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ABSTRACT

We introduce an attention mechanism to improve feature extraction for deep active
learning (AL) in the semi-supervised setting. The proposed attention mechanism
is based on recent methods to visually explain predictions made by DNNs. We
apply the proposed explanation-based attention to MNIST and SVHN classifica-
tion. The conducted experiments show accuracy improvements for the original
and class-imbalanced datasets with the same number of training examples and
faster long-tail convergence compared to uncertainty-based methods.

1 INTRODUCTION

Deep active learning (AL) minimizes the number of expensive annotations needed to train DNNs by
selecting a subset of relevant data points from a large unlabeled dataset (Lewis & Gale, 1994). This
subset is annotated and added to the training dataset in a single pool of data points or, more often,
in an iterative fashion. The goal is to maximize prediction accuracy while minimizing the product
of pool size × number of iterations. A proxy for this goal could be the task of matching feature
distributions between the validation and the AL-selected training datasets.

In density-based AL approaches, data selection is typically performed using a simple L2-distance
metric (Sener & Savarese, 2018). The image retrieval field (Zhou et al., 2017) has advanced much
further in this area. For example, recent state-of-the-art image retrieval systems are based on DNN-
based feature extraction (Babenko & Lempitsky, 2015) with attention mechanisms (Noh et al.,
2017). The latter estimates an attention mask to weight importance of the extracted features and
it is trained along with the feature extraction.

Inspired by this, we employ image retrieval techniques and propose a novel attention mechanism for
deep AL. Unlike supervised self-attention in (Noh et al., 2017; Vaswani et al., 2017), our attention
mechanism is not trained with the model. It relies on recent methods to generate visual explanations
and to attribute feature importance values (Sundararajan et al., 2017). We show the effectiveness of
such explanation-based attention (EBA) mechanism for AL when combined with multi-scale feature
extraction on a number of image classification datasets. We also conduct experiments for distorted
class-imbalanced training data which is a more realistic assumption for unlabeled data.

2 RELATED WORK

AL is a well-studied approach to decrease annotation costs in a traditional machine learning
pipelines (Settles, 2010). Recently, AL has been applied to data-demanding DNN-based systems
in semi-supervised or weakly-supervised settings. Though AL is an attractive direction, existing
methods struggle to deal with high-dimensional data e.g. images. We believe this is related to the
lack of class and instance-level feature importance information as well as the inability to capture
spatially-localized features. To overcome these limitations, we are interested in estimating spatially-
multiscale features and using our EBA mechanism to select only the most discriminative features.
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Figure 1: Conventional multi-scale feature extraction and the proposed EBA extension (dashed).

Wang et al. (2017) proposed to augment the training dataset by labeling the least confident data
points and heuristically pseudo-labeling high confidence predictions. We believe the softmax out-
put is not a reliable proxy for the goals of AL i.e. for selecting images using feature distribution
matching between validation and train data. Unlike (Wang et al., 2017), we use pseudo labels only
to estimate EBA vectors and find similarities between discriminative features.

Gal et al. (2017) introduced a measure of uncertainty for approximate Bayesian inference that can
be estimated using stochastic forward passes through a DNN with dropout layers. An acquisition
function then selects data points with the highest uncertainty which is measured at the output of
softmax using several metrics. Recent work (Beluch et al., 2018) extended this method by using an
ensemble of networks for uncertainty estimation and achieved superior accuracy.

Sener & Savarese (2018) formulated feature similarity-based selection as a geometric core-set ap-
proach which outperforms greedy k-center clustering. Though their method can complement our
approach, we are focusing on the novel feature extraction. For instance, they employed a simple L2

distance similarity measure for the activations of the last fully-connected layer.

