
Under review as a conference paper at ICLR 2020

MODEL ENSEMBLE-BASED INTRINSIC REWARD FOR
SPARSE REWARD REINFORCEMENT LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

In this paper, a new intrinsic reward generation method for sparse-reward rein-
forcement learning is proposed based on an ensemble of dynamics models. In the
proposed method, the mixture of multiple dynamics models is used to approximate
the true unknown transition probability, and the intrinsic reward is designed as the
minimum of the surprise seen from each dynamics model to the mixture of the dy-
namics models. In order to show the effectiveness of the proposed intrinsic reward
generation method, a working algorithm is constructed by combining the proposed
intrinsic reward generation method with the proximal policy optimization (PPO)
algorithm. Numerical results show that for representative locomotion tasks, the
proposed model-ensemble-based intrinsic reward generation method outperforms
the previous methods based on a single dynamics model.

1 INTRODUCTION

Reinforcement learning (RL) with sparse reward is an active research area (Andrychowicz et al., 2017;
de Abril & Kanai, 2018; Kim et al., 2018; Oh et al., 2018; Tang et al., 2017). In typical model-free
RL, an agent learns a policy to maximize the expected cumulative reward under the circumstance
that the agent receives a non-zero reward from the environment for each action of the agent. On the
contrary, in sparse reward RL, the environment does not return a non-zero reward for every action of
the agent but returns a non-zero reward only when certain conditions are met. Such situations are
encountered in many action control problems (Andrychowicz et al., 2017; Houthooft et al., 2016;
Oh et al., 2018). As in conventional RL, exploration is important at the early stage of learning in
sparse reward RL, whereas the balance between exploration and exploitation is required on the later
stage. Methods such as the ε-greedy strategy (Mnih et al., 2015; Van Hasselt et al., 2016) and the
control of policy gradient with Gaussian random noise (Duan et al., 2016; Schulman et al., 2015a)
have been applied to various tasks for exploration. However, these methods have been revealed to be
insufficient for successful learning when reward is sparse (Achiam & Sastry, 2017).

In order to overcome such difficulty, intrinsically motivated RL has been studied to stimulate better
exploration by generating intrinsic reward for each action by the agent itself, even when reward
is sparse. Recently, many intrinsically-motivated RL algorithms have been devised to deal with
the sparsity of reward, e.g., based on the notion of curiosity (Houthooft et al., 2016; Pathak et al.,
2017) and surprise (Achiam & Sastry, 2017). It is shown that these algorithms are successful and
outperform the previous approaches. In essence, these algorithms use a single estimation model for
the next state or the environment dynamics to generate intrinsic reward.

In this paper, in order to further improve the performance of sparse reward model-free RL, we
propose a new method to generate intrinsic reward based on an ensemble of estimation models for
the environment dynamics. The rationale behind our approach is that by using a mixture of several
distributions, we can increase degrees of freedom for modeling the unknown underlying model
dynamics and designing a better reward from the ensemble of estimation models. Numerical results
show that the proposed model-ensemble-based intrinsic reward generation method yields improved
performance as compared to existing reward generation methods for continuous control with sparse
reward setting.

1

Under review as a conference paper at ICLR 2020

2 THE PROPOSED METHOD

2.1 PRELIMINARIES

In this paper, we consider a discrete-time continuous-state Markov Decision Process (MDP), denoted
as (S,A, P, r, ρ0, γ), where S andA are the sets of states and actions, respectively, P : S×A×S →
[0, 1] is the transition probability function (called model dynamics), r : S×A×S → R is the extrinsic
reward function, ρ0 : S → [0, 1] is the distribution of the initial state, and γ is the discounting factor.
A (stochastic) policy is represented by π : S ×A → [0, 1], where π(a|s) represents the probability of
choosing action a ∈ A for given state s ∈ S. In sparse reward RL, the environment does not return
a non-zero reward for every action but returns a non-zero reward only when certain conditions are
met by the current state, the action and the next state (Andrychowicz et al., 2017; Houthooft et al.,
2016; Oh et al., 2018). The goal of this paper is to optimize the policy π to maximize the expected
cumulative return η(π) by properly generating intrinsic reward in such sparse reward environments.
We assume that the true transition model P is unknown to the agent.

Intrinsically-motivated RL adds a properly designed intrinsic reward to the actual extrinsic reward to
yield a non-zero total reward for training even when the extrinsic reward returned by the environment
is zero (de Abril & Kanai, 2018; Pathak et al., 2017; Tang et al., 2017). One way to design such an
intrinsic reward for action control is based on surprise, which is a measure of the unexpectedness
of observing the next state for a given current state and action pair and is especially useful to yield
better exploration (Achiam & Sastry, 2017). In this context, a recent work (Achiam & Sastry, 2017)
proposed a promising direction of intrinsic reward design in which the agent tries to optimize its
policy π according to

max
π

{
η(π) + c E(s,a)∼π[DKL(P ||Pφ)|(s, a)]

}
(1)

for some constant c > 0, where Pφ is the learning model parameterized by φ that the agent has
regarding the true unknown transition probability P of the environment. DKL(P ||Pφ)|(s, a) is
the Kullback-Leibler divergence (KLD) between two distributions P and Pφ of the next state for
given current state-action pair (s, a), and E(s,a)∼π is the expectation over (s, a) following the
policy π. Thus, the surprise is quantified as E(s,a)∼π[DKL(P ||Pφ)|(s, a)] (Achiam & Sastry, 2017).
Furthermore, the KLD DKL(P ||Pφ)|(st, at) at timestep t can be lower-bounded as

DKL(P ||Pφ)|(st, at) ≥ E
[
log

Pφ′(·|st, at)
Pφ(·|st, at)

]
(2)

with an arbitrary choice of the parameter φ′. Therefore, the intrinsic reward at timestep t is determined
as r′t,int(st, at, st+1) = log

Pφ′ (st+1|st,at)
Pφ(st+1|st,at) (Achiam & Sastry, 2017), where Pφ′ needs to be designed

properly. With φ′ = φ(t) and φ = φ(t−), where Pφ(t) and Pφ(t−) are respectively the agent’s model
for P at timestep t and the model before the update at timestep t, the intrinsic reward is given by the
computable quantity named as the 1-step surprise:

r1−stept,int (st, at, st+1) = log
Pφ(t)(st+1|st, at)
Pφ(t−)(st+1|st, at)

. (3)

The proposed 1-step intrinsic reward performs well compared to the previously designed intrinsic
reward, and it is based on a single model Pφ for P , where Pφ for given (s, a) is modeled as Gaussian
distribution (Achiam & Sastry, 2017).

