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ABSTRACT

Current deep learning based text classification methods are limited by their ability
to achieve fast learning and generalization when the data is scarce. We address this
problem by integrating a meta-learning procedure that uses the knowledge learned
across many tasks as an inductive bias towards better natural language understanding.
Inspired by the Model-Agnostic Meta-Learning framework (MAML), we introduce
the Attentive Task-Agnostic Meta-Learning (ATAML) algorithm for text classifi-
cation. The proposed ATAML is designed to encourage task-agnostic representation
learning by way of task-agnostic parameterization and facilitate task-specific
adaptation via attention mechanisms. We provide evidence to show that the attention
mechanism in ATAML has a synergistic effect on learning performance. Our
experimental results reveal that, for few-shot text classification tasks, gradient-based
meta-learning approaches outperform popular transfer learning methods. In compar-
isons with models trained from random initialization, pretrained models and meta
trained MAML, our proposed ATAML method generalizes better on single-label
and multi-label classification tasks in miniRCV1 and miniReuters-21578 datasets.

1 INTRODUCTION

Deep neural networks have shown great success in learning representations from data, but effective
training of a deep neural network requires a large number of training examples and many gradient-based
optimization steps. This is mainly owing to a lack of prior knowledge when solving a new task.
Meta-learning or “learning to learn” (Schmidhuber, 1987; Bengio et al., 1992; Mitchell & Thrun,
1993; Vilalta & Drissi, 2002) addresses this limitation by acquiring meta-knowledge from the learning
experience across many tasks. The knowledge acquired by the meta-learner provides inductive
bias (Thrun, 1998) that gives rise to sample-efficient fast learning algorithms.

Although a considerable amount of research has been devoted to deep learning based meta-learning,
they tend to focus on image classification and reinforcement learning. The natural language processing
(NLP) related work mainly focused on language modeling while less attention has been paid to text
classification. We propose a meta-learning algorithm notably designed for few-shot text classification.
In contrast to popular transfer learning based text classification approaches (Howard & Ruder, 2018) that
aim to fine-tune a learned representation from a different task, our meta-learning procedure is optimized
to learn across a large collection of tasks with the goal of generalization from only a few examples. This
enables our model to assimilate new concepts in a more principled way guided by the meta-learner.

The proposed method closely relates to Model-Agnostic Meta-Learning (MAML; see Finn et al.,
2017a) that explicitly guides optimization towards adaptive representations. While MAML does not
discriminate different levels of representations and adapts all parameters for a new task, we introduce
Attentive Task-Agnostic Meta-Learner (ATAML) that learns task-agnostic representation while
fast-adapting attention parameters to distinguish different tasks.

In effect, ATAML involves two levels of learning: representation learning that aims to obtain
task-agnostic encodings of the input text in the form of a convolutional or recurrent network, and
task-specific attentive learning that optimizes the attention parameters of each task for fast adaptation.
Crucially, ATAML takes into account of the importance of attention in document classification and
aims to encourage task-specific attentive adaptation while learning task-agnostic text representations.
It is worthwhile to note that, ATAML achieves both representation and attentive learning through
meta-learning; no pretraining is involved in our ATAML algorithm.
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The contribution of this work is threefold: First, we propose ATAML tailed to few-shot text classification
that separates task-agnostic representation learning and task-specific attentive adaptation. Moreover,
we provide evidence as to how attention helps representation learning in ATAML. Although attention
mechanism has been well-studied for many NLP-related tasks, we focus on the synergistic effect of
attention together with task-agnostic representation learning. Our findings reveal that, when learning
from a collection of tasks, task-agnostic shared representation alone is not sufficient for good generaliza-
tion. More importantly, attention facilitates the discovery of shared substructures of text representations
that results in better generalization.Furthermore, we introduce a smaller version of the RCV1 and
Reuters-21578 dataset—miniRCV1 and miniReuters-21578—tailored to few-shot text classification,
and we show that ATAML outperforms randomly initialized, pretrained and MAML-learned models.

2 RELATED WORK

2.1 FEW-SHOT TEXT CLASSIFICATION

A great body of research in NLP emphasizes on the importance of attention in a variety of tasks (Shen
et al., 2018; Lin et al., 2017; Vaswani et al., 2017). These papers show that attention is able to retrieve
task-specific representation across a sequence of text encodings from CNN or LSTM to obtain a
task specific representation of the input. Attention could help decompose the contents of a document
into “subproblems” (Parikh et al., 2016) thus producing task-specific representations; this ability to
decompose text encodings also allows us to learn shared representation across tasks.

