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Abstract
Compressive learning is an effective method to deal with very high dimensional
datasets by applying learning algorithms in a randomly projected lower dimensional
space. In this paper, we consider the learning problem where the projected data
is further compressed by scalar quantization, which is called quantized compres-
sive learning. Generalization error bounds are derived for three models: nearest
neighbor (NN) classifier, linear classifier and least squares regression. Besides
studying finite sample setting, our asymptotic analysis shows that the inner product
estimators have deep connection with NN and linear classification problem through
the variance of their debiased counterparts. By analyzing the extra error term
brought by quantization, our results provide useful implications to the choice of
quantizers in applications involving different learning tasks. Empirical study is
also conducted to validate our theoretical findings.

1 Introduction
Random projection (RP) method [32] has become a very popular tool for dimensionality reduction
in numerous machine learning and database applications, e.g. [12, 8, 3], including classification,
matrix sketching, compressive sensing, regression and etc.. The great success of random projection
lies in the favorable distance preserving property with fairly elegant statement given by the famous
Johnson-Lindenstrauss Lemma [17, 9]. In short, under some conditions we can always project a
set of n points X ∈ Rn×d in a high-dimensional space onto a lower k-dimensional space such that
pair-wise distances are approximately preserved, with high probability. Here k � d is the number
of random projections. This nice theoretical guarantee has originated the study of generalization
performance of learning in the reduced dimensional space instead of the original space. This line of
work is called compressive learning [14, 2, 26, 11, 18, 30, 31, 19].

In many cases, it is useful to further condense the projected data, possibly due to storage saving,
privacy consideration and etc.. Consequently, research on quantized random projections (QRP)
has been conducted for a while. QRP itself has been developed into many promising fields in
computer science, such as 1-bit compressive sensing, simhash and so on [28, 1, 5]. More recently, it
is shown that quantized random projection is also very convenient for cosine estimation and similarity
search [23, 22, 24]. However, to the best of our knowledge, theoretical analysis of QRP in learning
mechanisms is still missing in literature. In this paper, we investigate the generalization error bounds
of applying QRP in three models: nearest neighbor classifier, linear classifier and least squares
regression. Apart from finite k analysis, we also consider the case where k is asymptotically large.

Contributions. An important implication of our analysis is to answer the following question—The
generalization performance using quantized random projections is determined by what factors of a
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quantizer? Our theoretical analysis illustrates that for nearest neighbor and linear classification, the
extra loss of quantization decreases as k gets large, and the learning performance is determined by
the variance of debiased inner product estimator when data samples are allocated on the unit sphere.
For regression problems, the distortion of a quantizer becomes crucial. Our theoretical findings are
validated by empirical study. Practically, our results also suggest appropriate quantizing strategies for
different learning models, which would be helpful for various applications.

2 Preliminaries

Problem setting. Assume dataset X,Y ∼ Dn with X = [x1, ..., xn]T ∈ Rn×d, and xi, i =
1, ..., n are i.i.d. drawn from some marginal distribution X . Throughout this paper, we assume that
every sample in X is standardized to have unit Euclidean norm2. Therefore, the domain of X is
the unit Euclidean sphere Sd, which allows us to call “inner product” and ”cosine” interchangeably.
For classification problems, Y ∈ [0, 1]n, while in regression model Y ∈ Rn. We will focus on
the Gaussian random projection matrix R = [r1, ..., rk] ∈ Rd×k with i.i.d. standard normal entries.
Random projection is realized by XR = 1√

k
XR, where the factor 1√

k
is for the ease of presentation.

Quantized RP’s. An M -level scalar quantizer Q(·) : A → C is specified by M + 1 decision
borders t0 < t1 < · · · < tM and M reconstruction levels (or codes) µi, i = 0, ...,M . Given a
signal v, the quantizing operator is defined as Qb(v) = µi ∈ C, such that ti−1 < v ≤ ti. Here,
A is the domain of the original signal and C is the set of codes. The number of bits is defined as
b = log2M ≥ 1. We note that t0 and tM can be either finite or infinite depending on the support
of signal. For generality, in this paper we do not restrict our analysis to any specific quantizer, but
cast most basic assumption of increasing and bounded reconstruction levels, i.e. µ1 < · · · < µM and
ti−1 < µi < ti for all i = 1, ...,M .