2.2 INTRINSIC REWARD DESIGN FROM AN ENSEMBLE OF DYNAMICS MODELS

In this paper, we take the principle that DKL(P ||Pφ)|(s, a) is a reasonable measure for surprise to
promote exploration, and generalize the intrinsic reward design under this measure. However, instead
of using a single learning model for P as in the previous approach, we propose using an ensemble of
K dynamics models Pφ1 , · · · , PφK for P , constructing the mixture distribution

PK =

K∑
i=1

qiPφi (4)

2

Under review as a conference paper at ICLR 2020

with the mixing coefficients qi ≥ 0 and
∑K
i=1 qi = 1, and using PK in (4) as an estimate for the true

unknown P . The rationale behind this is that by using a mixture of several distributions we increase
degrees of freedom for modeling the underlying model dynamics and designing a better intrinsic
reward. For the j-th model Pφj , j = 1, · · · ,K, we have

DKL(P ||Pφj)|(st, at) ≥ E
[
log

PK(·|st, at)
Pφj (·|st, at)

]
(5)

as in (2). Thus, for Pφj , the intrinsic reward at timestep t is determined as

r̃jt,int(st, at, st+1) = log
PK(st+1|st, at)
Pφj (st+1|st, at)

. (6)

Furthermore, (6) can be modified to yield a 1-step surprise intrinsic reward as

rjt,int(st, at, st+1) = log

∑K
i=1 qiPφil(t)(st+1|st, at)
Pφj

l(t)−1
(st+1|st, at)

(7)

where Pφj
l(t)

and Pφj
l(t)−1

are the j-th model at the update period l corresponding to timestep t and

the previous update period l − 1, respectively (l(t) will become clear in the subsection 2.3).

Since the mixture model (4) has the increased model order for modeling the underlying dynamics
distribution beyond single-mode distributions, we have more freedom to design intrinsic reward. That
is, we now have K values, rjt,int(st, at, st+1), j = 1, · · · ,K, for candidates for intrinsic reward. In
order to devise a proper use of this extra freedom, we consider the following two objective functions:

η(π) = Eτ∼π

[∑
t

γtr(st, at, st+1)

]
(8)

η̃(π) = Eτ∼π

[∑
t

γtr(st, at, st+1)

]
+ c E(s,a)∼π [DKL (P ||P ′) |(s, a)] (9)

where τ is a sample trajectory, c is a positive constant, and P (·|s, a) and P ′(·|s, a) are the true
transition probability of an environment and its estimation model, respectively. The first objective
function η(π) is the actual desired expected cumulative return for policy π and the second objective
function η̃(π) is the expected cumulative sum of the actual reward and intentionally-added surprise
for policy π. We define π∗ and π̃∗ as optimal solutions which maximize the objective functions (8)
and (9), respectively. Note that with additional intrinsic reward, the agent learns π̃∗. Regarding η(π∗)
and η(π̃∗) , we have the following proposition:
Proposition 1. Let η(π) be the actual expected discounted sum of extrinsic rewards defined in (8).
Then, the following inequality holds:

0 ≤ η(π∗)− η(π̃∗) ≤ c E(s,a)∼π̃∗ [DKL (P ||P ′) |(s, a)] (10)

where c is a positive constant.

Proposition 1 implies that better estimation of the true transition probability P by model P ′ makes
η(π̃∗) closer to η(π∗), where π̃∗ is learned based on η̃(π). Thus, for given P we want to minimize
E(s,a)∼π̃∗ [DKL (P ||P ′) |(s, a)] in (10) over our estimation model P ′ so that we have a tighter gap
between η(π∗) and η(π̃∗), and the policy π̃∗ learned with the aid of surprise intrinsic reward well
approximates the true optimal policy π∗. Regarding this minimization for tight gap, we have the
following proposition:
Proposition 2. Let Pφi(·|s, a), i = 1, . . . ,K be the ensemble of model distributions, and P (·|s, a)
be an arbitrary true transition probability distribution. Then, the minimum of average KLD between
P (·|s, a) and the mixture model P ′ =

∑
i qiPφi(·|s, a) over the mixture weights {q1, · · · , qK |qi ≥

0,
∑
i qi = 1} is upper bounded by the minimum of average KLD between P and Pφi over {i}: i.e.,

min
q1,··· ,qK

E(s,a)∼π̃∗

[
DKL

(
P

∣∣∣∣∣∣∣∣ ∑
i

qiPφi

)∣∣∣∣(s, a)

]
≤ min

i
E(s,a)∼π̃∗

[
DKL

(
P ||Pφi

)
|(s, a)

]
.

(11)

3

Under review as a conference paper at ICLR 2020

As seen in the proof of Proposition 2 in Appendix A, mini E(s,a)∼π̃∗
[
DKL

(
P ||Pφi

)
|(s, a)

]
provides

the tightest upper bound on minq1,··· ,qK E(s,a)∼π̃∗ [DKL(P ||
∑
i qiPφi)|(s, a)] within the class

of linear combinations of the individual surprise values {E(s,a)∼π̃∗
[
DKL

(
P ||Pφi

)
|(s, a)

]
, i =

1, 2, · · · ,K}. Propositions 1 and 2 motivate us to use the minimum among the K available individual
surprises for our intrinsic reward to reduce the gap between the actual target reward sum η(π̃∗) of the
intrinsic reward-aided learned policy π̃∗ and η(π∗) of the true optimal policy π∗. Note that with the
aid of intrinsic reward, we optimize η̃(π) in fact and this makes our policy (try to) approach π̃∗ and
the sample trajectory approach (s, a) ∼ π̃∗. So, with E(s,a)∼π̃∗ in the right-hand side of (11) replaced
simply by the computable instantaneous sample-based value and DKL

(
P ||Pφi

)
|(s, a) replaced by

the approximation (5), we propose using the minimum of rjt,int(st, at, st+1), j = 1, · · · ,K as the
single value of intrinsic reward from the K candidates. That is, the agent selects the index j∗ as

j∗ = arg min
1≤j≤K

rjt,int(st, at, st+1) (12)

where rjt,int is given by (7), and the intrinsic reward is determined as

rt,int(st, at, st+1) = rj
∗

t,int(st, at, st+1). (13)

2.3 IMPLEMENTATION

For the dynamics models Pφ1 , · · · , PφK , we adopted the fully-factorized Gaussian distributions
(Achiam & Sastry, 2017; Houthooft et al., 2016). Then, PK in (4) becomes the class of K-modal
Gaussian mixture distributions.