Few-shot text classification relates closely to transfer learning that aims to transfer knowledge learned
from a task to a new task. They differ in that, transfer learning typically involves a small number
of tasks while meta-learning aims to aggregate the knowledge learned from a number of tasks.
Another difference is that, in transfer learning, we aim to directly reuse or fine-tune some existing
representation, while a meta-learner is typically optimized at adapting to new tasks. Howard & Ruder
(2018) proposed a transfer learning approach ULMFiT that aims to fine-tune a pretrained language
for text classification. ULMFiT achives state-of-the-art performance on many text classification tasks
but has not been explored under the few-shot learning setup. We use ULMFiT as one of our baselines
and find fine-tuning a language model does not work well in few-shot learning.

In the context of meta-learning for few-shot text classification, previous work tend to focus on
ensemble-based approaches that are not learned in an end-to-end manner. Lam & Lai (2001) proposed a
regression-based approach that recommends different classification algorithms based on characteristics
of the input data. Yu et al. (2018) proposed a metric learning method that first clusters different tasks
and then learns cluster-dependent metric spaces. At meta-test time the model combines different metric
spaces based on similarity measure with the new task. While Yu et al. (2018) represnets a document
by max-pooling the phrase-level representations, we use attention mechanism to alleviate the need
for different metric spaces across different tasks.

2.2 META-LEARNING

Previous work on deep learning based meta-learning can be summarized as: learning representations
that encourage fast adaptation on new tasks (Finn et al., 2017a;b), learning universal learning procedure
approximators (Hochreiter et al., 2001; Vinyals et al., 2016; Santoro et al., 2016; Mishra et al., 2017),
learning to generate model parameters conditioned on training examples (Gomez & Schmidhuber,
2005; Munkhdalai & Yu, 2017; Ha et al., 2016), and learning optimization algorithms (Bengio
et al., 1992; Ravi & Larochelle, 2016; Andrychowicz et al., 2016; Li & Malik, 2017). Although
these methods have experimented with language modeling, none of them explored few-shot text
categorization which requires global understanding of an input document.

Our work is closely related to MAML (Finn et al., 2017a) that aims to learn adaptive representations
across different tasks. To form an “episode” (Vinyals et al., 2016) to optimize the meta-learner, we sam-
ple a set of tasks {D1,D2,...,DS} from the meta-training set Dmeta−train, whereDi={Dtrain

i ,Dtest
i }.

The meta-learner performs slow learning at the meta-level across many tasks to support fast learning on
new tasks. At meta-test time, we initialize our model from the meta-learned representation θ, fine-tune
on taskDtrain

i ∼Dmeta−test and evaluate onDtest
i ∼Dmeta−test. Our main novelty over MAML is

that, the use of task-agnostic representation learning together with task-specific attentive adaptation
leads to improved discovery of text representations for few-shot adaptation.
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Figure 1: Network architecture of attention-based dilated convolutional network.

3 ATTENTIVE TASK-AGNOSTIC META-LEARNING

3.1 ATTENTION MODEL FOR TEXT CLASSIFICATION

As shown in Figure 1, we design an attentive neural network trained on each text classification task
D under a loss functionL. The neural network reads the T -word input document x=[x1,x2,...,xT ],

st=f(xt;θE). (1)

where xt denotes the t-th word. The representation learner f(·;θE) in equation 1 encodes the input
sequence x to a corresponding sequence of states [s1,s2,...,sT ], where f can take the form of a
recurrent or convolutional network with parameters θE. The goal of learning θE in ATAML is to obtain
meta-learned task-agnostic parameters that can provide meaningful encodings of the input text.

We then apply content-based attention mechanism (Bahdanau et al., 2014; Hermann et al., 2015;
Graves et al., 2014; Sukhbaatar et al., 2015) that enables the model to focus on different aspects of
the document. The specific attention formulation used here is defined in equation 2 and belongs to
a type of feedforward attention (Raffel & Ellis, 2015),

αt=θᵀ
ATTst, s′t=αtst, c=

1

T

T∑
t=1

s′t, (2)

where θATT represents the attention parameter vector. For each memory state st, we calculate its
inner product with the attention parameter, resulting in a scalar αt. The scalar αt rescales each state st
into s′t, which are averaged to obtain the final representation c of a document. The attention retrieves
relevant information from a document and offers interpretability into the model behavior by explaining
the importance of each word, through attention weight αt, that contributes to the final prediction.