The most similar work to ours, by Vodrahalli et al. (2018), uses the gradients as a measure of
importance for dataset subsampling and analysis. However, our approach formulates the problem as
a multi-scale EBA for AL application and goes beyond a less robust single-step gradient attention.
Other related works are online importance sampling methods (Ren et al., 2018) and the influence
functions approach in (Koh & Liang, 2017). Online importance sampling upweights samples within
the mini-batch during supervised training using gradient similarity while influence functions analyze
data point importance using computationally challenging second-order gradient information.

3 METHOD

Pool-based AL. Let (X, y) be an input-label pair. There is a validation dataset {(Xv
i , y

v
i )}i∈M of

size M and a collection of training pairs {(Xi, yi)}i∈N of size N for which, initially, only a small
random subset or pool of labels indexed by N1 is known. The validation dataset approximates the
distribution of test data. At every bth iteration the AL algorithm selects a pool of P new labels to be
annotated and added to existing training pairs which creates a training dataset indexed by Nb.

A DNN Φ(X,θ) is optimized by minimizing a loss function (N b)−1
∑

i∈Nb L(ŷi, yi) w.r.t. to
model parameters θ. However, the actual task is to minimize validation loss expressed by
M−1

∑
i∈M L(ŷv

i , y
v
i ). Therefore, an oracle AL algorithm achieves minimum of validation loss

using the smallest b×P product. In this work, we are interested not in finding an oracle acquisition
function, but in a method to extract relevant features for such function. We use a low-complexity
greedy k-center algorithm to select the data points in the unlabeled training collection which are
most similar to the misclassified entries in the validation dataset.

Feature descriptors. Let Fj
i ∈ RC×H×W , where C, H , and W are the number of channels, the

height, and the width, respectively be the output of the jth layer of DNN for input image Xi. Then, a
feature vector or descriptor of length L can be defined as di = φ(Fi) ∈ RL×1, where function φ(·)
is a conventional average pooling operation from (Babenko & Lempitsky, 2015). In a multi-scale
case, descriptor is a concatenation of multiple feature vectors di = [φj(Fj

i ), · · · , φl(F
l
i)].
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A descriptor matrix for the validation dataset Vd ∈ RL×M and training dataset Sd ∈ RL×N can be
calculated using forward passes. Practically, descriptors can be compressed for storage efficiency
reasons using PCA, quantization, etc. Then, a match kernel (Lee, 1999), e.g. cosine similarity,
can be used to match features in both datasets. Assuming that vectors di are L2-normalized, the
cosine-similarity matrix is simplyRd = V T

d Sd.

Explanation-based attention. Feature maps Fi extracted by Φ(X,θ) and pooled by φ(·) contain
features that: a) are not class and instance-level discriminative (in other words, not disentangled),
b) spatially represent features for a plurality of objects in the input. We would like to upweight
discriminative features that satisfy a) and b) using an attention mechanism. One approach would be
to use self-attention (Vaswani et al., 2017) at the cost of modifying network architecture and inter-
vening into the training process. Instead, we propose to use EBA that is generated only for feature
selection. The EBA mechanism attributes feature importance values w.r.t. to the output predictions.
Unlike a visual explanation task, which estimates importance heatmaps in the input (image) space,
we propose to estimate feature importance tensors Ai of the internal DNN representations Fi. Atten-
tion tensors Ai can be efficiently calculated using a series of backpropagation passes. Using one of
backpropagation-based methods called integrated gradients (IG) from (Sundararajan et al., 2017),
Aj

i can be estimated as

Aj
i =

1

K

K∑
k=1

∂L(ŷi(k), yi)

∂Fj
i

=
1

K

K∑
k=1

∂L(Φ(kXi/K,θ), yi)

∂Fj
i

, (1)

whereK is the number of steps to approximate the continuous integral by a linear path. Other forms
of (1) are possible: from the simplest saliency method for which K = 1 (Simonyan et al., 2014) to
more advanced methods with randomly sampled input features (Gudovskiy et al., 2018).

