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ABSTRACT

Optimal sensor placement achieves the minimal cost of sensors while obtaining
the prespecified objectives. In this work, we propose a framework for sensor
placement to maximize the information gain called Two-step Uncertainty Net-
work(TUN). TUN encodes an arbitrary number of measurements, models the con-
ditional distribution of high dimensional data, and estimates the task-specific in-
formation gain at un-observed locations. Experiments on the synthetic data show
that TUN outperforms the random sampling strategy and Gaussian Process-based
strategy consistently.

1 INTRODUCTION

Sensor placement is widely studied in the areas of environment monitoring (Hu et al., 2018; Nguyen
et al., 2015), structural health monitoring(Ostachowicz et al., 2019) , security screening(Masoudi
et al., 2016), and adaptive computed tomography(Ouadah et al., 2017). The optimal sensor place-
ment maximizes the objectives with minimal cost of sensors. Given the model that maps each
possible set of sensor locations to the objectives, the optimal sensor placement can be formulated
as an optimization problem. However, the optimization is shown to be NP-hard(Garey & Johnson,
2002). Thus, approximate greedy algorithms of sequential sensor placement are proposed and then
proved to be near optimal under the assumptions that the objectives are monotone and submodu-
lar(Nemhauser et al., 1978).

The diagram of a sequential sensor placement is shown in Figure 1a with the black arrows. The
agent inquires at a feasible location to the physical model in each step and obtains the corresponding
measurement. The obtained observations are used to make inference for specific tasks. For instance,
in security screening tasks the observations are used to predict the distribution of the object’s label.
To make an accurate inference, the agent often optimizes the information gain in each step with re-
spect to the feasible location. The corresponding objective is mutual information which is approved
to give near optimal approximations in sequential sensing(Krause et al., 2008; Nemhauser et al.,
1978).

To optimize the objective, a model that estimates the potential information gain at each possible
location is necessary. The most generic method to model the unknown spatial phenomenon is Gaus-
sian Process(GP) which incorporates the knowledge of observations and predicts the uncertainty at
the un-observed locations. However, the Gaussian model assumption in GP does not perform well
on high dimensional data such as images as generative models. In addition, GP inherently adapts the
assumptions that the uncertainty at the un-observed locations is independent of the obtained mea-
surements, making the GP based sequential sensing an open-loop control(Rasmussen, 2003). An
alternative approach to this problem arises recently is Reinforcement Learning(RL)(Ha & Schmid-
huber, 2018). However, the performance in RL is found to be of large variance and difficult to
reproduce(Henderson et al., 2018).

In this work, we propose a framework for sensor placement to maximize the information gain called
Two-step Uncertainty network (TUN). The pipeline of TUN is shown in Figure 1 with red arrows.
TUN consists of two steps, namely the imagination step and the inspection step. TUN firstly ”imag-
ines” the possible measurements at the un-observed locations. Then it estimates the task-specific
information gain with the imagined measurements along with the previous observations in the in-
spection step. Both steps are deployed with the pre-trained neural networks. Given the task-specific
information gain at all the un-observed locations, the agent adapts a greedy algorithm to select the
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Figure 1: (a) The diagram of sensor placement (black arrows) and TUN(red arrows). TUN consists
of two steps: imagination step and inspection step to generate the possible measurements and eval-
uate the task-specific information gain at un-observed locations. (b) Graphical models of the two
steps in TUN. Instances of measurement xk at un-observed locations are generated in the imagina-
tion step. Then those generated measurements are used to evaluate the information gain for the task
in inspection step.

optimal next location to inquire. This procedure emulates how we human think in such tasks: given
the observations, we firstly imagine the possible outcomes at un-observed locations, then inspect the
information pertaining to the task based on those possible outcomes. We will derive the proposed
framework in the next section.

