear to be complimentary, as SPROUT’s accuracy is close to the sum of their individual
accuracy. To justify their diversity in robustness, we compute the cosine similarity of their pairwise
input gradients and find that they are indeed quite diverse and thus can promote robustness when used
together. The details are given in Appendix A.3.

0.00 0.02 0.04 0.06
PGD attack stregth

0

20

40

60

80

Ac
cu

ra
cy

 u
nd

er
 a

tt
ac

k

VGG PGD 20

0.00 0.02 0.04 0.06
PGD attack stregth

0

20

40

60

80

Ac
cu

ra
cy

 u
nd

er
 a

tt
ac

k

VGG PGD 100

SPROUT
GA
Mixup
Dirichlet
GA+Mixup
Mixup+Dirichlet
GA+Dirichlet
Uniform LS
GA+Mixup+LS

Figure 5: Robust accuracy with different combinations of the modules in SPROUT

PGD attacks with more iterations. To ensure the robustness of SPROUT is not an artifact of
running insufficient iterations in PGD attack (Athalye et al., 2018), in Figure 6a we show the robust
accuracy with the number of PGD-`∞ attack steps varying from 10 to 500 on VGG-16 and CIFAR-10.

1https://github.com/mahyarnajibi/FreeAdversarialTraining

9

https://github.com/mahyarnajibi/FreeAdversarialTraining

Under review as a conference paper at ICLR 2020

The results show stable performance in SPROUT, TRADES and adversarial training once the number
of steps exceeds 100. It is clear that SPROUT indeed outperforms others by a large margin.

Model weight initialization. Figure 6b compares the effect of model initialization using CIFAR-
10 and VGG-16 under PGD-`∞ attack, where the legend A + B means using Model A as the
initialization and training with Method B. Interestingly, Natural+SPROUT attains the best robust
accuracy when ε ≥ 0.02. TRADES+SPROUT and Random+SPROUT also exhibit strong robustness
since their training objective involves the loss on both clean and adversarial examples. In contrast, Adv
train+SPROUT does not have such benefit since adversarial training only aims to minimize adversarial
loss. This finding is also unique to SPROUT, as neither Natural+Adv train nor Natural+TRADES
can boost robust accuracy. Our results provide novel perspectives and also indicate that SPROUT is
indeed a new robust training method that vastly differs from adversarial training based methods.

0 100 200 300 400 500
Num of PGD steps

45

50

55

60

65

Ac
cu

ra
cy

 u
nd

er
 a

tta
ck

Wide Resnet = 0.03
SPROUT
TRADES
Adv train

(a) Robust accuracy with different PGD steps

0.00 0.02 0.04 0.06
PGD attack stregth

20

40

60

80

Ac
cu

ra
cy

 u
nd

er
 a

tta
ck

VGG PGD 20

Natural+SPROUT
TRADES+SPROUT
Random+SPROUT
Adv train+SPROUT
Natural+Adv train
Natural+TRADES

(b) Robust accuracy with different model initialization

Figure 6: Stability in PGD-`∞ attack and the effect of model initialization.

Effect on network width. It was shown in (Madry et al., 2018) that adversarial training (Adv train)
will take effect when a network has sufficient capacity, which can be achieved by increasing network
width. Figure 7 compares the robust accuracy of SPROUT and Adv train with varying network
width on Wide ResNet and CIFAR-10. When the network has width = 1 (i.e. a standard ResNet-152
network (He et al., 2016)), the robust accuracy of SPROUT and Adv train are both relatively low
(less than 47%). However, as the width increases, SPROUT soon attains significantly better robust
accuracy than Adv train by a large margin (roughly 15%). Since SPROUT is more effective in
boosting robust accuracy as network width varies, the results also suggest that SPROUT can better
support robust training for a broader range of network structures.

2 4 6 8 10
ResNet width

40

45

50

55

60

65

Ac
cu

ra
cy

 u
nd

er
 a

tta
ck

ResNet PGD-20 attack with = 0.03

SPROUT
Adv train

Figure 7: Effect of network width against PGD-`∞ attack on CIFAR-10 and ResNet.

5 CONCLUSION

This paper introduced SPROUT, a self-progressing robust training method motivated by vicinity risk
minimization. When compared with state-of-the-art adversarial training based methods, our extensive
experiments showed that the proposed self-progressing Dirichlet label smoothing technique in
SPROUT plays a crucial role in finding substantially more robust models against `∞-norm bounded
PGD attacks and simultaneously makes the corresponding model more generalizable to various
invariance tests. We also find that SPROUT can strengthen a wider range of network structures as it
is less sensitive to network width changes. Moreover, SPOURT’s self-adjusted learning methodology
not only makes its training free of attack generation but also becomes scalable solutions to large
networks. Our results shed new insights on devising comprehensive and robust training methods.