Definition 1. (Maximal gap) For an M -level quantizer Q defined above and an interval [a, b],
denote α = {i : ti−1 < a ≤ ti} and β = {i : ti < b ≤ ti+1}. The maximal gap on a
interval [a, b] is defined as the largest distance between any two nearby borders in [a, b], gQ(a, b) =
max{ max

i:α≤i≤β−1
|ti+1 − ti|, |tα − a|, |b− tβ |}, if tα ∈ [a, b], and gQ(a, b) = |b− a| otherwise.

In a random signal model, v is assumed to be generated from a probability density V ∼ f . In this
case, the following is an important quantity measuring the information loss of a quantizer.

Definition 2. (Distortion) The distortion of a b-bit quantizer Qb with respect to distribution f is

Db = EV∼f [(V −Qb(v))2] =

∫
(v −Qb(v))2f(v)dv. (1)

Uniform quantizer is the most simple quantizer, whose partitions are equal size bins with length4
(i.e. ti+1 − ti = 4,∀i with finite ti, ti+1) and the reconstruction levels are simply the mid points of
the bins. Lloyd-Max (LM) quantizer [25, 27] is designed to minimize the distortion with respect to
a given distribution. In this present paper, we optimize LM quantizer with respect to standard normal
distribution, since any rTi x with i = 1, .., k, x ∈ X is marginally N(0, 1) under Gaussian RP’s. Now
suppose Q is a quantizing function that operates element-wise on matrix. The quantized RP is defined
as XQ = 1√

k
Q(XR). We are interested in using XQ for learning problems instead of X .

The inner product estimate. It is easy to show that for x1, x2 ∼ X with ρ12 = cos(x1, x2), the

projections (RTx1, R
Tx2) consist of k i.i.d. samples from N

((
0
0

)
,

(
1 ρ
ρ 1

))
. One important

application is to use the projections to estimate ρ12. It is well-known that the inner product of two
projected vectors is an unbiased estimator of ρ12, i.e. E[ρ̂R] = E[

xT1 RR
T x2

k ] = ρ12. This estimator is
called the full-precision estimator. For quantized RP’s, we analogously define the quantized estimator
as ρ̂Q = Q(RT x1)TQ(RT x2)

k , whose statistical property is studied in [23, 24]. In most cases, ρ̂Q is
biased. The following analytical concept is considered in [24], which is also helpful in our analysis.

2Instance normalization is a standard data preprocessing step for many learning models. In this paper, this
assumption is mainly for convenience. Our analysis can be modified for scenarios without data normalization.
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Definition 3. (Debiased variance) Denote the space of expectation of estimator ρ̂Q as E . If there
exists a map g : [−1, 1] → E , the debiased estimator is defined by applying the inverse map
ρ̂dbQ = g−1(ρ̂) to correct for the bias. The variance of ρ̂dbQ is called the debiased variance.

3 Quantized Compressive Nearest Neighbor Classification

We first look at the generalization error incurred by learning using XQ instead of X on nearest
neighbor (NN) classification problem, which is a simple but powerful non-parametric algorithm
that is popular in practice. Given a dataset S = (X,Y ) and a test sample (x, y) ∼ D where
y is unknown, the algorithm finds the nearest neighbors of x in X , denoted by (x(1), y(1)), and
classifies x as ŷ = y(1). We denote the classifier of NN as hS(x) = y(1), in the original sample
space. Denote the conditional distribution of y given x ∼ X as η(x) = P (y = 1|x). A Bayes
classifier, h∗(x) = 1{η(x) > 1/2}, is well known as the optimal solution in minimizing the risk
L(h(x)) = Ex[1{h(x) 6= y}] over all hypothesis. [7] showed that the risk of NN classifier converges
to 2L(h∗(x)) as sample size n→∞. See additional asymptotic analysis in [13, 33, 16]. In finite
n case, [29, 15, 6] studied the error bounds and convergence rate of NN classifier, all of which
require the sample size n increases exponentially in dimensionality d, under some Lipschitz-type
assumptions on the conditional probability function η(x). As discussed in [29, 19], by the celebrated
No-Free-Lunch Theorem [34], this exponential sample complexity comes from the nature of this
problem and cannot be reduced in general.