2 TWO-STEPS UNCERTAINTY NETWORKS

Consider a sequential sensing strategy, we denote locations as v and measurements as x. At the kth
step, we have the previous k − 1 observations Obs = {x1, v1, ..., xk−1, vk−1}, the optimal location
v∗k is the one maximizes the mutual information (MI) between the object’s label y and the possible
measurement xk given the previous observations:

v∗k = argmax
vk

MI(y;xk|Obs, vk) (1)

The mutual information can be expressed as,

MI(y, xk|vk, Obs) = H (y|Obs)− EPr(xk|vk,Obs)H (y|xk, vk, Obs) (2)

where E is the expectation operator. In Equation 2, the first term is the uncertainty of labels con-
ditioned on the previous observations. The second term is the expected uncertainty conditioned on
observations and possible measurements xk at vk. The subtraction gives the uncertainty reduction
or the information gain at the location vk. It is worth noting that the first term is independent of vk,
and can be treated as a constant in optimizing Equation 2 with respect to vk. The second term in
Equation 2 can be approximated with Monte Carlo estimator as

MI(y, xk|Obs) = −
M∑
m=1

1

M
H (y|xmk , vk, Obs) + Const. (3)

where
xmk ∼ Pr(xk|vk, Obs) (4)

The summation in Equation 3 (without the negative sign) is the approximate remaining entropy with
the measurement at vk given. Maximizing the mutual information is equivalent to minimizing the
remaining entropy. Equation 4 is the conditional distribution of the measurement at vk.
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Figure 2: Example of the generation step on 1D spectrum dataset. The dashed line is the true
spectrum and the solid spots are the observations. The generated instances are in colorful solid
lines. Left: 10 imagined spectrums based on single observation. Right: 10 imagined spectrums
based on three observations. The variation in the generated samples is mainly from scales and is
independent of the task.

Following Equation 3-4, it is natural to approach the remaining entropy in two steps : (1), Generating
instances of xk that follows the distribution in Equation 4. (2), Evaluating the remaining entropy∑

1
MH(y|xmk , vk, Obs) with the generated instances in step (1). The graphical models of the two

steps are shown in Figure 1b. The design of our Two-step uncertainty network (TUN) follows the
same rationale. In the imagination step, TUN generates multiple instances with a generative neural
network. In the inspection step, a deterministic deep neural network is used to estimates the label
distribution, and thus to evaluate the information gain(or negative remaining entropy).

2.1 IMAGINATION STEP

The first step of TUN is to generate instances xk ∼ Pr(xk|vk, Obs). Modeling the distribution
of high dimensional data such as images is difficult and computationally expensive, even within a
constrained family of distributions with simplified assumptions. Recently, remarkable progress has
been made on modeling complex distribution of high dimensional data with generative neural net-
work(GNN)(Gregor et al., 2015; Eslami et al., 2018). GNN maps the instances of re-parameterizable
distribution (for example, multivariate normal distributions) to the instances of target complex dis-
tribution(Kingma & Welling, 2013). GNN is trained to maximize the log likelihood of the generated
instances,

logPr(xk|vk, Obs) = log

∫
Pr(xk|z, vk)Pr(z|Obs)dz (5)

where z is the latent variable of multivariate normal distributions. The log likelihood within the
integral is intractable. Thus, the evidence lower bond(ELBO) as an approximation is evaluated
instead,

ln

∫
Pr(xk|z, vk)Pr(z|Obs)dz ≥ Eqφ(z) lnPr(xk|z, vk)−DKL[qφ(z); pθ(z)] (6)

The posterior distribution qφ(z|xk, vk, Obs) is conditioned on the previous k − 1 observations Obs
and the observed kth measurement in the training data. The prior distribution pθ(z|vk, Obs) is
only conditioned on Obs. DKL is the KL divergence measuring the difference between the two
distributions. After training, we will have a generator network G(vk, Obs) that generates instances
of measurement xk. The generator network G is then employed in the imagination step of TUN.