10

Under review as a conference paper at ICLR 2020

REFERENCES

Anish Athalye, Nicholas Carlini, and David Wagner. Obfuscated gradients give a false sense of secu-
rity: Circumventing defenses to adversarial examples. International Coference on International
Conference on Machine Learning, 2018.

Battista Biggio, Igino Corona, Davide Maiorca, Blaine Nelson, Nedim Šrndić, Pavel Laskov, Giorgio
Giacinto, and Fabio Roli. Evasion attacks against machine learning at test time. In Joint European
conference on machine learning and knowledge discovery in databases, pp. 387–402, 2013.

Nicholas Carlini and David Wagner. Towards evaluating the robustness of neural networks. In IEEE
Symposium on Security and Privacy, pp. 39–57, 2017.

Yair Carmon, Aditi Raghunathan, Ludwig Schmidt, Percy Liang, and John C Duchi. Unlabeled data
improves adversarial robustness. Neural Information Processing Systems, 2019.

Olivier Chapelle, Jason Weston, Léon Bottou, and Vladimir Vapnik. Vicinal risk minimization. In
Advances in neural information processing systems, pp. 416–422, 2001.

Jeremy M Cohen, Elan Rosenfeld, and J Zico Kolter. Certified adversarial robustness via randomized
smoothing. International Conference on Machine Learning, 2019.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In IEEE Conference on Computer Vision and Pattern Recognition, pp.
248–255, 2009.

Logan Engstrom, Andrew Ilyas, and Anish Athalye. Evaluating and understanding the robustness of
adversarial logit pairing. arXiv preprint arXiv:1807.10272, 2018.

Mikhail Figurnov, Shakir Mohamed, and Andriy Mnih. Implicit reparameterization gradients. In
Advances in Neural Information Processing Systems, pp. 441–452, 2018.

Morgane Goibert and Elvis Dohmatob. Adversarial robustness via adversarial label-smoothing. arXiv
preprint arXiv:1906.11567, 2019.

Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial
examples. International Conference on Learning Representations, 2015.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 770–778, 2016.

Dan Hendrycks, Mantas Mazeika, Saurav Kadavath, and Dawn Song. Using self-supervised learning
can improve model robustness and uncertainty. Neural Information Processing Systems, 2019.

Daniel Kang, Yi Sun, Dan Hendrycks, Tom Brown, and Jacob Steinhardt. Testing robustness against
unforeseen adversaries. arXiv preprint arXiv:1908.08016, 2019.

Sanjay Kariyappa and Moinuddin K Qureshi. Improving adversarial robustness of ensembles with
diversity training. arXiv preprint arXiv:1901.09981, 2019.

Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. Cifar-10 (canadian institute for advanced
research). URL http://www.cs.toronto.edu/˜kriz/cifar.html.

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.
Towards deep learning models resistant to adversarial attacks. International Conference on
Learning Representations, 2018.

Ali Shafahi, Amin Ghiasi, Furong Huang, and Tom Goldstein. Label smoothing and logit squeezing:
A replacement for adversarial training? 2018.

Ali Shafahi, Mahyar Najibi, Amin Ghiasi, Zheng Xu, John Dickerson, Christoph Studer, Larry S
Davis, Gavin Taylor, and Tom Goldstein. Adversarial training for free! Neural Information
Processing Systems, 2019.

11

http://www.cs.toronto.edu/~kriz/cifar.html

Under review as a conference paper at ICLR 2020

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. International Conference on Learning Representations, 2015.

Robert Stanforth, Alhussein Fawzi, Pushmeet Kohli, et al. Are labels required for improving
adversarial robustness? Neural Information Processing Systems, 2019.

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Goodfellow,
and Rob Fergus. Intriguing properties of neural networks. International Conference on Learning
Representations, 2014.

Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew Wojna. Rethinking
the inception architecture for computer vision. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pp. 2818–2826, 2016.

Sunil Thulasidasan, Gopinath Chennupati, Jeff Bilmes, Tanmoy Bhattacharya, and Sarah Michalak.
On mixup training: Improved calibration and predictive uncertainty for deep neural networks.
Neural Information Processing Systems, 2019.

Florian Tramèr and Dan Boneh. Adversarial training and robustness for multiple perturbations.
Neural Information Processing Systems, 2019.

Vikas Verma, Alex Lamb, Christopher Beckham, Amir Najafi, Ioannis Mitliagkas, Aaron Courville,
David Lopez-Paz, and Yoshua Bengio. Manifold mixup: Better representations by interpolating
hidden states. International Conference on Machine Learning, 2018.

Jianyu Wang. Bilateral adversarial training: Towards fast training of more robust models against
adversarial attacks. International Conference on Computer Vision, 2019.