Once an input documentx is encoded into the vectorized representation c, we apply a softmax classifier
parameterized by θW to obtain the predictions ŷ. The softmax classifier is replaced by a set of sigmoid
classifiers if the labels are not mutually exclusive in multi-label classification,

ŷ=softmax(c;θW ) or ŷ=sigmoid(c;θW ). (3)

3.2 THE ATTENTIVE TASK-AGNOSTIC META-LEARNER

ATAML learns to obtain common representations that can be shared across different tasks while having
the fast learning ability to quickly adapt to new tasks. In contrast with MAML which does not make any
distinction between different parameters in the meta-learner, the proposed ATAML splits all parameters
θ into two disjoint sets, shared task-agnostic parameters θE and attentive task-specific parameters
θT, and employs discriminative strategies in the meta-training and meta-testing phrases. The shared
parameters θE, as shown in shaded area in Figure 1, are aimed at representation learning while the
task-specific parameters θT are aimed at capturing task-specific information for classification.
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Algorithm 1 Attentive Task-Agnostic Meta-Learner
Require: Dmeta−train: the meta-train set
Require: N -wayK-shot learning
Require: S classification tasks for each training episode
Require: βT,βM: task and meta level learning rate
Require: θE: shared parameters for representation learning
Require: θT={θW ,θATT}: parameters to be adapted at the task level

1: randomly initialize θE and θT . Initialize all parameters
2: while not done do
3: Sample S tasks: Di∼Dmeta−train . Sample tasks for meta-training
4: for allDi do
5: θ′T,i=θT−βT∇θTL(Dtrain

i ;{θT,θE}) .Get task-specific parameters

6: Lmeta=
∑
Di
L(Dtest

i ;{θ′T,i,θE}) .Get loss of the meta-learner
7: θT←θT−βM∇θTLmeta .Update task-specific parameters
8: θE←θE−βM∇θELmeta .Update shared parameters

3.2.1 META TRAINING

The Attentive Task-Agnostic Meta-Learning training algorithm is described in Algorithm 1. We use
θ to denote all parameters of the model (θ={θW ,θATT,θE}), which is divided into shared parameters
θE and task-specific parameters θT, where θT={θW ,θATT}.
To create one meta-training “episode” (Vinyals et al., 2016), we sample S tasks from Dmeta−train and
optimize the model towards fast learning across all sampled tasks [D1,D2,...,DS ]. As we are sampling
random tasks from Dmeta−train in each meta-training iteration, the goal of the meta-learner is to obtain
task-agnostic representation θE that is reusable for different tasks.

For every taskDi in the meta-training iteration, we only update the task-specific parameters that are
initialized with θT and updated to θ′T,i using task-specific gradients ∇θTL(Dtrain

i ;{θT,θE}). We
further calculate the expected loss across all tasks according to the post-update parameters that is
composed of the task-specific fast weights θ′T,i and shared slow weights θE,

Lmeta=
∑
Di

L(Dtest
i ;{θ′T,i,θE}), (4)

whereLmeta can be understood as the loss of the meta-learner. More intuitively,Lmeta gives us an eval-
uation measure on how well the task-specific parameters θT can adapt across all the sampled tasksDi,
together with a measure on how well the shared parameters θE can be reused across all tasks. The meta-
optimization therefore consists of minimizingLmeta with respect to all parameters θ towards optimizing
the model’s adaptability and re-usability across different tasks. The meta-training iterations are repeated
until the model converges, and the resulting parameters θ are then used as initialization at meta-test time.

3.2.2 META TESTING

Meta testing involves evaluating on the meta-learned model on the meta-test set Dmeta−test by
fine-tuning onDtrain

i and test onDtest
i , whereDi∼Dmeta−test. We introduce a meta testing approach

that freezes the shared representation learning parameters θE and only applies gradient on the
task-specific parameters θT. In contrast to fine-tuning all parameters for a new task, our approach
provides regularization to few-shot learning that improves generalization. For the avoidance of
misunderstanding, we note that labels in meta-train and meta-test sets are mutually exclusive.

3.2.3 GRADIENT PROPERTIES

We now draw connections between task-agnostic representation learning and task-specific attentive
classification to highlight the impact of attention. Through gradient analysis in Appendix A, we find
that the shared task-agnostic representation layer makes more effective gradient updates if there is
a stronger match between attention θATT and the representation state st. This enables the model to
focus on different aspects of the representation, and selectively updates parameters that have greater
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contribution to the classification outcome. This results in an effective task-agnostic representation
adept at extracting meaningful substructures from the input text.

4 EXPERIMENTS

We provide three sets of empirical evaluations on the single-label miniRCV1, multilabel miniRCV1
and miniRCV1miniReuters-21578 datasets to analyze the proposed meta-learning framework.

4.1 NETWORK ARCHITECTURE

We use Temporal Convolutional Networks (TCN), which is a type of dilated convolution (Van
Den Oord et al., 2016), as our network architecture. We have also conducted experiments with
bidirectional LSTM (Schuster & Paliwal, 1997) detailed in the Appendix.