We first update the model ensemble Pφ1 , · · · , PφK and the corresponding mixing coefficients
q1, . . . , qK . At the beginning, the parameters φ1, · · · , φK are independently initialized, and qi’s are
set to 1

K for all i = 1, · · · ,K. At every batch period l, in order to jointly learn φi and qi, we apply
maximum-likelihood estimation with an L2-norm regularizer with KL constraints (Achiam & Sastry,
2017; Williams & Rasmussen, 2006):

maximize
φi qi, 1≤i≤K

E(s,a,s′) log

{
K∑
i=1

qiPφi(s
′|s, a)

}
− α

K∑
i=1

‖φi‖2 = Llikelihood + αLregularizer

subject to E(s,a)

[
DKL(Pφi ||Pφiold

)(s, a)
]
≤ κ (1 ≤ i ≤ K) and

K∑
i=1

qi = 1

(14)

where φiold is the parameter of the i-th model before the update (14), α is the regularization coefficient,
and κ is a positive constant. To solve this optimization problem with respect to {φi}, we apply the
method based on second-order approximation (Schulman et al., 2015a). For the update of {qi}, we
apply the method proposed by Dempster et al. (1977) and set qi as follows:

qi = E(s,a,s′)

qold
i Pφi(s

′|s, a)∑K
j=1 q

old
j Pφj (s′|s, a)

(1 ≤ i ≤ K) (15)

where qold
i is the mixing coefficient of the i-th model before the update (15). For numerical stability,

we use the “log-sum-exp” trick for computing (15) as well as Llikelihood and∇φiLlikelihood. In addition,
we apply simultaneous update of all φi’s and qi’s, which was found to perform better than one-by-one
alternating update of the K models for our problem.

Although the proposed intrinsic reward generation method can be combined with general
RL algorithms, we here consider the PPO algorithm (Schulman et al., 2017), which is
a popular on-policy algorithm and generates a batch of experiences of length L with ev-
ery current policy. Let D be the batch of experiences for training the policy, i.e., D =
(st, at, r

total
t , st+1, · · · , rtotalt+L−2, st+L−1, at+L−1, r

total
t+L−1), where at ∼ πθl(·|st), st+1 ∼

P (·|st, at), and rtotalt is the total reward (16). Here, πθl is the parameterized policy at the batch
period l corresponding to timestep t, · · · , t+ L− 1 (the batch period index l is now included in πθl
for clarity). The total reward at timestep t for training the policy is given by

rtotalt (st, at, st+1) = rt(st, at, st+1) + βr̄t,int(st, at, st+1) (16)

4

Under review as a conference paper at ICLR 2020

Algorithm 1 Sparse RL with Model Ensemble-Based Intrinsic Reward Based on PPO

1: L : batch size for policy training, L′ : batch size for model training.
2: Lmini : minibatch size for policy training, L′mini : minibatch size for model training.
3: N : epoch size for policy training, N ′ : epoch size for model training.
4: MAX : the maximum index of batch period l, K : the number of dynamics models.
5: Initialize the policy πθ0 , the K transition probability models Pφ1

0
, · · · , PφK0 , and the correspond-

ing mixing coefficients q1, · · · , qK .
6: Generate trajectories with πθ0 and add them to the initially empty replay buffer M .
7: for Batch period l = 0, · · · ,MAX − 1 do
8: Train Pφ1

l
, · · · , PφKl by performing gradient updates for (14), and update q1, · · · , qK by

performing iterations with (15). For this, we draw a batch D′ of size L′ randomly and
uniformly from M , and perform the updates with minibatches of size L′mini drawn from D′

for N ′ epochs.
9: for Timestep t = lL, lL+ 1, · · · , lL+ L− 1 do

10: Collect st from the environment and at with the policy πθl .
11: Collect st+1 and the extrinsic reward rt from the environment and add (st, at, st+1) to M .
12: end for
13: Calculate the preliminary intrinsic reward rt,int in (13).
14: Acquire the normalized intrinsic rewards of the current batch D of size L by using (17).
15: Train πθl by using PPO with the total rewards (16) and minibatch size Lmini for N epochs.
16: end for

where rt(st, at, st+1) is the actual sparse extrinsic reward at timestep t from the environment,
r̄t,int(st, at, st+1) is the normalized intrinsic reward at timestep t, and β > 0 is the weighting factor.
Note that the actually-used intrinsic reward r̄t,int(st, at, st+1) is obtained by applying normalization
(Achiam & Sastry, 2017) to improve numerical stability as

r̄t,int(st, at, st+1) =
rt,int(st, at, st+1)

max
{ |∑(s,a,s′)∈D rt,int(s,a,s

′)|
|D| , 1

} (17)

where the unnormalized intrinsic reward rt,int(st, at, st+1) is given by (13). Then, the policy πθl can
be updated at every batch period l with D by following the standard PPO procedure based on the total
reward (16). Summarizing the above, we provide the pseudocode of our algorithm in Algorithm 1,
which assumes PPO as the background algorithm. Note that the proposed intrinsic reward generation
method can also be applied to other RL algorithms.

3 RESULTS

3.1 EXPERIMENTAL SETUP

In order to evaluate the performance, we considered sparse reward environments for continuous
control. The considered tasks were five environments of Mujoco (Todorov et al., 2012), OpenAI Gym
(Brockman et al., 2016): Ant, Hopper, HalfCheetah, Humanoid, and Walker2d. To implement sparse
reward setting, we adopted the delay method (Oh et al., 2018). We first accumulate extrinsic rewards
generated from the considered environments for every ∆ timesteps or until the episode ends. Then,
we provide the accumulated sum of rewards to the agent at the end of the ∆ timesteps or at the end of
the episode, and repeat this process. We set ∆ = 40 for our experiments.

All simulations were conducted over 10 fixed random seeds. The y-axis in each figure with the
title “Average Return” represents the mean value of the extrinsic returns of the most recent 100
episodes averaged over the 10 random seeds. Each colored band in figure represents the interval of
±σ around the mean curve, where σ is the standard deviation of the 10 instances of data from the 10
random seeds. (Please see Appendix B for detailed description of the overall hyperparameters for
simulations.)

