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ABSTRACT

Extending models with auxiliary latent variables is a well-known technique to in-
crease model expressivity. Bachman & Precup (2015); Naesseth et al. (2018);
Cremer et al. (2017); Domke & Sheldon (2018) show that Importance Weighted
Autoencoders (IWAE) (Burda et al., 2015) can be viewed as extending the vari-
ational family with auxiliary latent variables. Similarly, we show that this view
encompasses many of the recent developments in variational bounds (Maddison
et al., 2017; Naesseth et al., 2018; Le et al., 2017; Yin & Zhou, 2018; Molchanov
et al., 2018; Sobolev & Vetrov, 2018). The success of enriching the variational
family with auxiliary latent variables motivates applying the same techniques to
the generative model. We develop a generative model analogous to the IWAE
bound and empirically show that it outperforms the recently proposed Learned
Accept/Reject Sampling algorithm (Bauer & Mnih, 2018), while being substan-
tially easier to implement. Furthermore, we show that this generative process
provides new insights on ranking Noise Contrastive Estimation (Jozefowicz et al.,
2016; Ma & Collins, 2018) and Contrastive Predictive Coding (Oord et al., 2018).

1 INTRODUCTION

Deep generative models with latent variables have seen a resurgence due to the influential work
by Kingma & Welling (2013); Rezende et al. (2014) and their success at modeling data such as nat-
ural images (Rezende & Mohamed, 2015; Kingma et al., 2016; Chen et al., 2016; Gulrajani et al.,
2016), speech and music time-series (Chung et al., 2015; Fraccaro et al., 2016; Krishnan et al.,
2015), and video (Babaeizadeh et al., 2017; Ha & Schmidhuber, 2018; Denton & Fergus, 2018).
The power of these models lies in the use of auxiliary latent variables to construct complex marginal
distributions from tractable conditional distributions. While directly optimizing the marginal likeli-
hood of latent variable models is intractable, we can instead maximize a variational lower bound on
the likelihood such as the evidence lower bound (ELBO) (Jordan et al., 1999; Blei et al., 2017). The
tightness of the bound is determined by the expressiveness of the variational family (Zellner, 1988).

Recently, there have been many advances in constructing tighter variational lower bounds for latent
variable models (e.g., Burda et al. (2015); Maddison et al. (2017); Naesseth et al. (2018); Le et al.
(2017); Yin & Zhou (2018); Molchanov et al. (2018); Sobolev & Vetrov (2018)). Each bound re-
quires a separate derivation and evaluation, however, and the relationship between bounds is unclear.

We show that these bounds can be viewed as specific instances of auxiliary variable variational
inference (Agakov & Barber, 2004; Ranganath et al., 2016; Maaløe et al., 2016). In particular, many
partition function estimators can be justified from an auxiliary latent variable or extended state space
view (e.g., Sequential Monte Carlo (Doucet et al., 2001), Hamiltonian Monte Carlo (Neal et al.,
2011), Annealed Importance Sampling (Neal, 2001)). Viewed from this perspective, they can be
embedded in the variational family as a choice of auxiliary latent variables. Based on the general
results for auxiliary latent variables, this immediately gives rise to a variational lower bound with
a characterization of the tightness of the bound. Furthermore, this view highlights the implicit
(potentially suboptimal) choices made and exposes the reusable components that can be combined
to form novel auxiliary latent variable schemes.
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The success of augmenting variational distributions with auxiliary latent variables motivates investi-
gating a similar augmentation for generative models. When augmenting the variational distribution,
the natural target distribution is the intractable posterior over the latent variables in the model. With
the generative model, this introduces an extra degree of learnable flexibility (i.e., we can learn the
unnormalized potential function). To illustrate this, we develop a latent variable model based on
self-normalized importance sampling (Algorithm 1) which can be sampled from exactly and has a
tractable lower bound on its log-likelihood. It interpolates between a tractable proposal distribution
and an energy model. We show that this model is closely related to ranking NCE (Jozefowicz et al.,
2016; Ma & Collins, 2018) and suggests a principled objective for training the noise distribution in
NCE.