The TCN contains two layers of dilated causal convolutions with filter size 3 and dilation rate 3. Each
convolutional layer is followed by a Leaky Rectified Linear Unit (Maas et al., 2013) with negative
slope rate 0.01, which is followed by 50% dropout (Srivastava et al., 2014). For word representation,
we use 300 dimensional Glove embeddings (Pennington et al., 2014). For optimization, we use Adam
optimizer (Kingma & Ba, 2014). For the loss function, we use categorical cross entropy error when each
document contains only one label and sigmoid cross entropy error when each document may contain
multiple labels. Although it is common to use threshold calibration algorithms for multilabel classifica-
tion, we use the constant 0.5 as prediction threshold in order to reduce the impact of external algorithms.

4.2 DATA

Reuters Corpus Volume I (RCV1) is an archive of news stories for research on text categorization (Lewis
et al., 2004). We create two versions of the miniRCV1 dataset by selecting a subset from the full RCV1
dataset to study the effect of few-shot learning in text classification:

1. miniRCV1 for single-label classification consisting of the 55 second-level topics as target
classes. We sample 20 documents from each class which is further divided into a training
set that contains 5 documents and a testing set that contains 15 documents. Documents with
overlapping topics are removed to ensure each document contains a single label.

2. miniRCV1 for multi-label classification consisting of 102 out of 103 non-mutually exclusive
labels. Each document is associated with a set of labels and we exclude one label that only
appeared once in the corpus. We sample about 20 documents for each class and divide them
into training and testing sets in a similar manner. It is worthwhile to mention that, due to the
inherent properties of multi-labeled data (Zhang & Zhou, 2014), some classes may contain
more examples than others classes.

Similar to miniRCV1, we create a smaller version of the Reuters-21578 dataset by selecting about
20 examples for each label.

4.3 FEW-SHOT LEARNING SETUP

At the meta-level, we divide all classes into mutually exclusive meta-train, meta-validation and
meta-test sets. In theN -wayK-shot setup, during meta-training, we randomly sampleN classes among
the meta-training set where each class containsK training examples. At meta-test time, we randomly
sampleN classes among the meta-test set and calculate evaluation statistics across many runs. We eval-
uate 5-way 1-shot, 5-way 5-shot, 10-way 1-shot and 10-way 5-shot learning for both single-label and
multi-label classification. The single-label classification task is evaluated on classification accuracy;
the multi-label classification task is evaluated on micro and macro F1-scores, which are intended to
measure the average F1-scores across all labels. They differ in that, micro-average gives equal weights
to each example regardless of label imbalance, whereas macro-average treats different labels equally.

4.4 RESULTS AND DISCUSSION

As with other meta-learning paradigms we consider two baselines: models trained from random
initialization, i.e., “random”, and models pretrained across many sampled meta-train tasks, i.e.,
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Table 1: Comparing single-label classification accuracies between baselines and ATAML on miniRCV1

Method 5-way Accuracy 10-way Accuracy

Meta Base 1-shot 5-shot 1-shot 5-shot

random TCN (A) 41.52% 65.64% 28.32% 45.12%
pretrained-1 TCN (A) 24.06% 57.08% 18.60% 45.85%
pretrained-2 ULMFiT (Howard & Ruder, 2018) 28.46% 61.33% 14.72% 60.03%
MAML TCN (A) 47.09% 72.65% 31.57% 62.75%

ATAML TCN (A) 54.05% 72.79% 39.48% 61.74%

Table 2: Comparing multi-label classification outcomes between baselines and ATAML on miniRCV1

Method 5-way Micro-F1 10-way Micro-F1 5-way Macro-F1 10-way Macro-F1

Meta Base 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

random TCN (A) 38.9% 60.9% 40.6% 45.6% 31.4% 55.7% 22.9% 33.1%
pretrained TCN (A) 26.9% 55.8% 33.5% 52.1% 17.0% 51.5% 14.9% 41.4%
MAML TCN (A) 52.3% 69.1% 44.9% 58.6% 43.2% 64.3% 27.7% 48.4%

ATAML TCN (A) 59.7% 71.1% 50.7% 61.3% 54.3% 65.0% 38.5% 49.2%

“pretrained”. In addition, we also compare our proposed ATAML framework with MAML under
similar architecture. Our experiments show that while MAML achieves better accuracies compared
to the aforementioned baselines, ATMAL significantly outperforms MAML in all 1-shot learning
experiments. Table 1, Table 2 and Table 3 summarize these results on single-label miniRCV1,
multi-label miniRCV1 and multi-label miniReuters-21578 experiments, wherein “Meta” denotes
the type of meta learner, “Base” denotes the architecture of the network, “random” denotes models
trained from random initialization, “(A)” denotes models trained with attention and the bold numbers
highlight the best performing ones at 95% confidence interval.