5

Under review as a conference paper at ICLR 2020

3.2 ABLATION STUDY

First, in order to validate the proposed approach in which the intrinsic reward is given by the minimum
surprise over the ensemble, we investigated several methods of obtaining a single intrinsic reward
value from the multiple preliminary reward values r1t,int, · · · , rKt,int in (7) from the K models: the
proposed minimum selection (12)-(13) and other possible methods such as the maximum selection,
the average value taking method, and a pure 1-step surprise method with the mixture with the intrinsic
reward defined as

r1−step, enst,int (st, at, st+1) = log

∑K
i=1 qiPφil(t)(st+1|st, at)∑K

i=1 q
old
i Pφi

l(t)−1
(st+1|st, at)

. (18)

(18) results from the idea that we simply replace the unimodal model Pφ in (3) with the mixture
model PK in (4).

0.0 0.2 0.4 0.6 0.8 1.0
Timestep(M)

500

400

300

200

100

0

100

Av
er

ag
e

Re
tu

rn

Ant

K=2, min
K=2, max
K=2, avg
K=2, 1-step

0.0 0.2 0.4 0.6 0.8 1.0
Timestep(M)

0

500

1000

1500

2000

2500

Av
er

ag
e

Re
tu

rn

Hopper
K=2, min
K=2, max
K=2, avg
K=2, 1-step

0.0 0.2 0.4 0.6 0.8 1.0
Timestep(M)

500

0

500

1000

1500

Av
er

ag
e

Re
tu

rn

HalfCheetah
K=2, min
K=2, max
K=2, avg
K=2, 1-step

0.0 0.2 0.4 0.6 0.8 1.0
Timestep(M)

100

200

300

400

500

Av
er

ag
e

Re
tu

rn

Humanoid

K=2, min
K=2, max
K=2, avg
K=2, 1-step

0.0 0.2 0.4 0.6 0.8 1.0
Timestep(M)

0

500

1000

1500

2000

2500

Av
er

ag
e

Re
tu

rn

Walker2d
K=2, min
K=2, max
K=2, avg
K=2, 1-step

Figure 1: Impact of single intrinsic reward value extraction for K = 2: minimum selection (min),
maximum selection (max), average (avg), and 1-step surprise with ensemble (1-step).

Fig. 1 shows the mean performance of the four single intrinsic reward value extraction methods for
K = 2: the proposed minimum selection (12)-(13), the maximum selection, the average method, and
the pure 1-step surprise with mixture (18). As inferred from Propositions 1 and 2, it is seen that the
minimum selection yields the best performance in all the environments. (The average method yields
similar performance in HalfCheetah and Humanoid.) Interestingly, the proposed approach motivated
by Propositions 1 and 2 outperforms the simple mixture replacement in (18). With this validation, we
use the minimum selection method (12)-(13) for all remaining studies.

Next, we investigated the impact of the model order K. Since we adopt Gaussian distributions for the
dynamics models Pφ1 , · · · , PφK , the mixture PK in (4) is a Gaussian mixture for given state-action
pair (s, a). According to a recent result (Haarnoja et al., 2018), the model order of Gaussian mixture
need not be too large to capture the underlying dynamics effectively in practice. Thus, we evaluated
the performance for K = 1, 2, 3, 4.

Fig. 2 shows the mean performance as a function of K for the considered sparse reward environments.
It is observed that in general the performance improves as K increases, and once the proper model
order is reached, the performance does not improve further or degrades a bit due to more difficult
model estimation for higher model orders, as expected from our intuition. From this result, we found
that K = 2 seems reasonable for our model order, so we used K = 2 for all the five environments in
the following performance comparison 3.3.

6

Under review as a conference paper at ICLR 2020

0.0 0.2 0.4 0.6 0.8 1.0
Timestep(M)

500

400

300

200

100

0

100

Av
er

ag
e

Re
tu

rn

Ant

K=0
K=1
K=2
K=3

0.0 0.2 0.4 0.6 0.8 1.0
Timestep(M)

0

500

1000

1500

2000

2500

Av
er

ag
e

Re
tu

rn

Hopper
K=0
K=1
K=2
K=3

0.0 0.2 0.4 0.6 0.8 1.0
Timestep(M)

500

0

500

1000

1500

Av
er

ag
e

Re
tu

rn

HalfCheetah
K=0
K=1
K=2
K=3

0.0 0.2 0.4 0.6 0.8 1.0
Timestep(M)

100

200

300

400

500

Av
er

ag
e

Re
tu

rn
Humanoid

K=0
K=1
K=2
K=3

0.0 0.2 0.4 0.6 0.8 1.0
Timestep(M)

0

500

1000

1500

2000

2500

Av
er

ag
e

Re
tu

rn

Walker2d
K=0
K=1
K=2
K=3

Figure 2: Mean performance for considered sparse reward environments as a function of K. K = 0
means PPO without intrinsic reward, and K = 1 means the single-model surprise method. (K = 4
yielded similar performance to that of K = 3, so we omitted the curve of K = 4 for simplicity)

3.3 PERFORMANCE COMPARISON

With the above verification, we compared the proposed method with existing intrinsic reward
generation methods by using PPO as the background algorithm. We considered the existing intrinsic
reward generation methods: curiosity (Pathak et al., 2017), hashing (Tang et al., 2017), information
gain approximation (de Abril & Kanai, 2018), and single-model surprise (Achiam & Sastry, 2017).
We also considered the method using intrinsic reward module (Zheng et al., 2018) among the most
recent works introduced in Appendix C, which uses delayed sparse reward setup and provides an
implementation code.

For fair comparison, we used PPO with the same neural network architecture and common hyper-
parameters, and applied the same normalization technique in (17) for all the considered intrinsic
reward generation methods so that the performance difference results only from the intrinsic reward
generation method. The weighting factor β in (16) between the extrinsic reward and the intrinsic
reward should be determined for all intrinsic reward generation methods. Since each of the considered
methods yields different scale of the intrinsic reward, we used an optimized β for each algorithm for
each environment.

In the case of the single-model surprise method and the proposed method, the hyperparameters of
the single-model surprise method are tuned to yield best performance and then the proposed method
employed the same hyperparameters as the single-model surprise method. We also confirmed that
the hyperparameters associated with the other four methods were well-tuned in the original papers
(de Abril & Kanai, 2018; Pathak et al., 2017; Tang et al., 2017; Zheng et al., 2018), and we used the
hyperparameters provided by these methods. (Please see Appendix B for detailed description of the
hyperparameters for simulations.)