Classical finite sample analysis. Yet, the work [19] demonstrates that when data has small “metric
size” measured by metric entropy integral γ (which will be defined later), it is possible to reduce
the sample complexity from O(ed) to O(eγ) by working in the randomly projected space using XR.
This is called compressive NN classification. The following definitions are necessary for our analysis.
Definition 4. Let (T , ‖ · ‖) be a totally bounded metric space, and α > 0. T is α-separated if
∀a − b ∈ T , a 6= b, ‖a − b‖ ≥ α holds. The α-packing number of T is N‖·‖(α, T ) = max{|T ′| :
T ′ is α-separable, T ′ ⊂ T }.
Definition 5. The α-entropy of T is defined as Z(α, T ) = logN(α, T ), and function Z(·, T ) is
called the metric entropy of T .
Theorem 1. [20]. Let X ⊂ Rd, and R ∈d×k a random matrix with i.i.d. Gaussian or Rademarcher
entries with mean 0 and variance σ2. T = { a−b

‖a−b‖ : a, b ∈ X} be the set of all pair-wise normalized

chords. Define metric entropy integral as γ(T ) =
∫ 1

0

√
Z(α, T )dα, then there exists an absolute

constant c, such that ∀ω, δ ∈ (0, 1), if k ≥ cω−2(γ(T )2 + log(2/δ), then with probability at least
1− δ, we have R is ω-isometry on X , namely,

(1− ω)kσ2‖x− y‖2 ≤ ‖RTx−RT y‖2 ≤ (1 + ω)kσ2‖x− y‖2,∀x, y ∈ X .

Theorem 1 is a generalization of Johnson-Lindenstrauss Lemma, which characterizes the probability
of getting a “good” projection matrix with nice isometry property. By a careful analysis under a
slightly different assumption on the domain X , we present the generalization bound on compressive
NN classifier (learning with XR) in [19] as follows.
Theorem 2. X ∼ Xn, Y ∼ {0, 1}n withX = [x1, ..., xn]T ∈ Rn×d, x is on the unit sphere. Assume
that η(x) = Pr(y = 1|x) is L-Lipschitz. Let R ∈d×k, k < d a random matrix with i.i.d. Gaussian
entries following N(0, 1). (x, y) is a test sample with unknown y. Denote (x

(1)
R , y

(1)
R ) ∈ (X,Y )

the training sample such that 1√
k
RTx

(1)
R is the nearest neighbor of 1√

k
RTx in the projected space,

and the compressive NN classifier hR(x) = y
(1)
R . Denote L(h∗) the risk of Bayes classifier. Then

∀ω, δ ∈ (0, 1), if k = O(ω−2(γ(T )2 + log(2/δ)), with probability 1− δ over random draws of R,
we have the risk of compressive NN classifier

EX,Y [L(hR(x))] ≤ 2L(h∗(x)) + 2
√

2(L

√
1 + ω

1− ω
)

k
k+1 (ne)−

1
k+1

√
k. (2)

Equipped with above tools, we are now ready to state our first result on the risk of uniformly quantized
compressive nearest neighbor classifier, with finite n and k.
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Theorem 3. Let X,Y,R and η(x) be the same as in Theorem 2. Q is a b-bit uniform quantizer
with bin width 4. Suppose (x, y) is a test sample with unknown y. Denote (x

(1)
Q , y

(1)
Q ) ∈ (X,Y )

the training sample such that 1√
k
Q(RTx

(1)
Q ) is the nearest neighbor of 1√

k
Q(RTx) in the quan-

tized space, and the quantized compressive NN classifier hQ(x) = y
(1)
Q . Then ∀ω, δ ∈ (0, 1),

if k = O(ω−2(γ(T )2 + log(2/δ)), [−
√

1 + ω,
√

1 + ω] ⊂ [t0, t2b ] and the maximal gap gQ ,
gQ(−

√
1 + ω,

√
1 + ω) < 2

√
1 + ω, then with probability 1− δ over random draws of R, the risk

of quantized compressive NN classifier is bounded by

EX,Y [L(hQ(x))] ≤ 2L(h∗(x)) + 2
√

2(
L4
gQ

√
1 + ω

1− ω
)

k
k+1 (ne)−

1
k+1

√
k +

2L4
√
k√

1− ω
, (3)

where L(h∗) is the risk of Bayes rule.
Remark 1. The assumption that Q is uniform quantizer is only for the ease of presentation. For an
arbitrary quantizer, the bound also holds with4 replaced by a more complicated term.