In summary, our contributions are:

1. We view recent tighter variational lower bounds through the lens of auxiliary variable vari-
ational inference, unifying their analysis and exposing sub-optimal design choices in algo-
rithms such as IWAE.

2. We apply similar ideas to generative models, developing a new model based on self-
normalized importance sampling which can be fit by maximizing a tractable lower bound
on its log-likelihood.

3. We show that the new model generalizes ranking NCE (Ma & Collins, 2018) and provides
a proof that the CPC objective (Oord et al., 2018) is a lower bound on mutual information.

4. We evaluate the proposed model and find it outperforms the recently developed approach
in (Bauer & Mnih, 2018) despite being more computationally efficient and simpler to im-
plement.

2 BACKGROUND

In this work, we consider learned probabilistic models of data p(x). Latent variables z allow us
to construct complex distributions by defining the likelihood p(x) =

∫
p(x|z)p(z) dz in terms of

tractable components p(z) and p(x|z). While marginalizing z is generally intractable, we can instead
optimize a tractable lower bound on log p(x) using the identity

log p(x) = Eq(z|x)
[
log

p(x, z)

q(z|x)

]
+DKL (q(z|x)||p(z|x)) , (1)

where q(z|x) is a variational distribution and the positive DKL term can be omitted to form a lower
bound commonly referred to as the evidence lower bound (ELBO) (Jordan et al., 1999; Blei et al.,
2017). The tightness of the bound is controlled by how accurately q(z|x) models p(z|x), so limited
expressivity in the variational family can negatively impact the learned model.

2.1 AUXILIARY VARIABLE VARIATIONAL INFERENCE (AVVI)

Latent variables can also be used to define complex variational distributions q. As before, we define
q(z|x) =

∫
q(z|λ, x)q(λ|x)dλ in terms of tractable conditional distributions q(z|λ, x) and q(λ|x).

Agakov & Barber (2004) show that

Eq(z|x)
[
log

p(x, z)

q(z|x)

]
= Eq(z,λ|x)

[
log

p(x, z)r(λ|z, x)
q(z, λ|x)

]
+ Eq(z|x) [DKL (q(λ|z, x)||r(λ|z, x)] ,

(2)
where r(λ|z, x) is a variational distribution meant to model q(λ|z, x), and the identity follows
from the fact that q(z|x) = q(z,λ|x)

q(λ|z,x) . Similar to Eq. (1), Eq. (2) shows the gap introduced by us-
ing r(λ|z, x) to deal with the intractability of q(z|x). We can form a lower bound on the original
ELBO and thus a lower bound on the log marginal by omitting the positive DKL term.
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2.2 MONTE CARLO OBJECTIVES

To tighten the variational bound without explicitly expanding the variational family, Burda et al.
(2015) introduced the importance weighted autoencoder (IWAE) bound,

Ez1:K∼∏i q(zi|x)

[
log

(
1

K

K∑
i=1

p(x, zi)

q(zi|x)

)]
≤ log p(x). (3)

The IWAE bound reduces to the ELBO when K = 1, is non-decreasing as K increases, and con-
verges to log p(x) as K → ∞ under mild conditions (Burda et al., 2015). Mnih & Rezende (2016)
developed Monte Carlo Objectives (MCOs), which extend this notion to any unbiased estimator
p̂(x) of p(x) by noting that

E [log p̂(x)] ≤ log p(x),

by Jensen’s inequality. IWAE is the special case where the unbiased estimator is the K-sample
importance sampling estimator. Maddison et al. (2017); Naesseth et al. (2018); Le et al. (2017)
investigate MCOs in sequential models based on the unbiased estimator produced by Sequential
Monte Carlo.