The difficulty of learning from scratch. Few-shot text classification is a challenging task as text data
contain rich information from various aspects which are difficult to ascertain from a few training exam-
ples. This difficulty is manifested in our results with the poor testing performance when trained from ran-
dom initialization. Meanwhile, in both single-label and multi-label classification tasks, the TCN models
with random initialization, improves significantly when the training examples are increased from 1
to 5. Furthermore, we show in the Appendix that, classic machine learning algorithms, such as support
vector machine, naive Bayes multinomial and K-nearest neighbors, as well as document embedding
algorithms, such as doc2vec (Levine & Haus, 1985) and doc2vecC (Chen, 2017), also suffer from data
scarcity in few-shot learning. This hints at the need for effective few-shot text classification algorithms.

Why does pretrained 10-way K-shot TCN models perform so poorly? In multi-label classification
tasks, some labels appear less frequently in the training data. This label imbalance causes uncalibrated
output probabilities when using the constant 0.5 as prediction threshold. Some pretrained models
performs worse than random guesses because its output probabilities are not well distributed.

Pretrained models in few-shot learning. In Table 1, we listed two pretrained baselines: “pretrain-1”
from a collection of few-shot tasks as in (Finn et al., 2017a) and “pretrain-2” from language model
ULMFiT (Howard & Ruder, 2018). “pretrain-1” performs worse than models trained from random
initialization. As each task contains a small number of examples, when we pretrain the model from
many tasks in the meta-training set, the sampled tasks provide contradictory supervisory signals to
the classifier, hence making it difficult to pretrain effectively (Finn et al., 2017a). As for “pretrain-2”
(ULMFiT), the model fails to fine-tune on 1-shot tasks. ULMFiT first fine-tunes a pretrained language
model on the new dataset, then adds a classifier on top of the language model and fine-tunes the whole
model for classification. This is challenging in the few-shot setup because a few-shot task only contains
a small vocabulary which makes it easy to overfit the language model. We also observe that ULMFiT
works better than “random” and “pretrained-1” in 10-way 5-shot where more training data is available.
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Table 3: Comparing multi-label classification between baselines and ATAML on miniReuters-21578

Method 5-way Micro-F1 10-way Micro-F1 5-way Macro-F1 10-way Macro-F1

Meta Base 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

random TCN (A) 38.2% 66.0% 25.1% 44.9% 30.6% 55.0% 17.9% 33.6%
pretrained TCN (A) 23.5% 50.3% 18.4% 49.1% 16.4% 37.8% 12.0% 37.3%
MAML TCN (A) 52.4% 74.1% 38.1% 61.2% 44.3% 64.3% 29.9% 51.2%

ATAML TCN (A) 66.3% 76.5% 42.6% 60.8% 60.9% 69.4% 34.9% 51.2%

Table 4: Ablation studies on miniReuters-21578 for multi-label classification

Method 5-way Micro-F1 10-way Micro-F1 5-way Macro-F1 10-way Macro-F1

Meta Base 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

random E (A) 36.7% 66.1% 25.2% 49.1% 29.2% 55.0% 18.2% 36.8%
MAML E (A) 44.9% 72.3% 26.4% 59.2% 35.6% 61.7% 19.6% 47.4%

MAML TCN 26.4% 65.7% 11.4% 44.5% 19.1% 52.7% 7.6% 31.2%
MAML TCN (A) 52.4% 74.1% 38.1% 61.2% 44.3% 64.3% 29.9% 51.2%

TAML TCN 21.5% 55.7% 11.5% 32.1% 15.1% 41.5% 7.3% 23.7%
ATAML TCN (A) 66.3% 76.5% 42.6% 60.8% 60.9% 69.4% 34.9% 51.2%
ATAML TCN (A) 62.7% 77.5% 49.5% 63.7% 58.3% 71.1% 41.6% 54.2%

The effect of meta learning. From all three experiments, the empirical results demonstrate the
basic MAML with attention mechanism learners performs notably better than the non-meta-learned
baselines. More importantly, the proposed ATAML algorithm offers further improvements that are
statistically significant in all the 1-shot learning experiments. These empirical findings support the
need for meta-learning in few-shot text classification. That being the case, the empirical findings
further support the importance of learning task-agnostic representations together with task-specific
attentive adaptations. To better understand the representation learning procedure as well as the role
of attention in meta training, we undertake ablation studies to provide further insights into ATAML.