The proof involves two interleaving covers of the projected space, which, by Theorem 1, has bounded
diameter with high probability. Now we compare Theorem 3 with Theorem 2. Denote the second
term in (3) as the random projection error and the last term as quantization error. We observe: 1) The
bound preserves sample complexity of O(ek), which is favorable. 2) The extra quantization error
decreases with smaller bin length4, which is reasonable since small4 implies better approximation
to the full-precision RP’s in general. 3) When4→ 0 which means no quantization applied, we have
gQ = 4 and the bound reduces to (2) in Theorem 2. Note that, although the factor

√
k in quantization

error term also appears in the RP error term, it implies that the error incurred by quantization becomes
larger as k increases. Intuitively, however, large k provides better estimation of the pair-wise angle and
thus pair-wise distance (since X has domain Sd), which should actually reduce the extra loss, since
nearest neighbors would be more accurately estimated. This unsatisfactory pattern of quantization
error in Theorem 3 comes from the finite sample setting and proof methodology, since the bound is a
worst case bound with n and k both finite. Thus, this bound is less meaningful for practical purposes.

Asymptotic analysis. Notice that the key difference between NN classifier, compressive NN and
quantized compressive NN is simply the space in which we look for the neighbors. More importantly,
this procedure essentially depends on the distance estimation. Given that X is defined on the unit
sphere, finding NN in projected or quantized space is identical to finding xi ∈ X that has largest
estimated cosine between test example x. In this case, we do not need to care about the specific space
from which we derive the estimator, while the statistical property becomes the major concern.
Theorem 4. (Asymptotic k). Let data X,Y and projection matrix R be same as Theorem 3. Let
(x, y) be a test sample with unknown y. Q is any arbitrary quantizer with increasing reconstruction
levels. We estimate the cosine between any two points s, t ∈ X with 〈s, t〉 = ρs,t in the quantized

space by ρ̂Q(s, t) = Q(RT s)TQ(RT t)
k . Assume that ∀s, t ∼ X , E[ρ̂Q(s, t)] = αρs,t for some α > 0.

Denote (x
(1)
Q , y

(1)
Q ) ∈ (X,Y ) the training sample such that 1√

k
Q(RTx

(1)
Q ) is the nearest neighbor of

1√
k
Q(RTx), and the quantized compressive NN classifier hQ(x) = y

(1)
Q . Then we have as k →∞,

EX,Y,R[L(hQ(x))] ≤ EX,Y [L(hS(x))] + rk,

where rk = EX,x[
∑
i:xi∈G Φ

( √
k(cos(x,xi)−cos(x,x(1)))√

ξ2x,xi
+ξ2

x,x(1)
−2Corr(ρ̂Q(x,xi),ρ̂Q(x,x(1)))ξx,xiξx,x(1)

)
], with ξ2

x,y/k the

debiased variance of ρ̂Q(x, y) and G = X/x(1). L(hS(x)) is the risk of data space NN classifier, i.e.
hS(x) = y(1) with (x(1), y(1)) the nearest neighbor of x. Φ(·) is the CDF of N(0, 1).
Remark 2. In Theorem 4, we express the bound in terms of EX,Y [L(hS(x))] to highlight the extra
quantization error. We can further bound the risk EX,Y,R[L(hQ(x))] by directly adopting any bound
on EX,Y [L(hS(x))].
Remark 3. The assumption that ρ̂Q has expectation linear in ρ is mainly for the ease of analytical
consideration. Similar result also holds in general situations, under additional minor assumptions.

The bound is intuitive, in the sense that the quantization error term rk represents the probability of
picking different nearest neighbor in data space and quantized space. The benefit of Theorem 4 is
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that, we factor out L(hS(x)), instead of L(hR(x)) as in Theorem 3. Conceptually, we get rid of the
error incurred by using the projected space as an intermediate step. The quantization error term rk
is interesting—Note that for ∀i ∈ G = X/x(1), cos(x, xi)− cos(x, x(1)) < 0 holds. Consequently,
when k → ∞, all the Φ(·) terms in rk would decrease towards 0 (since Φ(t) → 0 as t → −∞).
Therefore, we derive a well behaving quantization error term in the asymptotic case: the quantization
error indeed decreases with k and converges to that of the data space nearest neighbor classifier.