Due to lack of labels yi in (1), we use common pseudo-labeling strategy: yi = 1argmax ŷi
. It

is schematically shown in Figure 1. Unlike (Wang et al., 2017), pseudo-labels are used only to
calculate similarity without additional hyperparameters rather than to perform a threshold-selected
greedy augmentation. The EBA Ai can be converted to multi-scale attention vector using the same
processing ai = φ(Ai) ∈ RL×1, which, by analogy, forms validation Va ∈ RL×M and train
attention matrices Sa ∈ RL×N . The latter processing is implemented in most modern frameworks
and, therefore, the complexity to generate Ai is only K forward-backward passes.

Summary for the proposed method. A random subset of N1 training data points is annotated
and a DNN Φ(X,θ) optimized for this subset. Then, the AL algorithm iteratively (b = 2, 3 . . .)
performs following steps: 1) generates descriptor-attention matrix pairs (Vd,Va), (Sd,Sa), 2)
calculates similarity matrix R = Rd � Ra = (V T

d Sd) � (V T
a Sa), where � is element-wise

product, 3) selects P relevant data points from the remaining subset using acquisition function
arg maxi∈N\Nb−1(R(Xi),Φ) and 4) retrains Φ(X,θ) using augmented subset Nb.

4 EXPERIMENTS

Our method as well as uncertainty-based methods from (Gal et al., 2017) are applied to the MNIST
and SVHN classification. We evaluate AL with the original and distorted training data because
unlabeled collection of data points cannot be a-priori perfectly selected. Hence, we introduce a
class imbalance which is defined as the ratio of {0 . . . 4} to {5 . . . 9} digits. The following methods
have been employed: random sampling, uncertainty-based (uncert), greedy selection using similarity
matching without (top-P:none) and with EBA. The latter is estimated by saliency (top-P:grad) or IG
(top-P:ig). We rerun experiments 10 times for MNIST and 5 times for SVHN with all-randomized
initial parameters. Mean accuracy and standard deviation are reported. DNN parameters are trained
from scratch initially and after each AL iteration. Mini-batch size is chosen by cross-validation.

MNIST. The dataset train/val/test split is 50K/10K/10K. The LeNet is used with the following hy-
perparameters: epochs=50, batch-size=25, lr=0.05, lr-decay=0.1 every 15 epochs, uncert methods
and IG EBA use K = 128 passes and L is 20 for single-scale (before fc1 layer) and 90 for multi-
scale descriptors (all layers are concatenated). Figure 2(a) shows that feature-only matching (top-
P:none L20) outperforms random selection by≈ 1% while EBA (top-P:ig L90) adds another 1% of
accuracy when there is no class imbalance. High class imbalance (Figure 2(c)) increases that gap:
up to 20% for feature-only matching and 25% with EBA. The highest accuracy is achieved by multi-
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Figure 2: MNIST test dataset accuracy for 3 class imbalance ratios: a) 1 (no imbalance), b) 10 and
c) 100. Total 9 AL iterations (b = 10) are performed each with P = 250 pool size.
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Figure 3: SVHN test dataset accuracy for 3 class imbalance ratios: a) 1 (no imbalance), b) 10 and c)
100. Total 9 AL iterations (b = 10) are performed each with P = 2, 500 pool size.

scale EBA estimated by IG. EBA-based methods outperform the best uncertainty-based variation
ratio (uncert:varMC) approach for all class imbalance settings except the last one where its accuracy
is higher by less than 1% when b = 4. This might be related to small-scale MNIST and pseudo-label
noise for EBA. To study the effects of pseudo-labeling, we plot true-label configurations (marked by
”Abl”) as well. The accuracy gap between EBA using true- and pseudo-labels is small with no class
imbalance, but much larger (up to 25%) when class imbalance ratio is 100 during first AL iterations.