4.5 ABLATION STUDIES

4.5.1 THE SYNERGISTIC EFFECT OF ATTENTION AND TASK-AGNOSTIC REPRESENTATIONS

The notable feature of ATAML is the use of attention mechanism together with shared task-agnostic
representations. For the avoidance of misunderstanding, we note that the shared task-agnostic
representation is learned through meta-learning, which is different from the pretrained baseline
methods. To show the synergistic effect of attention on the meta-learner, we construct an ablation
experiment in Table 4 “TAML, TCN” that trains shared task-agnostic representation without the
use of attention. The performance of “TAML, TCN” is drastically worse than all other methods,
suggesting learning task-agnostic representation alone, without the use of attention, does not work well
for few-shot text classification tasks. We also observe that, among all attentive models, the proposed
ATAML works the best. This supports our claim that the interaction between the attentive task-specific
classifier and task-agnostic representation learner facilitates learning when utilized together.

4.5.2 THE NEED TO LEARN STRUCTURED REPRESENTATION

With ablation studies we can offer evidence into the need to learn text in a structured manner as opposed
to making classifications at the word level alone. We use “E (A)” to denote a model where an attention
model is directly applied to the word embeddings. The goal of this model is to extract individual words
to make predictions. This model provides a measure on classification performance if we only take into
account individual word-level representations. The empirical results in Table 4 suggest classifying from
word embeddings is inferior to the proposed ATAML model, indicating the need to learn text structures,
such as phrase or sentence level representations. Moreover, learning from only a few examples exacer-
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Figure 3: Visualizing attentions learned by ATAML TCN(A).

bates the effect of over-fitting as it is more likely to have spurious correlations at the word level compared
with phrase or sentence level. It is therefore desirable to have the ability to learn text structures.

4.5.3 THE ROLE OF ATTENTION IN META TRAINING

To analyze the role of attention in meta training, we construct an attention-based meta training strategy
where the attention parameters are not updated in each meta training iteration. Although the attention
parameters are not being updated in meta training, they take task-specific fast weights as regular
ATAML during meta-testing and these fast weights have direct influence over the gradients of the TCN
layers. The goal of this model is to exploit the fast weights of the attention parameters and examine
if this could produce well trained representations. This model, denoted as “TCN(A)”, has similar
performance with the regular ATAML models in Table 4. Thus, the role of attention in meta training
is to facilitate the learning of shared representations. This also suggests that the attention parameters
are flexible in taking different directions for fast adaptation when trained on different tasks.

4.6 VISUALIZING LEARNED ATTENTIONS

Figure 2 and Figure 3 illustrate the the same training example after the meta-learner is trained with
MAML and ATAML, respectively. The target label is “INTERNATIONAL RELATIONS” and both
models make correct predictions for this training example. Whereas the MAML model illustrated in
Figure 2 is over-fitting to the keyword “president”, the proposed ATAML model in Figure 3 identifies
multiple key phrases, such as “talk with”, “agreed upon” and “negotiation with”, that are important
to the classification of “INTERNATIONAL RELATIONS”. Learning meaningful phrase-level
representations regularizes a model from over-fitting to spurious correlation in the training examples.

5 CONCLUSION

We propose a meta learning approach that enables the development of text classification models
from only a few training examples. The proposed ATAML is designed to encourage task-agnostic
representation learning by way of task-agnostic parameterization and facilitate task-specific adaptation
via attention mechanisms. The use of attention mechanism is capable of decomposing some text
into substructures for task-specific adaptation. Our empirical studies reveal that attention brings
synergistic effect on meta-learning shared text representations. The effectiveness of the proposed
meta-learning algorithm for few-shot text classification is clearly supported by our empirical studies on
the miniRCV1 and miniReuters-21578 datasets. We also provided ablation analysis and visualization
to get insights into how different components of the model work together.
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Appendices
A GRADIENT PROPERTIES

For a standard neural network θE without attention, the derivative of the lossLwith respect to θE is

∂L
∂θE

=
∂L
∂ŷ

1

T

T∑
t=1

∂ŷ

∂st

∂st
∂θE

=
∂L
∂ŷ

θᵀ
E

T

T∑
t=1

∂st
∂θE

. (5)

In contrast, for an attentive neural network, the derivative of the lossLATT with respect to θE is

∂LATT

∂θE
=
∂L
∂ŷ

1

T

T∑
t=1

∂ŷ

∂s′t

∂s′t
∂st

∂st
∂θE

, (6)

where s′ is defined by the attention mechanism in equation 2. Accordingly, we have

∂s′t
∂st

=
∂

∂st
((θᵀ

ATTst)st)=stθ
ᵀ
ATT+sᵀt θATTI, (7)

with I the identity matrix. The detailed steps to obtain equation 7 is included in Section A.1. We
further rewrite equation 6 into:

∂LATT

∂θE
=
∂L
∂ŷ

θᵀ
E

T

T∑
t=1

(stθ
ᵀ
ATT+sᵀt θATTI)

∂st
∂θE

. (8)

By comparing the derivatives of the standard and attentive neural networks, i.e., equation 5
and equation 8, we find their only difference to be in the scaling factor for each state. The gradients
are scaled by (stθ

ᵀ
ATT+sᵀt θATTI) for each state st after we introduce attention. In other words, the

gradients of attentive model have an additional parameterization through the interactions between
the recurrent states st and the attention parameters θATT.