Choice of Q. It is easy to see from Theorem 3 that in general, small debiased variances (ξx,xi and
ξx,x(1)) reduces the quantization error. In addition, given a fixed k and a query x, points near x(1)

(i.e. with small | cos(x, xi)− cos(x, x(1))|) tend to affect the quantization error more substantially
due to the exponential tail of Gaussian. Hence, for 1-NN classification, we should choose quantizers
with low debiased variance around ρ∗ = cos(x, x

(1)
i ), provided that it can be known (or estimated) a

priori. In particular, if a quantized estimator has lower debiased variance than using full-precision
RP’s, then learning with XQ would outperforms learning with XR in NN classification.

Is there a way to reduce the debiased variance of inner product estimates, for better generalization in
NN classification? In [24, 21], the authors showed that normalizing the random projection vectors
(i.e. RTxi, i = 1, ..., n) can provide smaller debiased variance, especially in high similarity region
(i.e. large |ρ|). This is exactly the situation for most of the NN classifications where ρ∗ = cos(x, x

(1)
i )

is high. More specifically, we can use the estimator

ρ̂Q,n =
Q(RTx1)TQ(RTx2)

‖Q(RTx1)‖‖Q(RTx2)‖
, (4)

to estimate ρ(x1, x2), instead of the simple inner product estimator ρ̂Q = Q(RT x1)TQ(RT x2)
k used in

Theorem 4. We refer interested readers to [24] for more detailed discussions on this topic.

In the following, we derive a corollary regarding the error of compressive NN classifier hR(x) by
noticing that the full-precision RP corresponds to applying quantization with infinite bits.
Lemma 1. Suppose x, y, z ∈ Rd are three data points on a unit sphere with inner products ρxy, ρxz
and ρyz respectively. Let full-precision linear estimator ρ̂R be defined as ρ̂R(x1, x2) =

xT1 RR
T x2

k
for any x1, x2 ∈ X . Then we have

Cov(ρ̂R(x, y), ρ̂R(x, z)) =
1

k
(ρyz + ρxyρxz).

Corollary 1. Let the data (X,Y ), (x, y) and projection matrix R be same as Theorem 3, with Q a
quantizer with increasing reconstruction levels. We estimate the cosine between any two points s, t ∈
X with 〈s, t〉 = ρs,t in the projected space by ρ̂R(s, t) = sTRRT t

k . Denote (x
(1)
R , y

(1)
R ) ∈ (X,Y ) the

training sample such that RTx(1)
Q is the nearest neighbor of RTx in the projected space, and the NN

classifier hR(x) = y
(1)
R . Then we have as k →∞,

EX,Y,R[L(hR(x))] ≤ EX,Y [L(hS(x))] + rk,

where rk = EX,x[
∑
i:xi∈G Φ

( √
k(cos(x,xi)−cos(x,x(1)))√

(cos(x,xi)−cos(x,x(1)))2+2(1−cos(xi,x(1)))

)
], with G = X/x(1).

4 Quantized Compressive Linear Classification with (0,1)-loss

In this section, we consider the generalization error for binary linear classifiers, which include some of
the most popular learning models, e.g. logistic regression, linear SVM and etc. LetH be a hypothesis
class of functions on X → {0, 1}. For original data, we assume that a function H ∈ H separates S
by a hyperplane, and classify each side as a distinct class. Hence, for a test data point x, the label
returned by H is

H(x) = 1{hTx > 0},
where h is a vector in Rd and orthogonal to the separating plane. Since all xi’s are normalized to
unit norm, we may assume that h also lies on the unit sphere passing though the origin. The optimal
classifier, Ĥ , is the minimizer of (0,1)-loss, defined as

L̂(0,1)(S, h) =
1

n

n∑
i=1

L(0,1)(H(xi), yi), L(0,1)(H(xi), yi) =

{
0, if H(xi) = yi,

1, otherwise.
(5)
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Figure 1: Illustration of sign flipping in quantized space. Points above the black decision boundary
are classified as 1, and 0 otherwise. Green dashed lines are boarders of the quantizer. Left: data space
classifier predicts 1. Right: quantized space prediction (using Q(ĥTR)) changes to 0.