Fig. 3 shows the comparison results. It is seen that the proposed model-ensemble-based intrinsic
reward generation method yields top-level performance. Note that the performance gain by the
proposed method is significant in sparse Hopper and sparse Walker2d.

4 RELATED WORK

Various types of intrinsic motivation such as curiosity, information gain, and surprise have been
investigated in cognitive science (Oudeyer & Kaplan, 2008), and intrinsically-motivated RL has been
inspired from these studies. Houthooft et al. (2016) used the information gain on the dynamics model
as additional reward based on the notion of curiosity. Pathak et al. (2017) defined an intrinsic reward

7

Under review as a conference paper at ICLR 2020

0.0 0.2 0.4 0.6 0.8 1.0
Timestep(M)

500

400

300

200

100

0

100

Av
er

ag
e

Re
tu

rn

Ant

Our Method
Module
Single Surprise
Information Gain
Curiosity
Hashing
PPO Only

0.0 0.2 0.4 0.6 0.8 1.0
Timestep(M)

0

500

1000

1500

2000

2500

Av
er

ag
e

Re
tu

rn

Hopper
Our Method
Module
Single Surprise
Information Gain
Curiosity
Hashing
PPO Only

0.0 0.2 0.4 0.6 0.8 1.0
Timestep(M)

500

0

500

1000

1500

Av
er

ag
e

Re
tu

rn

HalfCheetah
Our Method
Module
Single Surprise
Information Gain
Curiosity
Hashing
PPO Only

0.0 0.2 0.4 0.6 0.8 1.0
Timestep(M)

100

200

300

400

500

Av
er

ag
e

Re
tu

rn
Humanoid

Our Method
Module
Single Surprise
Information Gain
Curiosity
Hashing
PPO Only

0.0 0.2 0.4 0.6 0.8 1.0
Timestep(M)

0

500

1000

1500

2000

2500

Av
er

ag
e

Re
tu

rn

Walker2d
Our Method
Module
Single Surprise
Information Gain
Curiosity
Hashing
PPO Only

Figure 3: Performance comparison.

with the prediction error using a feature state space, and de Abril & Kanai (2018) enhanced Pathak
et al. (2017)’s work with the idea of homeostasis in biology. The concept of surprise was exploited to
yield intrinsic rewards (Achiam & Sastry, 2017).

In parallel with intrinsically motivated RL, researchers developed model-based approaches for
learning itself, in which the agent uses the trained dynamics model and fictitious samples generated
from the model for training. Nagabandi et al. (2017) suggested using the trained dynamics model
to initialize the policy network at the beginning of model-free learning. Kurutach et al. (2018)
proposed the policy optimization using trust-region method with a model ensemble, in which multiple
prediction models for the next state for given pair of current state and action are constructed and
trained by using actual samples, and the policy is trained by multiple fictitious sample trajectories
from the multiple models. Our work differs from these works in that we use a model ensemble for the
environment transition probability distribution and generates intrinsic reward based on this ensemble
of dynamics models to enhance the performance of model-free RL with sparse reward. (Please see
Appendix C for more related works.)

5 CONCLUSION

In this paper, we have proposed a new intrinsic reward generation method based on an ensemble of
dynamics models for sparse-reward reinforcement learning. In the proposed method, the mixture
of multiple dynamics models is used to better approximate the true unknown transition probability,
and the intrinsic reward is designed as the minimum of the intrinsic reward computed from each
dynamics model to the mixture to capture the most relevant surprise. The proposed intrinsic reward
generation method was combined with PPO to construct a working algorithm. Ablation study has been
performed to investigate the impact of the hyperparameters associated with the proposed ensemble-
based intrinsic reward generation. Numerical results show that the proposed model-ensemble-based
intrinsic reward generation method outperforms major existing intrinsic reward generation methods
in the considered sparse environments.

8

Under review as a conference paper at ICLR 2020

REFERENCES

Joshua Achiam and Shankar Sastry. Surprise-based intrinsic motivation for deep reinforcement
learning. arXiv preprint arXiv:1703.01732, 2017.

Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong, Peter Welinder, Bob
McGrew, Josh Tobin, OpenAI Pieter Abbeel, and Wojciech Zaremba. Hindsight experience replay.
In Advances in Neural Information Processing Systems, pp. 5048–5058, 2017.

Marc Bellemare, Sriram Srinivasan, Georg Ostrovski, Tom Schaul, David Saxton, and Remi Munos.
Unifying count-based exploration and intrinsic motivation. In Advances in Neural Information
Processing Systems, pp. 1471–1479, 2016.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
Wojciech Zaremba. Openai gym. arXiv preprint arXiv:1606.01540, 2016.

Yuri Burda, Harri Edwards, Deepak Pathak, Amos Storkey, Trevor Darrell, and Alexei A Efros.
Large-scale study of curiosity-driven learning. arXiv preprint arXiv:1808.04355, 2018a.

Yuri Burda, Harrison Edwards, Amos Storkey, and Oleg Klimov. Exploration by random network
distillation. arXiv preprint arXiv:1810.12894, 2018b.

Kurtland Chua, Roberto Calandra, Rowan McAllister, and Sergey Levine. Deep reinforcement
learning in a handful of trials using probabilistic dynamics models. In Advances in Neural
Information Processing Systems, pp. 4754–4765, 2018.

Cédric Colas, Olivier Sigaud, and Pierre-Yves Oudeyer. GEP-PG: Decoupling exploration and
exploitation in deep reinforcement learning algorithms. arXiv preprint arXiv:1802.05054, 2018.

Ildefons Magrans de Abril and Ryota Kanai. Curiosity-driven reinforcement learning with homeostatic
regulation. arXiv preprint arXiv:1801.07440, 2018.

Arthur P. Dempster, Nan M. Laird, and Donald B. Rubin. Maximum likelihood from incomplete data
via the EM algorithm. Journal of the Royal Statistical Society: Series B (Methodological), 39(1):
1–22, 1977.

Prafulla Dhariwal, Christopher Hesse, Oleg Klimov, Alex Nichol, Matthias Plappert, Alec Radford,
John Schulman, Szymon Sidor, and Yuhuai Wu. Openai baselines. https://github.com/
openai/baselines, 2017.

Yan Duan, Xi Chen, Rein Houthooft, John Schulman, and Pieter Abbeel. Benchmarking deep
reinforcement learning for continuous control. In International Conference on Machine Learning,
pp. 1329–1338, 2016.