This produces more expressive gradients where the updates of the shared representation not only
depend on the updates of θE and ∂L

∂ŷ , but also controlled by the attention mechanism. More specifically,
if we focus on the scaling effects of the transformation, especially the diagonal matrix sᵀt θATTI , we
find the learning is more discriminative based on the similarity between cell state and attention vector.
Consequently, the model makes more gradient updates if there is a stronger match between attention
θATT and the representation state st. Summing up, attention not only enables the model to focus on
different aspects of the representation states, it also results in a more effective learning procedure that
allows fast adaptation and generalization.

A.1 JACOBIAN CALCULATION

Here we show the detailed steps to obtain the following Jacobian:

∂s′t
∂st

=
∂

∂st
((θᵀ

ATTst)st)=stθ
ᵀ
ATT+sᵀt θATTI (9)

We first define the typical elements of st and θATT as below:

st=[s1,s2,...,sN ], (10)

θATT=[θ1,θ2,...,θN ], (11)

whereN denotes the number of elements; si and θi are scalar parameters.

(θᵀ
ATTst)st can thus be written as:

(θᵀ
ATTst)st=

(∑
i

θisi

)
[s1,s2,...,sN ]. (12)
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Hence, the Jacobian take the following form:

∂s′t
∂st

=
∂

∂st
((θᵀ

ATTst)st) (13)

=


θ1s1+

∑
iθisi θ2s1 ... θNs1

θ1s2 θ2s2+
∑
iθisi ... θNs2

...
...

. . .
...

θ1sN θ2sN ... θNsN+
∑
iθisi

 (14)

=


θ1s1 θ2s1 ... θNs1
θ1s2 θ2s2 ... θNs2

...
...

. . .
...

θ1sN θ2sN ... θNsN

+I∑
i

θisi (15)

=stθ
ᵀ
ATT+sᵀt θATTI, (16)

where I is the identity matrix.

B DETAILS OF THE MINIRCV1 DATASET

Table 5 contains details of the miniRCV1 single-label and multi-label classification task. The
single-label classification task contains 55 classes in total and the multi-label classification task
contains 102 labels in total.

Table 5: Number of classes in meta-split of miniRCV1.

Meta-train Meta-validation Meta-test

Single-label 30 13 12
Multi-label 70 12 20

C ADDITIONAL EMPIRICAL RESULTS

C.1 THE IMPORTANCE OF ATTENTION

In this section, we include additional empirical results for single-label and multi-label miniRCV1
experiments in Table 6 and Table 7 to show the importance of attention, wherein “meta” denotes
the type of meta learner, “Base” denotes the type of classifier, “random” denotes models trained
from random initialization, “pretrained” denotes models trained from a pretrained model on the
meta-training set, “(A)” denotes models trained with attention and the bold numbers highlight the
best performing ones at 95% confidence interval.

The empirical results suggest that attention provides performance improvements regardless of what
meta-learner or classifier is used. Given the same meta learning algorithm, adding attention to the
classifier always improves model performance.

C.2 THE IMPACT OF NETWORK ARCHITECTURE

We experimented with both LSTM and TCN as the classifier architecture. Although meta learning
works with both LSTM and TCN and they all provide improvements from randomly initialized and
pretrained models, it is worthwhile to highlight their different properties. Overall, TCN has faster
training speed and generalization when compared with LSTM. One main problem when using LSTM
as classifier is that, in meta-training, the LSTM saturates at a very early stage owing to difficulties
in optimization, and prevents the meta-learner from obtaining sharable representations across different
tasks. Table 8 shows the empirical comparison between bidirectional LSTM and TCN when ATAML
is used as the meta learner. The results suggest that TCN performs better than bidirectional LSTM
across all experiments on miniReuters-21578.