We denote ĥ ∈ Rd the learned vector associated with Ĥ . (Ĥ, ĥ) is called the empirical risk
minimization (ERM) classifier. In projected space and quantized space, the ERM classifiers are
denoted by similar notation with corresponding subscripts as ĤR, ĥR ∈ Rk, ĤQ and ĥQ ∈ Rk,

Ĥ(x) = 1{ĥTx > 0}, ĤR(x) = 1{ĥTRRTx > 0}, ĤQ(x) = 1{ĥTQQ(RTx) > 0}. (6)

Now suppose x is a test sample with unknown class y, we are interested in the probability of making
a wrong prediction by training the classifier in the quantized space,

Pr[ĤQ(Q(RTx)) 6= y] = E[L(ĤQ(Q(RTx)), y)].

Existing results on such compressive linear classifier have studied bounds on the same type of
objective in the projected space, with exact expression in finite k case [11]. Here we look at this
problem in the asymptotic domain. When studying the error incurred by learning in the projected
space, an important tool is the following definition.

Definition 6. Let ĥ, x ∈ Rd be defined above, ‖ĥ‖ = ‖x‖ = 1. Let 〈ĥ, x〉 = cos(ĥ, x) = ρ > 0,
and ρ̂R = ĥTRRT x

k . R ∈ Rd×k a i.i.d. standard Gaussian random matrix. The flipping probability
is defined as

fk(ρ) = Pr[ρR < 0|ρ > 0]. (7)

Intuitively, this quantity measures the probability of changed prediction when we project the data
space by R with RT ĥ as the classifier. [11] gives the exact formula of this quantity,

fk(ρ) =
Γ(k)

Γ(k/2)2

∫ 1−ρ
1+ρ

0

z(k−2)/2

(1 + z)k
dz = Fk,k(

1− ρ
1 + ρ

), (8)

where F is the cumulative distribution function (CDF) of F-distribution with (k, k) degrees of
freedom. This formula also holds for ρ < 0 by simply plugging in ρ = −ρ. By symmetry, it
suffices to consider ρ > 0. As it is well-known that E[ρ̂R] = ρ and V ar[ρ̂R] = 1+ρ2

k , ρ̂R should

asymptotically follow N(ρ, 1+ρ2

k ) as k →∞. So the asymptotic flipping probability should be

f̃k(ρ) = Φ(−
√
kρ√

1 + ρ2
). (9)

The following calculation confirms this asymptotic convergence.

Proposition 1. As k →∞, we have fk(ρ)→ f̃k(ρ) for ρ > 0.

For quantized compressive classifier, sign flipping may also happen (an illustrative example is given
in Figure 1). By analyzing this event, in the following we state the asymptotic generalization error
bound for linear classifiers when working in quantized space instead of data space.
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Theorem 5. Let the (0,1)-loss and ERM classifier be defined as (5) and (6). R ∈ Rd×k is i.i.d
standard normal random matrix. Let L̂(0,1)(S, ĥ) = 1

n

∑n
i=1 L(0,1)(H(xi), yi) be the empirical loss

in the data space. Q is a quantizer and the quantized estimator ρ̂Q = Q(RT s)TQ(RT t)
k has mean αρ,

α > 0, and debiased variance ξ2
ρ/k at ρ = cos(s, t), ∀s, t ∼ X . Given (x, y) a test sample with y

unknown, when k →∞, with probability at least 1− 2δ we have

Pr[ĤQ(Q(RTx)) 6= y] ≤ L̂(0,1)(S, ĥ) + 2

√
(k + 1) log 2en

k+1 + log 1
δ

n

+
1

n

n∑
i=1

fk,Q(ρi) + min

{√
3 log

1

δ

√√√√ 1

n

n∑
i=1

fk,Q(ρi),
1− δ
δn

n∑
i=1

fk,Q(ρi)

}
,

where the flipping probability fk,Q(ρi) = Φ(−
√
k|ρi|
ξρi

), with ρi the cosine between training sample

xi and ERM classifier ĥ in the data space.

In Theorem 5, the first term is the empirical loss in the data space, and the second term is the generic
sample complexity in learning theory. When b → ∞ (full-precision RP’s), the bound reduces to
that derived in [11] for compressive linear classifier, according to Proposition 1. One important
observation is that the quantization error again depends on the debiased variance of the quantized
inner product estimator, at different levels ρi, i = 1, ..., n.