Dror Freirich, Ron Meir, and Aviv Tamar. Distributional multivariate policy evaluation and exploration
with the bellman gan. arXiv preprint arXiv:1808.01960, 2018.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy maxi-
mum entropy deep reinforcement learning with a stochastic actor. arXiv preprint arXiv:1801.01290,
2018.

R Devon Hjelm, Alex Fedorov, Samuel Lavoie-Marchildon, Karan Grewal, Adam Trischler, and
Yoshua Bengio. Learning deep representations by mutual information estimation and maximization.
arXiv preprint arXiv:1808.06670, 2018.

Zhang-Wei Hong, Tzu-Yun Shann, Shih-Yang Su, Yi-Hsiang Chang, Tsu-Jui Fu, and Chun-Yi Lee.
Diversity-driven exploration strategy for deep reinforcement learning. In Advances in Neural
Information Processing Systems, pp. 10489–10500, 2018.

Rein Houthooft, Xi Chen, Yan Duan, John Schulman, Filip De Turck, and Pieter Abbeel. VIME:
Variational information maximizing exploration. In Advances in Neural Information Processing
Systems, pp. 1109–1117, 2016.

9

https://github.com/openai/baselines
https://github.com/openai/baselines

Under review as a conference paper at ICLR 2020

Hyoungseok Kim, Jaekyeom Kim, Yeonwoo Jeong, Sergey Levine, and Hyun Oh Song. EMI:
exploration with mutual information. CoRR, abs/1810.01176, 2018. URL http://arxiv.
org/abs/1810.01176.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Thanard Kurutach, Ignasi Clavera, Yan Duan, Aviv Tamar, and Pieter Abbeel. Model-ensemble
trust-region policy optimization. arXiv preprint arXiv:1802.10592, 2018.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness, Marc G. Belle-
mare, Alex Graves, Martin Riedmiller, Andreas K. Fidjeland, Georg Ostrovski, et al. Human-level
control through deep reinforcement learning. Nature, 518(7540):529, 2015.

Anusha Nagabandi, Gregory Kahn, Ronald S. Fearing, and Sergey Levine. Neural network dy-
namics for model-based deep reinforcement learning with model-free fine-tuning. arXiv preprint
arXiv:1708.02596, 2017.

Junhyuk Oh, Yijie Guo, Satinder Singh, and Honglak Lee. Self-imitation learning. arXiv preprint
arXiv:1806.05635, 2018.

Pierre-Yves Oudeyer and Frédéric Kaplan. How can we define intrinsic motivation? In Proceedings
of the 8th International Conference on Epigenetic Robotics: Modeling Cognitive Development
in Robotic Systems, Lund University Cognitive Studies, Lund: LUCS, Brighton. Lund University
Cognitive Studies, Lund: LUCS, Brighton, 2008.

Deepak Pathak, Pulkit Agrawal, Alexei A. Efros, and Trevor Darrell. Curiosity-driven exploration by
self-supervised prediction. In International Conference on Machine Learning (ICML), volume
2017, 2017.

Alfréd Rényi et al. On measures of entropy and information. In Proceedings of the Fourth Berkeley
Symposium on Mathematical Statistics and Probability, Volume 1: Contributions to the Theory of
Statistics. The Regents of the University of California, 1961.

Nikolay Savinov, Anton Raichuk, Raphaël Marinier, Damien Vincent, Marc Pollefeys, Timothy Lilli-
crap, and Sylvain Gelly. Episodic curiosity through reachability. arXiv preprint arXiv:1810.02274,
2018.

John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust region
policy optimization. In International Conference on Machine Learning, pp. 1889–1897, 2015a.

John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter Abbeel. High-dimensional
continuous control using generalized advantage estimation. arXiv preprint arXiv:1506.02438,
2015b.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Lior Shani, Yonathan Efroni, and Shie Mannor. Exploration conscious reinforcement learning
revisited. arXiv preprint arXiv:1812.05551, 2018.

Pranav Shyam, Wojciech Jaśkowski, and Faustino Gomez. Model-based active exploration. CoRR,
abs/1810.12162, 2018. URL http://arxiv.org/abs/1810.12162.

Haoran Tang, Rein Houthooft, Davis Foote, Adam Stooke, OpenAI Xi Chen, Yan Duan, John
Schulman, Filip DeTurck, and Pieter Abbeel. # Exploration: A study of count-based exploration
for deep reinforcement learning. In Advances in Neural Information Processing Systems, pp.
2750–2759, 2017.

Arash Tavakoli, Fabio Pardo, and Petar Kormushev. Action branching architectures for deep rein-
forcement learning. In AAAI, 2018.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
In Intelligent Robots and Systems (IROS), 2012 IEEE/RSJ International Conference on, pp. 5026–
5033. IEEE, 2012.

10

http://arxiv.org/abs/1810.01176
http://arxiv.org/abs/1810.01176
http://arxiv.org/abs/1810.12162

Under review as a conference paper at ICLR 2020

Hado Van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning with double q-
learning. In AAAI, volume 2, pp. 5. Phoenix, AZ, 2016.

Christopher K. I. Williams and Carl Edward Rasmussen. Gaussian processes for machine learning.
MIT Press Cambridge, MA, 2006.

Sirui Xie, Junning Huang, Lanxin Lei, Chunxiao Liu, Zheng Ma, Wei Zhang, and Liang Lin.
NADPEx: An on-policy temporally consistent exploration method for deep reinforcement learning.
arXiv preprint arXiv:1812.09028, 2018.

Zeyu Zheng, Junhyuk Oh, and Satinder Singh. On learning intrinsic rewards for policy gradient
methods. In Advances in Neural Information Processing Systems, pp. 4644–4654, 2018.

11

Under review as a conference paper at ICLR 2020

A PROOFS

Proposition 1. Let η(π) be the actual expected discounted sum of extrinsic rewards defined in (8).
Then, the following inequality holds:

0 ≤
(a)

η(π∗)− η(π̃∗) ≤
(b)
c E(s,a)∼π̃∗ [DKL (P ||P ′) |(s, a)] (19)

where c is a positive constant.