12



Under review as a conference paper at ICLR 2019

Table 6: miniRCV1 single-label classification accuracies

Method 5-way Accuracy 10-way Accuracy

Meta Base 1-shot 5-shot 1-shot 5-shot

random TCN 26.70% 55.43% 17.64% 41.81%
random TCN (A) 41.52% 65.64% 28.32% 45.12%
pretrained TCN 22.38% 37.17% 10.67% 27.76%
pretrained TCN (A) 24.06% 57.08% 18.60% 45.85%
MAML TCN 33.86% 61.44% 22.55% 41.94%
MAML TCN (A) 47.09% 72.65% 31.57% 62.75%
ATAML TCN (A) 54.05% 72.79% 39.48% 61.74%

Table 7: miniRCV1 multi-label classification

Method 5-way Micro-F1 10-way Micro-F1 5-way Macro-F1 10-way Macro-F1

Meta Base 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

random TCN 18.7% 40.6% 30.2% 40.9% 11.3% 36.4% 9.9% 23.6%
random TCN (A) 38.9% 60.9% 40.6% 45.6% 31.4% 55.7% 22.8% 33.1%
pretrained TCN 25.1% 36.2% 28.2% 35.2% 17.0% 30.1% 9.1% 20.7%
pretrained TCN (A) 26.9% 55.8% 33.5% 52.1% 17.0% 51.5% 14.9% 41.4%
MAML TCN 35.7% 45.6% 20.5% 40.2% 22.9% 41.9% 7.6% 27.7%
MAML TCN (A) 52.3% 69.1% 44.9% 58.6% 43.2% 64.3% 27.7% 48.4%
ATAML TCN (A) 59.6% 71.1% 50.7% 61.3% 54.3% 65.0% 38.5% 49.2%

Table 8: Comparing bidirectional LSTM and TCN as classifier on miniReuters-21578

Method 5-way Micro-F1 10-way Micro-F1 5-way Macro-F1 10-way Macro-F1

Meta Base 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

ATAML LSTM (A) 38.0% 62.3% 27.1% 33.7% 30.3% 50.2% 18.8% 21.2%
ATAML TCN (A) 59.8% 71.1% 50.7% 61.3% 54.3% 65.0% 38.5% 49.2%

C.3 OTHER BASELINE METHODS

Table 9 shows the comparison between the proposed ATAML and classic machine learning methods,
i.e., SVM, Naive Bayes Multinomial and KNN, which uses tfidf features as model inputs. The results
suggest that SVM and naive Bayes multinomial severely overfit on the training data generalizes
poorly on evaluation. The K-nearest neighbor classifier performs better than SVM and naive Bayes
multinomial mainly because it is an nonparametric and distance-based algorithm. The proposed
ATAML is significantly better than KNN on the Micro-F1 measure and ATAML performs at least
as good as KNN on the Macro-F1 measure.

Table 9: Comparing ATAML with SVM, Naive Bayes Multinomial and KNN on miniReuters-21578

Method 5-way Micro-F1 10-way Micro-F1 5-way Macro-F1 10-way Macro-F1

1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

SVM 3.8% 35.8% 0.3% 18.8% 3.3% 25.1% 0.2% 12.6%
Naive Bayes Multinomial 0.5% 7.7% 0.0% 0.0% 0.2% 3.4% 0.0% 0.0%
KNN 46.7% 54.4% 39.4% 57.3% 43.8% 37.3% 37.4% 52.5%
ATAML, TCN (A) 59.8% 71.1% 50.7% 61.3% 54.3% 65.0% 38.5% 49.2%
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Table 10 summarizes the comparison between the proposed ATAML and document embedding ap-
proaches, i.e., doc2vec (Levine & Haus, 1985) and doc2vecC (Chen, 2017). In contrast to ATAML that
uses attention to aggregate information from substructures of some text input, the document embedding
approaches directly encode each document into one embedding vector and another classifier, such
as KNN (Bailey & Chopra, 2018) or SVM, is applied on the document embeddings for classification.

The empirical results suggest the document embedding approaches are not as effective as the proposed
ATAML method. This finding confirms the need to apply attention on substructures of text data, rather
than treating each document as a static embedding vector.

Table 10: Comparing ATAML with document embeddings methods on miniReuters-21578

Method 5-way Micro-F1 10-way Micro-F1 5-way Macro-F1 10-way Macro-F1

1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

Doc2Vec, KNN 31.4% 42.0% 19.4% 32.9% 18.5% 28.9% 10.1% 22.5%
Doc2Vec, SVM 27.4% 59.1% 11.4% 44.3% 19.9% 44.6% 8.5% 31.0%
Doc2VecC, KNN 42.8% 62.6% 30.2% 50.0% 34.9% 53.2% 23.9% 42.2%
Doc2VecC, SVM 33.7% 58.4% 18.6% 42.7% 25.8% 46.0% 12.5% 30.3%
ATAML, TCN (A) 59.6% 71.1% 50.7% 61.3% 54.3% 65.0% 38.5% 49.2%
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