Valentina Zantedeschi, Maria-Irina Nicolae, and Ambrish Rawat. Efficient defenses against adversar-
ial attacks. In ACM Workshop on Artificial Intelligence and Security, pp. 39–49, 2017.

Haichao Zhang and Jianyu Wang. Defense against adversarial attacks using feature scattering-based
adversarial training. Neural Information Processing Systems, 2019.

Hongyang Zhang, Yaodong Yu, Jiantao Jiao, Eric P Xing, Laurent El Ghaoui, and Michael I Jordan.
Theoretically principled trade-off between robustness and accuracy. International Conference on
Machine Learning, 2019.

Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and David Lopez-Paz. mixup: Beyond empirical
risk minimization. International Conference on Learning Representations, 2018.

Stephan Zheng, Yang Song, Thomas Leung, and Ian Goodfellow. Improving the robustness of deep
neural networks via stability training. In Proceedings of the ieee conference on computer vision
and pattern recognition, pp. 4480–4488, 2016.

12

Under review as a conference paper at ICLR 2020

A APPENDIX

A.1 EXACT PERFORMANCE METRICS FOR FIGURE 1

Table 6: Performance comparison between different training methods on VGG-16 and CIFAR-10

Method Clean Acc `∞ Acc (ε = 0.03) C&W Acc Invariance (Contrast) Scalibility (10 epochs)
Natural 95.93% 0% 26.95% 91.88% 146.7 (secs)

Adv train 84.92% 36.29% 70.13% 84.99% 1327.1 (secs)
TRADES 88.6% 38.29% 75.08% 83.08% 1932.5 (secs)
SPROUT 90.56% 58.93% 72.7% 86.98% 271.7 (secs)

A.2 LEARNED LABEL CORRELATION FROM SPROUT

Based on the statistical properties of Dirichlet distribution in (7), we use the final β parameter learned
from Algorithm 1 with CIFAR-10 and VGG-16 to display the matrix of its pair-wise product βs · βt
in Figure 8. The value in each entry is proportional to the absolute value of the label covariance in (7).
We observe some clustering effect of class labels in CIFAR-10, such as relatively high values among
the group of {airplane, auto, ship, truck} and relatively low values among the group of {bird, cat,
deer, dog}. Moreover, since the β parameter is progressively adjusted and co-trained during model
training, and the final β parameter is clearly not uniformly distributed, the results also validate the
importance of using parametrized label smoothing to learn to improve robustness.

airplane auto ship truck bird cat deer dog frog horse

airplane

auto

ship

truck

bird

cat

deer

dog

frog

horse

1e+021e+021e+021e+02 99 98 99 99 1e+021e+02

1e+021e+021e+021e+021e+02 99 1e+02 99 1e+021e+02

1e+021e+021e+021e+021e+02 99 1e+02 99 1e+021e+02

1e+021e+021e+021e+02 99 99 1e+02 99 1e+021e+02

99 1e+021e+02 99 98 98 98 98 99 99

98 99 99 99 98 97 98 97 98 98

99 1e+021e+021e+02 98 98 99 98 99 99

99 99 99 99 98 97 98 98 99 99

1e+021e+021e+021e+02 99 98 99 99 1e+021e+02

1e+021e+021e+021e+02 99 98 99 99 1e+021e+02

Correlogram of

97.6

98.4

99.2

100.0

100.8

Figure 8: Matrix plot of the product βs · βt of the learned β parameter on CIFAR-10 and VGG-16.

13

Under review as a conference paper at ICLR 2020

A.3 DIVERSITY ANALYSIS

In order to show the three modules (Dirichlet LS, GA and Mixup) in SPROUT lead to robustness
gains that are complimentary to each other, we perform a diversity analysis motivated by (Kariyappa
& Qureshi, 2019) to measure the similarity of their pair-wise input gradients and report the average
cosine similarity in Table 7 over 10,000 data samples using CIFAR-10 and VGG-16. We find that the
pair-wise similarity between modules is indeed quite small (< 0.103). The Mixup-GA similarity is
the smallest among all pairs since the former performs both label and data augmentation based on
convex combinations of training data, whereas the latter only considers random data augmentation.
The Dirichlet LS-GA similarity is the second smallest (and it is close to the Mixup-GA similarity)
since the former progressively adjusts the training label ỹ while the latter only randomly adjusts the
training sample x̃. The Dirichlet LS-Mixup similarity is relatively high because Mixup depends
on the training samples and their labels while Dirichlet LS also depend on them and the model
weights. The results show that their input gradients are diverse as they point to vastly different
directions. Therefore, SPROUT enjoys complimentary robustness gain and can promote robustness
when combining these techniques together.