Proof. The inequality (a) is trivial from the definition of π∗, that is, π∗ is an optimal policy maximiz-
ing η(π). The inequality (b) holds since

η(π∗) ≤ η(π∗) + c E(s,a)∼π∗ [DKL (P ||P ′) |(s, a)] since c > 0, DKL(·||·) ≥ 0 (20)

= η̃(π∗) by definition of η̃(·) (21)
≤ η̃(π̃∗) by definition of π̃∗ (22)

= η(π̃∗) + c E(s,a)∼π̃∗ [DKL (P ||P ′) |(s, a)] by definition of η̃(·). (23)

Proposition 2. Let Pφi(·|s, a), i = 1, . . . ,K be the ensemble of model distributions, and P (·|s, a)
be an arbitrary true transition probability distribution. Then, the minimum of average KLD between
P (·|s, a) and the mixture model P ′ =

∑
i qiPφi(·|s, a) over the mixture weights {q1, · · · , qK |qi ≥

0,
∑
i qi = 1} is upper bounded by the minimum of average KLD between P and Pφi over {i}: i.e.,

min
q1,··· ,qK

E(s,a)∼π̃∗

[
DKL

(
P

∣∣∣∣∣∣∣∣ ∑
i

qiPφi

)∣∣∣∣(s, a)

]
≤ min

i
E(s,a)∼π̃∗

[
DKL

(
P ||Pφi

)
|(s, a)

]
.

(24)

Proof.

min
q1, · · · , qK

qi ≥ 0,
∑
i qi = 1

{
E(s,a)∼π̃∗

[
DKL

(
P

∣∣∣∣∣∣∣∣ ∑
i

qiPφi

)∣∣∣∣(s, a)

]}
(25)

≤ min
q1, · · · , qK

qi ≥ 0,
∑
i qi = 1

{
E(s,a)∼π̃∗

[∑
i

qiDKL

(
P ||Pφi

) ∣∣∣∣(s, a)

]}
(26)

= min
q1, · · · , qK

qi ≥ 0,
∑
i qi = 1

{∑
i

qiE(s,a)∼π̃∗
[
DKL

(
P ||Pφi

)
|(s, a)

]}
(27)

= min
i

{
E(s,a)∼π̃∗

[
DKL

(
P ||Pφi

)
|(s, a)

]}
. (28)

Here, (26) is valid due to the convexity of the KL divergence in terms of the second argument for a
fixed first argument. (27) is valid due to the linearity of expectation. (28) is valid since the minimum
in the right-hand side of (27) is achieved when we assign all the mass to qi that has the minimum
value of E(s,a)∼π̃∗

[
DKL

(
P ||Pφi

)
|(s, a)

]
. (Note that the optimal {qi} in (27) is not the same as the

optimal {qi} achieving the minimum in (25).)

Note that each step in the proof is tight except (26) in which the convexity of the KL divergence in
terms of the second argument is used. This part involves the function f(x) = − log x for 0 < x ≤ 1

since DKL(p1||p2) =
∫
p1(y) log p1(y)

p2(y)
dy, but the convexity of f(x) = − log x for 0 < x ≤ 1 is

not so severe if x is not so close to zero.

12

Under review as a conference paper at ICLR 2020

B NEURAL NETWORK ARCHITECTURE AND HYPERPARAMETERS

For the actual implementation, the code implemented by Dhariwal et al. (2017) is used. The policy
and dynamics models were designed by fully-connected neural networks all of which had two hidden
layer of size (64, 64) (Dhariwal et al., 2017; Houthooft et al., 2016; Tang et al., 2017). The tanh
activation function was used for all of the networks (Achiam & Sastry, 2017; Dhariwal et al., 2017).
The means of the fully factorized Gaussian dynamics models were the outputs of our networks, and
the variances were trainable variables which were initialized to 1 (Dhariwal et al., 2017). Other than
the variances, all initialization is randomized so that each of dynamics models was set differently
(Kurutach et al., 2018; Tavakoli et al., 2018). For the implementation of the policy model, our method
and all the considered intrinsic reward generation method used the same code for the module method
(Zheng et al., 2018).

Although a recent work (Achiam & Sastry, 2017) used TRPO (Schulman et al., 2015a) as the baseline
learning engine, we used PPO (Schulman et al., 2017), one of the currently most popular algorithms
for continuous action control, as our baseline algorithm. While the same basic hyperparameters as
those in the previous work (Achiam & Sastry, 2017) were used, some hyperparameters were tuned
for PPO. λ for the GAE method (Schulman et al., 2015b) was fixed to 0.95, while the discounting
factor was set to γ = 0.99. The batch size L for the training of the policy was fixed to 2048. For
the policy update using PPO, the minibatch size Lmini was set to 64, the epoch number N 10, the
clipping constant 0.2, and the entropy coefficient 0.0. The maximum number of timesteps was 1M for
all five environments, and the maximum index of batch period, MAX , is b 1M

L c = 488. The learning
late of Adam optimizer (Kingma & Ba, 2014) was fixed to 0.0003.

Each of the single-model surprise method, the hashing method and our proposed method requires
a replay buffer. The size of the used replay buffer for all these three methods is 1.1M. Before the
beginning of the iterations, 2048×B samples from real trajectories generated by the initial policy
were added to the replay buffer. We set B = 40 for our experiments. For the methods not requiring a
replay buffer, i.e., Curiosity, Information Gain, Module, and PPO Only, we ran 2048×B = 81920
timesteps before measuring performance for fair comparison. (Therefore, every x-axis in Fig. 1, 2,
and 3 shows the total timesteps of 1.08192M.)

For the dynamics model learning, we set the batch size L′ = 2048, L′mini = 64, and N ′ = 4. The
optimization (14) was solved based on second-order approximation (Schulman et al., 2015a). When
K = 1, the optimization (14) reduces to the model learning problem in Achiam & Sastry (2017). In
Achiam & Sastry (2017), the constraint constant κ in the second-order optimization was well-tuned
as 0.001. So, we used this value of κ not only to the case of K = 1 but also to the case of K ≥ 2. We
further tuned the value of α in (14) for each environment, and we set α = 0.01. For the information
gain method, we need another hyperparameter h which is the weight to balance the original intrinsic
reward and the homeostatic regulation term (de Abril & Kanai, 2018). We tuned this hyperparameter
for each environment and the used value of h is shown in Table 1.

Table 1 summarizes the weighting factor β as well as the hyperparameter h in information gain method.
Here, we used the optimized weighting factor β in (16) for each algorithm for each environment. As
aforementioned, the major hyperparameters for the proposed model-ensemble-based method are the
same as those used for the single-model surprise method.