Many unbiased estimators can be justified as performing simple importance sampling on an ex-
tended state space (e.g., Hamiltonian Importance Sampling (Neal, 2005), Annealed Importance
Sampling (Neal, 2001), and Sequential Monte Carlo (Doucet et al., 2001; Maddison et al., 2017)). In
other words, we can define auxiliary variables λ and distributions q(λ|x), q(z|λ, x), r(λ|z, x) such
that

p̂(x) =
p(x, z)r(λ|z, x)

q(z, λ|x)
,

with z, λ ∼ q(z, λ|x). It immediately follows that the estimator is unbiased and leads to a variational
bound Eq. (2).

3 AUXILIARY LATENT VARIABLES IN VARIATIONAL FAMILIES

Viewing recent improvements in variational bounds as augmenting variational families with latent
variables allows us to apply the tools of auxiliary variable variational inference to understand the
tradeoffs and derivation of these algorithms. This unified view suggests novel bounds and reveals
implicit design choices that may be sub-optimal.

3.1 IMPORTANCE WEIGHTED AUTO-ENCODERS (IWAE)

First, we explicitly work through an example with the IWAE bound. Bachman & Precup (2015)
introduced the idea of viewing IWAE as auxiliary variable variational inference and Naesseth et al.
(2018); Cremer et al. (2017); Domke & Sheldon (2018) formalized the notion. Consider the varia-
tional family defined by first sampling a set of K candidate zis from a proposal distribution q̃(zi|x),
and then sampling z from the empirical distribution composed of atoms located at each zi and
weighted proportionally to p(x, zi)/q̃(zi|x). In this case, the auxiliary latent variables λ are the
locations of the proposal samples z1:K and the index of the selected sample, i.

Explicitly, let wi = p(x, zi)/q̃(zi|x). Then choosing the generalized densities of q and r as

q(z, z1:K , i|x) =

(
K∏
k=1

q̃(zk|x)

)
wi∑K
k=1 wk

δzi(z) (4)

r(z1:K , i|z, x) =
1

K
δzi(z)

∏
j 6=i

q̃(zj |x) (5)

yields the IWAE bound Eq. (3) when plugged into to Eq. (2) (see Appendix A for details).

From Eq. (2), it is clear that IWAE is a lower bound on the standard ELBO for q(z|x) and the
gap is due to DKL(q(z1:K , i|z, x)||r(z1:K , i|z, x)). The choice of r(z1:K , i|z, x) in Eq. (5) was for
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convenience and is suboptimal. The optimal choice of r is

q(z1:K , i|z, x) = q(i|z, x)q(z1:K |i, z, x)

=
1

K
δzi(z)q(z−i|i, z, x).

Compared to the optimal choice, Eq. (5) makes the approximation q(z−i|i, z, x) ≈
∏
j 6=i q̃(zj |x)

which ignores the influence of z on z−i and the fact that z−i are not independent given z. A simple
extension could be to learn a factored variational distribution conditional on z

r(z1:k, i|z, x) =
1

K
δzi(z)

∏
j 6=i

r(zj |z, x).

Learning such an r could improve the tightness of the bound, and we plan to explore this in future
work.

3.2 EXTENDED STATE SPACES

More generally, many of the recent improvements in variational bounds (e.g., (Maddison et al., 2017;
Naesseth et al., 2018; Le et al., 2017; Yin & Zhou, 2018; Molchanov et al., 2018; Sobolev & Vetrov,
2018)) can be viewed as importance sampling on an extended state space. By making the choice
of r explicit, the gap between the bound and the ELBO bound with the marginalized variational
distribution is clear and this can reveal novel choices for r.

4 AUXILIARY LATENT VARIABLES IN GENERATIVE MODELS

In Section 3.1, we showed how IWAE uses self-normalized importance sampling to expand the fam-
ily of q. Analogously, we can develop a generative model based on self-normalized importance
sampling. This model draws samples from a proposal π(x), weights them according to a potential
functionU(x), and then draws a sample from the empirical distribution formed by the weighted sam-
ples. We define the self-normalized importance sampling (SNIS) generative process in Algorithm 1
and denote the density of the process by pSNIS(x). The marginal log-likelihood, log pSNIS(x), can
be lower bounded as

log pSNIS(x) ≥ Ex2:K
log

 π(x)w(x)

1
K

(∑K
j=2 w(xj) + w(x)

)
 , (6)

for details see Appendix B. To summarize, pSNIS(x) can be sampled from exactly and has a
tractable lower bound on its log-likelihood.