Table 7: Average pair-wise cosine similarity of the three modules in SPROUT

Dirichilet LS Mixup GA
Dirichilet LS NA 0.1023 0.0163

Mixup 0.1023 NA 0.0111
GA 0.0163 0.0111 NA

A.4 PARAMETER SENSITIVITY ANALYSIS

We perform an sensitivity analysis of the mixing parameter λ ∼ Beta(a,a) and the smoothing
parameter α of SPROUT in Figure 9. When fixing a, we find that setting α too large may affect
robust accuracy, as the resulting training label distribution could be too uncertain to train a robust
model. Similarly, when fixing α, setting a too large may also affect robust accuracy.

0.00 0.02 0.04 0.06
PGD attack stregth

40

50

60

70

80

90

Ac
cu

ra
cy

 u
nd

er
 a

tta
ck

VGG PGD 20
= Beta(0.2, 0.2), = 0.01
= Beta(0.5, 0.5), = 0.01
= Beta(1.0, 1.0), = 0.01
= Beta(0.2, 0.2), = 0.1

Figure 9: Sensitivity of hyperparameters λ and α in SPROUT under PGD-`∞ attack

A.5 PERFORMANCE ON CW-`∞ ATTACK

To further test the robustness on `∞ constraint, we replace the cross entropy loss with CW-`∞ loss
(Carlini & Wagner, 2017) in PGD attack. Similar to the PGD-`∞ attack results in Figure 2, Figure 10
shows that although SPROUT has slightly worse accuracy under small ε values, it attains much higher
robust accuracy when ε ≥ 0.03.

14

Under review as a conference paper at ICLR 2020

0.00 0.02 0.04 0.06
PGD attack stregth

0

20

40

60

80

100

Ac
cu

ra
cy

 u
nd

er
 a

tt
ac

k

Wide ResNet CW 20
SPROUT
TRADES
Natural
Adv train

Figure 10: Robust accuracy under CW-`∞ attack.

A.6 PERFORMANCE WITH DIFFERENT NUMBER OF RANDOM STARTS FOR PGD ATTACK

As suggested by (Madry et al., 2018), PGD attack with multiple random starts is a stronger attack
method to evaluate robustness. Therefore, in Table 8, we conduct the following experiment on
CIFAR-10 and wide ResNet to show that the model trained by SPROUT can still attain at least 61%
accuracy against PGD-`∞ attack (ε = 0.03) with the number of random starts varying from 1 to
10 and with 20 attack iterations. The robust accuracy of SPROUT is still clearly higher than other
methods as shown in Figure 2. We also perform two additional attack settings: (i) 100-step PGD-`∞
attack with 10 random restarts using the CW loss and ε = 0.03; (ii) 100-step PGD-`∞ attack with 10
random restarts using the cross entropy and ε = 0.03. We find that SPROUT can still achieve 51.23%
robust accuracy in setting (i) and 61.18% robust accuracy in setting (ii).

Table 8: Robust accuracy of SPROUT on PGD-`∞ attack with ε = 0.03 using different number of
random starts.

random start 1 3 5 8 10
Robust accuracy 64.58% 62.53% 61.98% 61.38% 61.00%

A.7 PERFORMANCE COMPARISON WITH FREE ADVERSARIAL TRAINING ON RESNET-50 AND
IMAGENET

Here we compare the performance of SPROUT with a pre-trained robust ResNet-50 model on
ImageNet, which is shared by the authors in (Shafahi et al., 2019) proposing the free adversarial
training method (Free Adv train). We find that SPROUT obtains similar robust accuracy as Free Adv
train when ε ≤ 0.01. As ε becomes larger, Free Adv train has better robust accuracy.

Table 9: Robust accuracy under PGD-`∞ random targeted attack on ImageNet and ResNet-50

Method Clean Acc ε = 0.005 ε = 0.01 ε = 0.015 ε = 0.02
Natural 76.15% 24.37% 3.54% 0.90% 0.40%

Free Adv train 60.49% 51.35% 42.29% 32.96% 24.45%
SPROUT 61.23% 51.69% 38.14% 25.98% 18.52%

15

	Introduction
	Contributions
	Related Work

	General Framework for Formulating Robust Training
	SPROUT: Scalable Robust and Generalizable Training
	Self-Progressing Training via Parametrized Label Smoothing
	Incorporating Gaussian Data Augmentation and Mixup
	SPROUT Algorithm

	Performance Evaluation
	Experiment Setup
	Adversarial Robustness under Various Attacks
	Loss Landscape Exploration
	Invariance test
	Scalability
	Ablation Study

	Conclusion
	Appendix
	Exact Performance Metrics for Figure 1
	Learned Label Correlation from SPROUT
	Diversity Analysis
	Parameter Sensitivity Analysis
	Performance on CW- attack
	Performance with different number of random starts for PGD attack
	Performance comparison with Free Adversarial training on ResNet-50 and ImageNet