Choice of Q. Unlike NN classifier, the extra generalization error depends more on the region near
0 for linear classifier. To see this, we notice that the flipping probabilities (8) and (9) decrease as ρ
increases. Intuitively, label flipping is much more likely to occur for the points near the boundary
(i.e. with small ĥTx). As a result, one needs to choose a quantizer with small debiased variance
around ρ = 0 for linear classification tasks, e.g. logistic regression, linear SVM and etc.. In fact,
by the results and analysis from [24], one can show that Lloyd-Max (LM) quantizer gives minimal
debiased variance of ρ̂Q at ρ = 0, among all quantizers with equal bits. Hence, we recommend using
LM quantization for linear classification problems.

5 Quantized Compressive Least Squares Regression

Compressive least squares (CLS) regression has been studied in several papers, e.g. [26, 18]. [30]
shows that in many cases, CLS can match the performance of principle component regression (PCR)
but runs faster by avoiding large scale SVD or optimization, especially on high-dimensional data. In
CLS, the projected design matrix XR, instead of the original X , is used for ordinary least squares
(OLS) regression. We are interested in the extra error brought by further quantizing the projections,
where XQ is used as the new design matrix. We call this approach QCLS. In particular, we consider
a fix design problem where data X ∈ Rn×d is determinant and Y ∈ Rn are treated as random. OLS
regression with Gaussian error is modeled by

yi = xTi β + εi, (10)

with β the parameter to estimate and εi are i.i.d. Gaussian with mean 0 and variance γ2. For projected
data and quantized data, yi is the same while the predictors becomes 1√

k
RTxi and 1√

k
Q(RTxi)

respectively. The corresponding models are given by

yi =
1√
k
xTi RβR + εi, yi =

1√
k
Q(xTi R)βQ + εi. (11)

The squared loss in data space, projected space and quantized space are defined as

L(β) =
1

n
EY [‖Y−Xβ‖2], LR(βR) =

1

n
EY |R[‖Y − 1√

k
XRβR‖2],

LQ(βQ) =
1

n
EY |R[‖Y − 1√

k
Q(XR)βQ‖2].

(12)

Note that here the expectation is taken w.r.t. Y , and R is given. Denote the true minimizers to
above losses as β∗, β∗R and β∗Q, respectively. The risk of an estimator in the data space is defined
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as r(w) = L(w)− L(β∗), and analogues rR(wR) and rQ(wQ) can be also defined in projected and
quantized spaces. On the other hand, we have the empirical losses

L̂(β) =
1

n
‖Y−Xβ‖2, L̂R(βR) =

1

n
‖Y− 1√

k
XRβR‖2, L̂Q(βQ) =

1

n
‖Y− 1√

k
Q(XR)βQ‖2,

(13)
which are derived from the data. The OLS estimates minimize the empirical losses in a given space,
namely, β̂∗ = argmin

β∈Rd
L̂(β), β̂∗R = argmin

β∈Rk
L̂R(β) and β̂∗Q = argmin

β∈Rk
L̂Q(β).

Theorem 6. Consider the OLS problem defined in (10), (11) with losses given by (12) and (13).
Suppose all samples in X has unit norm, Σ = XTX/n, and R ∈ Rd×k are i.i.d. standard normal
and k < n. Q is a quantizer with distortion DQ w.r.t. standard Gaussian distribution. The expected
QCLS excess risk of the estimator in quantized space over the minimal loss in data space is bounded
by

ER[LQ(β̂∗Q)]− L(β∗) ≤ γ k
n

+
1

k
‖β∗‖2Σ+Tr(Σ)Id

+
1

k
‖β∗R‖2DQIk , (14)

where ‖w‖B =
√
wTBw is the Mahalanobis norm and Ip is the identity matrix with rank p.

In Theorem 6, the first two terms are the bound on CLS risk, and the last term characterizes the
extra loss brought by quantization. Note that there are several improvements upon the CLS error
term [31, 30]. These results typically focus on one step in the proof of [18] that is independent of
quantization error, and the improved bounds are more complex and contain singular values of X . We
can safely replace the CLS error bound in Theorem 6 by the results mentioned above, and our major
emphasize in this paper, the quantization error term, will not change.