As K → ∞, pSNIS(x) becomes proportional to π(x) exp(U(x)). For finite K, pSNIS(x) inter-
polates between the tractable π(x) and the energy model π(x) exp(U(x)). Interestingly, log π(x)
only shows up once in the lower bound, and simply lower-bounding it still gives a lower bound
on log pSNIS(x). This expands the class of allowable distributions for the proposal π to include
Variational Autoencoders (VAEs) (Kingma & Welling, 2013; Rezende et al., 2014).

To train the SNIS generative model, we can perform stochastic gradient ascent on Eq. (6) with
respect to the parameters of the proposal distribution π and the potential function U . When the data

Algorithm 1 SNIS(π, U ) generative process

Require: Proposal distribution π(x) and potential function U(x).
1: for k = 1, . . . ,K do
2: Sample xk ∼ π(x).
3: Compute w(xk) = exp(U(xk)).
4: end for
5: Compute Ẑ =

∑K
k=1 w(xk)

6: Sample i ∼ Categorical(w(x1)/Ẑ, . . . , w(xK)/Ẑ).
7: return x = xi.
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x are continuous, reparameterization gradients can be used to estimate the gradients to the proposal
distribution (Rezende et al., 2014; Kingma & Welling, 2013). When the data are discrete, score
function gradient estimators such as REINFORCE (Williams, 1992) or relaxed gradient estimators
such as the Gumbel-Softmax (Maddison et al., 2016; Jang et al., 2016) can be used.

Simple importance sampling scales poorly to high dimensions, so it is natural to consider augment-
ing the generative model with latent variables from Hamiltonian Monte Carlo or more complex
samplers. We are currently exploring this.

4.1 CONNECTION WITH RANKING NCE AND CPC

Equation (6) is closely connected with the ranking NCE loss (Ma & Collins, 2018), a popular objec-
tive for training energy based models. In fact, if we consider π(x) as our noise distribution pN (x)

and set U(x) = Ũ(x) − log pN (x), then up to a constant, we recover the ranking NCE loss. The
ranking NCE loss is motivated by the fact that it is a consistent objective for any K > 1 when the
true data distribution is in our model family. As a result, it is straightforward to adapt the consis-
tency proof from (Ma & Collins, 2018) to our setting. Furthermore, our perspective gives a coherent
objective for jointly learning the noise distribution and the potential function and shows that the
ranking NCE loss can be viewed as a lower bound on the log likelihood of a well-specified model
regardless of whether the true data distribution is in our model family.

Moreover, this distribution provides a novel perspective on Contrastive Predictive Coding (Oord
et al., 2018), a recent approach to bounding mutual information for representation learning. Starting
from the well-known variational bound on mutual information due to Barber & Agakov (2003)

I(X,Y ) = Ep(x,y)
[
log

p(x, y)

p(x)p(y)

]
≥ Ep(x,y)

[
log

q(x|y)
p(x)

]
for a variational distribution q(x|y), we can use the self-normalized importance sampling distri-
bution and choose the proposal to be p(x) (i.e., pSNIS(p,U)). Applying the bound in Eq. (6), we
have

I(X,Y ) ≥ Ep(x,y)
[
log

pSNIS(p,U)(x|y)
p(x)

]

≥ Ep(x,y)Ex2:K
log

 exp (U(x, y))

1
K

(∑
j exp (U(xj , y)) + exp (U(x, y))

)
 .

This recovers the CPC bound and proves that it is indeed a lower bound on mutual information
whereas the justification in the original paper relied on approximations.