SVHN. The dataset train/validation/test split is 500K/104K/26K. A typical 8-layer CNN is used with
the following hyperparameters: epochs=35, batch-size=25, lr=0.1, lr-decay=0.1 every 15 epochs,
uncert methods and IG EBA useK = 128 andL is 256 for single-scale (before fc1 layer) and 384 for
two-scale descriptors (+ layer before conv7). Figure 3 shows that the gap between random selection
and the best EBA-based AL method grows from 2% to more than 12% when the unlabeled training
collection has more class imbalance. The gap between full training dataset accuracy increases for
larger-scale SVHN as well. This results in even faster convergence for the proposed AL relative to
random selection. Accuracies of the uncert methods are closer to each other than for MNIST, which
may signal their declining effectiveness for large-scale data. The proposed EBA-based methods
outperform all uncertainty-based methods for SVHN in the first AL iterations (up to +2.5%) and
later arrive at approximately equal results.

5 CONCLUSIONS AND FUTURE WORK

We applied recent image retrieval feature-extraction techniques to deep AL and introduced a novel
EBA mechanism to improve feature-similarity matching. First feasibility experiments on MNIST
and SVHN datasets showed advantages of EBA to improve density-based AL. Rather than per-
forming AL for the well-picked training datasets, we also considered more realistic and challenging
scenarios with class-imbalanced training collections where the proposed method emphasized the
importance of additional feature supervision. In future research, EBA could be evaluated with other
types of data distortions and biases: within-class bias, adversarial examples, etc. Furthermore, such
applications as object detection and image segmentation may benefit more from EBA because multi-
scale attention can focus on spatially-important features.
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bles for active learning in image classification. In CVPR, 2018.

Yarin Gal, Riashat Islam, and Zoubin Ghahramani. Deep Bayesian active learning with image data.
In ICML, 2017.

Denis Gudovskiy, Alec Hodgkinson, Takuya Yamaguchi, Yasunori Ishii, and Sotaro Tsukizawa.
Explain to fix: A framework to interpret and correct DNN object detector predictions. In Systems
for ML Workshop at NIPS, 2018.

Pang Wei Koh and Percy Liang. Understanding black-box predictions via influence functions. In
ICML, 2017.

Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. Simple and scalable predictive
uncertainty estimation using deep ensembles. In NIPS. 2017.

Lillian Lee. Measures of distributional similarity. In ACL, 1999.

David D. Lewis and William A. Gale. A sequential algorithm for training text classifiers. In SIGIR,
1994.

Hyeonwoo Noh, Andre Araujo, Jack Sim, Tobias Weyand, and Bohyung Han. Large-scale image
retrieval with attentive deep local features. ICCV, 2017.

Mengye Ren, Wenyuan Zeng, Bin Yang, and Raquel Urtasun. Learning to reweight examples for
robust deep learning. In ICML, 2018.

Ozan Sener and Silvio Savarese. Active learning for convolutional neural networks: A core-set
approach. In ICLR, 2018.

Burr Settles. Active learning literature survey. Technical report, 2010.

Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. Deep inside convolutional networks:
Visualising image classification models and saliency maps. In ICLR, 2014.

Mukund Sundararajan, Ankur Taly, and Qiqi Yan. Axiomatic attribution for deep networks. In
ICML, 2017.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Ł ukasz Kaiser, and Illia Polosukhin. Attention is all you need. In NIPS. 2017.

Kailas Vodrahalli, Ke Li, and Jitendra Malik. Are all training examples created equal? an empirical
study. arXiv preprint arXiv:1811.12569, 2018.

Keze Wang, Dongyu Zhang, Ya Li, Ruimao Zhang, and Liang Lin. Cost-Effective active learning
for deep image classification. IEEE Transactions on Circuits and Systems for Video Technology,
2017.

Wengang Zhou, Houqiang Li, and Qi Tian. Recent advance in content-based image retrieval: A
literature survey. arXiv preprint arXiv:1706.06064, 2017.

5


	Introduction
	Related Work
	Method
	Experiments
	Conclusions and Future Work