Ant Hopper HalfCheetah Humanoid Walker2d
Curiosity β = 0.01 β = 0.01 β = 0.0001 β = 0.1 β = 0.03
Hashing β = 0.0001 β = 0.01 β = 0.00001 β = 0.1 β = 0.003
Information Gain β = 0.01, h = 4 β = 0.1, h = 4 β = 0.0001, h = 4 β = 0.01, h = 2 β = 0.03, h = 2
Single Surprise β = 0.00001 β = 0.05 β = 0.0001 β = 0.3 β = 0.05

Table 1: Used hyperparameter values.

For the intrinsic reward module method, we checked that the provided source code in github repro-
duced results in Zheng et al. (2018), as shown in Fig. 4. ‘Module 0.01’ represents the module method
with training using the sum of intrinsic reward and scaled extrinsic reward with scaling factor 0.01.
‘Module 0’ represents training using intrinsic reward only (no addition of extrinsic reward). Both
methods are introduced in Zheng et al. (2018), and we checked reproducibility when B = 0, i.e., we

13

Under review as a conference paper at ICLR 2020

ran 2048×B = 0 timesteps before measuring performance. We observed that our used code yielded
the same results as those in Zheng et al. (2018).

0.0 0.2 0.4 0.6 0.8 1.0
Timestep(M)

400

300

200

100

0

Av
er

ag
e

Re
tu

rn

Ant (B = 0)

PPO Only
Module_0
Module_0.01

0.0 0.2 0.4 0.6 0.8 1.0
Timestep(M)

0

500

1000

1500

2000

2500

Av
er

ag
e

Re
tu

rn

Hopper (B = 0)
PPO Only
Module_0
Module_0.01

0.0 0.2 0.4 0.6 0.8 1.0
Timestep(M)

500

0

500

1000

1500

2000

Av
er

ag
e

Re
tu

rn

HalfCheetah (B = 0)

PPO Only
Module_0
Module_0.01

0.0 0.2 0.4 0.6 0.8 1.0
Timestep(M)

100

200

300

400

500

Av
er

ag
e

Re
tu

rn

Humanoid (B = 0)

PPO Only
Module_0
Module_0.01

0.0 0.2 0.4 0.6 0.8 1.0
Timestep(M)

0

500

1000

1500

2000

2500

Av
er

ag
e

Re
tu

rn

Walker2d (B = 0)
PPO Only
Module_0
Module_0.01

Figure 4: Reproduced mean performance of the module method over 10 random seeds with ∆ = 40
when B = 0.

Thus, we used this code for the module method with only one change that we ran 2048×B timesteps
with B = 40 before measuring performance for fair comparison. (Since the range of intrinsic reward
from the module method is [−1, 1], intrinsic reward normalization in (17) is not needed.) For the
module method in performance comparison 3.3, we selected a better method between ‘Module 0’
and ‘Module 0.01’, assuming B = 40. ‘Module 0’ performed better than ‘Module 0.01’ in Hopper
and Walker2d, and ‘Module 0.01’ performed better than ‘Module 0’ in the other three environments.

14

Under review as a conference paper at ICLR 2020

C MORE RELATED WORK

Recent advanced exploration methods can be classified mainly into two categories. One is to generate
intrinsic reward explicitly and to train the agent with the total reward which is the sum of the
extrinsic reward and the adequately scaled intrinsic reward. The other is indirect methods which do
not explicitly generate intrinsic reward. Our work belongs to the first category. There exist many
exploration techniques on image spaces (Bellemare et al., 2016; Burda et al., 2018a;b; Savinov et al.,
2018) but these works are not directly related to our work here.

1. Explicit Intrinsic Reward Generation

Andrychowicz et al. (2017) suggested a new intrinsic reward for sparse and binary extrinsic reward
environments, based on sampling additional states from the replay buffer and setting those data as
new goals. In their work the policy was based on the input of both state and goal. In our work, on
the other hand, the concept of goal is not necessary. A recent work by Zheng et al. (2018) used a
delayed reward environment to propose training the module to generate intrinsic reward apart from
training the usual policy. This delayed reward environment for sparse reward setting is different from
the previous sparse reward environment based on thresholding (Houthooft et al., 2016), i.e., the agent
get non-zero reward when the agent achieves a certain physical quantity (such as the distance from
the origin) larger than the predefined threshold. Recently, Freirich et al. (2018) proposed generating
intrinsic reward by applying a generative model with the Wasserstein-1 distance. With the concept
of state-action embedding, Kim et al. (2018) adopted the Jensen-Shannon divergence (JSD) (Hjelm
et al., 2018) to construct a new variational lower bound of the corresponding mutual information,
guaranteeing numerical stability. Our work differs from these two recent works in that we used a
model ensemble to generate intrinsic reward.

2. Exploration without Intrinsic Reward Generation

Recent indirect methods can further be classified mainly into two groups: (i) revising the original
objective function to stimulate exploration, which exploits intrinsic motivation implicitly, and (ii)
perturbing the parameter space of policy.

In the first group, Oh et al. (2018) proposed that exploration can be stimulated by exploiting novel
state-action pairs from the past, and used sparse reward environments by delaying extrinsic rewards.
Hong et al. (2018) revised the original objective function for training by considering maximization of
the divergence between the current policy and recent policies, with an adaptive scaling technique.
The concept of dropout was applied to the PPO algorithm to encourage the stochastic behavior of
the agent episode-wisely (Xie et al., 2018). Convex combination of the target policy and any given
policy is considered as a new exploratory policy (Shani et al., 2018), which corresponds to solving
a surrogate Markov Decision Process, generalizing usual exploration methods such as ε-greedy or
Gaussian noise.

In the second group, Colas et al. (2018) proposed a goal-based exploration method for continuous
control, which alternates generating parameter-outcome pair and perturbing certain parameters based
on randomly drawn goal from the outcome space. Recently, inspired by Chua et al. (2018), Shyam
et al. (2018) considered pure exploration MDP without any extrinsic reward with the notion of utility,
where utility is based on JSD and the Jensen-Rényi divergence (Rényi et al., 1961). In this work, they
consider a number of models for transition function but they used this to compute utility based on
average entropy of the multiple models. Our work uses the minimum of surprise from the multiple
dynamics models under the existence of explicit reward whether it is extrinsic or intrinsic.

15

	Introduction
	The Proposed Method
	Preliminaries
	Intrinsic Reward Design from an Ensemble of Dynamics Models
	Implementation

	Results
	Experimental Setup
	Ablation Study
	Performance Comparison

	Related Work
	Conclusion
	Proofs
	Neural Network Architecture and Hyperparameters
	More Related Work