5 EXPERIMENTS

We evaluated generative models based on self-normalized importance sampling (SNIS) on a small,
synthetic dataset as well as the MNIST dataset. To provide a competitive baseline, we use the
recently developed Learned Accept/Reject Sampling (LARS) model (Bauer & Mnih, 2018). LARS
trains a proposal distribution and an acceptance function (analogous to our potential function), which
are used to perform rejection sampling. The output of the rejection sampling process is the generated
sample. Such a process is attractive because unbiased gradients of its log likelihood can be easily
computed without knowing the normalizing constant.

To ensure a sample can be generated in finite time, LARS truncates the rejection sampling after
a set number of steps. Unfortunately, this change requires estimating a normalizing constant. In
practice, Bauer & Mnih (2018) estimate the normalizing constant using 1024 samples during training
and 1010 samples during evaluation. Even so, LARS requires additional implementation tricks
(e.g., evaluating the target density, using an exponential moving average to estimate the normalizing
constant) to ensure successful training, which complicate the implementation and analysis of the
algorithm. On the other hand, SNIS is well-specified and has a tractable log likelihood lower bound
for any K. As a result, no implementation tricks are necessary to train SNIS models. Moreover,
SNIS weights and uses all samples instead of choosing a single sample, which we expect to be
advantageous.
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Figure 1: Comparing the performance of LARS and SNIS on synthetic data. Both LARS and
SNIS achieve comparable data log-likelihood lower bounds, but SNIS does so much faster than
LARS. The results for LARS match previously-reported results in (Bauer & Mnih, 2018). Densities
plotted for LARS and SNIS are the proposal density times the exponentiated potential function
evaluated at points in [−2, 2]2 and approximately normalized.

Method Static MNIST Dynamic MNIST
VAE w/Gaussian prior −89.13± 0.06 −84.84± 0.03

VAE w/SNIS prior −86.41± 0.05 −82.67± 0.02

VAE w/LARS prior −86.53 −83.03
SNIS w/VAE proposal −87.53± 0.04 −83.40± 0.02

LARS w/VAE proposal — −83.63

Table 1: Comparing the performance of LARS and SNIS on MNIST. We report 1000 sample
IWAE log-likelihood lower bounds computed on the test set. SNIS numbers are the average of 5
runs, reported along with the standard deviation. LARS results are copied from Bauer & Mnih
(2018).

5.1 SYNTHETIC DATA

As a preliminary experiment, we reproduce the synthetic data experiment from (Bauer & Mnih,
2018) which models a mixture of Gaussian densities. The target distribution is a mixture of 9
equally-weighted Gaussian densities with variance 0.01 and means (x, y) ∈ {−1, 0, 1}2. Both
LARS and SNIS used a fixed 2-D N (0, 1) proposal distribution and a learned acceptance/potential
function U(x) parameterized by a neural network with 2 hidden layers of size 20 and tanh activa-
tions. For both methods the number of proposal samples drawn, K, was set to 128. We used batch
sizes of 128 and ADAM (Kingma & Ba, 2014) with a learning rate of 3× 10−4 to fit the models.

We plot the resulting densities and log-likelihood lower bounds in Fig. 1. As expected, SNIS quickly
converges to the solution, and the potential function learns to cut out the mass between the mixture
modes.

5.2 MNIST

Next, we evaluated SNIS on modeling the MNIST handwritten digit dataset (LeCun, 1998). MNIST
digits can be either statically or dynamically binarized — for the statically binarized dataset we used
the binarization from (Salakhutdinov & Murray, 2008), and for the dynamically binarized dataset
we sampled images from Bernoulli distributions with probabilities equal to the continuous values of
the images in the original MNIST dataset.

We tested two different model configurations: a VAE with an SNIS prior, and an SNIS model with a
VAE proposal. In the first case, the SNIS prior had a Gaussian proposal distribution, and in the sec-
ond case, the VAE proposal had a Gaussian prior. We chose hyperparameters to match the MNIST
experiments in Bauer & Mnih (2018). Specifically, we parameterized the SNIS potential function
by a neural network with two hidden layers of size 100 and tanh activations, and parameterized
the VAE observation model by neural networks with two layers of 300 units and tanh activations.
The latent spaces of the VAEs were 50-dimensional, and SNIS’s K was set to 1024. We also lin-

6



Published as a workshop paper at ICLR 2019

early annealed the weight of the KL term in the ELBO from 0 to 1 over the first 1 × 105 steps and
dropped the learning rate from 3× 10−4 to 1× 10−4 on step 1× 106. All models were trained with
ADAM (Kingma & Ba, 2014).