Choice of Q. Since cosine estimation no longer play a role in QCLS regression model, the amount
of encoded information becomes crucial, which is perfectly evaluated by the distortion DQ in (14).
Indeed, we see that larger DQ would loosen the bound in Theorem 6. Hence, with a given number of
bits, Lloyd-Max (LM) quantizer, which is built naturally for the purpose of distortion minimization,
should be the first choice. Note that this holds true also for other families of projection matrices,
since LM quantization is adaptive to different underlying distribution.

6 Numerical study

In this section, we validate the theoretical findings through experiments on real-world datasets from
UCI repository [10]. Table 1 provides summary statistics, where mean ρ is the average pair-wise
cosine of all pairs of samples. Mean 1-NN ρ is the average cosine of each point to its nearest neighbor.

Table 1: Summary statistics of datasets, all standardized to unit norm.

Dataset # samples # features # classes Mean ρ Mean 1-NN ρ
arcene 200 10000 2 0.63 0.86

BASEHOCK 1993 4862 2 0.33 0.59
orlraws10P 100 10304 10 0.80 0.89
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Figure 2: Empirical debiased variance.
To be divided by k.

Classification setup. Three quantizers are used herein: 1-
bit Lloyd-Max quantizer, 3-bit Lloyd-Max quantizer and
3-bit uniform quantizer. LM quantizers are optimized w.r.t.
standard normal distribution, and the uniform quantizer is
symmetric about 0 with4 = 1, and cut-off points x = −3.5
if x < −3; x = 3.5 if x > 3. As discussed in [24], the debi-
ased variance of ρ̂Q = Q(XR)TQ(XR)

k cannot be computed
exactly. Here we approximate it by simulation as in Figure
2. For 1-NN classification, we take each data point as test
sample and the rest as training data over all the examples,
and report the mean test accuracy. For linear classifier, we
feed the inner product estimation matrix XQX

T
Q as the ker-

nel matrix into a linear SVM solver [4]. We randomly split the data to 60% training and 40% testing,
and the best test accuracy among all hyper-parameter C is reported, averaged over 5 repetitions.
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Figure 4: Test accuracy of quantized compressive nearest neighbor classification.
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Figure 5: Test accuracy of quantized compressive linear SVM.

Linear SVM. At ρ = 0, the debiased variance of estimators using different quantizers are in the
order 1-bit LM>3-bit uniform>3-bit LM>full-precision. Therefore, following the discussion in
Theorem 5, we expect test error in the same order, which is confirmed by Figure 5.
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Figure 3: Test MSE of QCLS.

NN classification. Theorem 4 states that small debiased
variance around the “mean 1-NN ρ” should be beneficial for
1-NN classification. BASEHOCK dataset has mean 1-NN
ρ = 0.59, the point at which the debiased variance is com-
pared as 1-bit LM>3-bit uniform>full-precision≈3-bit LM.
Hence, we see in Figure 4 that the NN classification error
is in the same sequence on this dataset. On the other hand,
the mean 1-NN ρ of arcene and orlraws10P is high (around
0.9). At this point, 1-bit LM quantizer has much smaller
debiased variance than others. Therefore, we expect 1-bit
LM to provide highest test accuracy on these two datasets,
which is again consistent Figure 4. In conclusion, our empirical observations validate the theoretical
results and analysis in Theorem 4 and Theorem 5 on the influence of debiased estimator variance on
NN and linear classifiers, at different ρ level.

Simulated QCLS. We simulate data X ∈3000×1200 and β from i.i.d N(0, 1), and noise ε ∼
N(0, 0.2). We compare uniform quantizers with equal-bit LM quantizers, which is optimal in
debiased variance. In Figure 3, we see that the test MSE decreases with more bits, and LM quantizer
always outperforms uniform quantizer with same bits. This verifies the conclusion in Theorem 6.

7 Concluding Remarks

This paper studies the generalization error of various quantized compressive learning models, includ-
ing nearest neighbor classifier, linear classifier and OLS regression. Our theoretical results provide
useful guidance for choosing appropriate quantizers for different models, which in particular depicts
an interesting connection between debiased variance of inner product estimates and the generalization
performance. Quantizers with small debiased variance are favorable for NN classifier and linear
classifier, in high similarity region and around ρ = 0, respectively. For linear regression, quantizers
with smaller distortion tend to perform better. As a consequence, Lloyd-Max (LM) quantizer is
recommended for linear classification and regression. Our work contributes to understanding the
underlying statistical aspect of quantized compressive learning, and provides useful implications to
various machine learning applications.
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