In the SNIS model with VAE proposal, we originally used the Straight-Through Gumbel estima-
tor (Jang et al., 2016) to estimate gradients through the discrete samples proposed by the VAE, but
found that method performed worse than ignoring those gradients altogether. We suspect that this
may be due to bias in the gradients. Thus, for the SNIS model with VAE proposal, we report num-
bers on training runs which ignore those gradients, and we plan to investigate unbiased gradient
estimators in future work.

We summarize log-likelihood lower bounds on the test set in Table 1. We found that SNIS outper-
formed LARS even though it used only 1024 samples for training and evaluation, whereas LARS
used 1024 samples during training and 1010 samples for evaluation.

6 DISCUSSION

In this paper, we viewed recent work on improving variational bounds through the lens of auxiliary
variable variational inference. This perspective allowed us to expose suboptimal choices in existing
algorithms such as IWAE, unify analysis of other methods such as ranking NCE and CPC, and
derive new methods for generative modeling such as SNIS. We plan to further develop this view by
embedding methods such as Hamiltonian Importance Sampling and Annealed Importance Sampling
in generative models which we expect to scale better with dimension of the data space.
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APPENDICES

A IWAE BOUND AS AVVI PROOF SKETCH

We provide a sketch of a proof that the IWAE bound can be interpreted as auxiliary variable vari-
ational inference by choosing specific values for q and r. Recall the auxiliary variable variational
inference bound,

Eq(z|x)
[
log

p(x, z)

q(z|x)

]
≥ Eq(z,λ|x)

[
log

p(x, z)r(λ|z, x)
q(z, λ|x)

]
. (7)

Let q and r be

q(z, z1:K , i|x) =

(
K∏
k=1

q̃(zk|x)

)
wi∑K
k=1 wk

δzi(z) (8)

r(z1:K , i|z, x) =
1

K
δzi(z)

∏
j 6=i

q̃(zj |x). (9)

9



Published as a workshop paper at ICLR 2019

Then, plugging Eqs. (8) and (9) into Eq. (7) with λ = (z1:K , i) gives

log p(x) ≥ Eq(z,λ|x)
[
log

p(x, z)r(λ|z, x)
q(z, λ|x)

]
= Eq(λ|x)

[
log

p(x, zi)
1
K

∏
j 6=i q̃(zj |x)

wi∑
j wj

∏
j q̃(zj |x)

]

= Eq(z1:K ,i|x)

log 1

K

∑
j

wj


= E∏

j q̃(zj)

log 1

K

∑
j

wj

 ,
which is the IWAE bound.

B DERIVATION OF LOWER BOUND ON SNIS DENSITY

We denote the density of the SNIS sampling process Algorithm 1 as pSNIS(x). Starting from the
definition of pSNIS(x), we obtain Eq. (6) as

log pSNIS(x) = log

K∑
i=1

∫
pSNIS(x, x1:K , i) dx1:K

= log

K∑
i=1

∫
δxi

(x)
w(xi)∑K
j=1 w(xj)

K∏
j=1

π(xj) dx1:K

= log

K∑
i=1

∫
π(x)w(x)∑K

j 6=i w(xj) + w(x)

∏
j 6=i

π(xj) dx−i

= log

K∑
i=1

Ex−i

[
π(x)w(x)∑K

j 6=i w(xj) + w(x)

]

= logEx2:K

 π(x)w(x)

1
K

(∑K
j=2 w(xj) + w(x)

)


≥ Ex2:K
log

 π(x)w(x)

1
K

(∑K
j=2 w(xj) + w(x)

)
 .
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