2.2 INSPECTION STEP

The second step in TUN is inspection, which estimates the task-specific information gain(or nega-
tive remaining entropy) at vk. With the generated M instances of xk in the imagination step, the

3



Under review as a conference paper at ICLR 2020

remaining entropy in Equation 3 can be expressed as
M∑
m=1

1

M
H(y|xk, vk, Obs) = −

M∑
m=1

1

M

∑
y

Pr(y|xmk , vk, Obs) logPr(y|xmk , vk, Obs) (7)

The remaining entropy is a function of the conditional distribution of the label Pr(y|xmk , vk, Obs).
We approximate this conditional distribution with a deterministic neural network, the inspector net-
workD(xk, vk, Obs). Then the remaining entropy is evaluated as Equation 7. The most informative
location to inquire is the one with the lowest remaining entropy. The procedure is summarized in
algorithm 1. It can be shown that the true parameters of the model can be recovered by symptomati-
cally maximizing a proper scoring rule(Gneiting & Raftery, 2007). A proper scoring rule S rewards
the true distribution p more than any other distributions p̂ on the training data d as∫

d

p(d)S(p̂, d) ≤
∫
d

p(d)S(p, d) (8)

It is shown that optimizing the softmax cross entropy loss function in the case of multi-class clas-
sification is equivalent to optimizing a proper scoring rule(Lakshminarayanan et al., 2017). Thus,
the inspector network D is trained with the softmax cross entropy loss. It is worth noting that the
inspector network D takes different number of observations at different steps. To accept arbitrary
number of observations, each observation is encoded separately with a shared-weight encoder, and
the encoded vectors are fed into an aggregator and aggregated to a fixed-length vector before the
succeeding networks. To enforce the commutative property in the sequential sensing problem, we
adapt a ”mean operator” as the aggregator in TUN, which takes the average of the input vectors. We
take random number of observations at the randomly selected locations in the training stage.

Algorithm 1 At the kth step of TUN
Require: Obs,G,D, m = 1
Ensure: The optimal kth location v∗k

for j is in un-observed locations do
vk = j
for m ≤M do
xmj ∼ G(Obs, vk)
Pmy = D(Obs, vk, x

m
j )

Hm
y = −Pmy lnPmy

m+ = 1
end for
Hj =

1
M

∑
mH

m
y

end for
return v∗k = argmax

j
Hj

3 EXPERIMENTS AND RESULTS

To evaluate the feasibility of TUN, we experimented with synthetic datasets. In the first experiment,
we visualize the imagination step in TUN with simple 1D spectrum dataset. The spectrum dataset
is generated from the spectrums of five minerals including Augite, Allanite, Xenotime, Bikitaitem
and Pseudobrookite. We re-sampled the spectrums from 0.2µm to 0.6µm with 100 points and nor-
malized them. The normalized spectrums are then scaled by a random factor ranging from 0.025
to 2.5 and corrupted by a zero-mean Gaussian noise with standard deviation of 0.03. The random
scaling creates the intra-class uncertainty in the dataset. We prepared 5000 instances in the training
dataset and 500 instances in the test dataset. The generator network G was trained to generate the
instances of the spectrum with several observations given. The number and locations of the observa-
tions are randomly selected in the training process. In the test stage, we show 10 generated instances
in colorful solid lines in Figure 2 with different observations. The observations are indicated as
filled circle, and the true spectrum is shown in the dashed line. Given the single observation, the
generated instances vary in both mineral types(inter-class uncertainty) and scales(intra-class uncer-
tainty). While with three selected observations, the imagined spectrums mainly vary in scales. The
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Figure 3: Left: x-ray security screening system. 8 different directions(locations) uniformly dis-
tributed within 180◦ are available to illuminate the object . The object is randomly rotated along z
axis with an obstacle. Additive Gaussian noise is adapted on the measurements. Right: examples of
measurements at 8 locations.

intra-class uncertainty in the latter case is task-independent information indicating that the generator
network G believes not much information of label are remaining given the observations. In the case
of that, taking more measurements may not benefit the label prediction much. Thus, the agent may
stop inquiring to avoid redundant inquiries. We will show more quantitative results of the evaluation
of the task-specific information gain in the inspection step of TUN in high dimensional dataset.

To quantitatively evaluate the information gain(or uncertainty reduction), we created a high dimen-
sional synthetic dataset from x-ray baggage scanning system in security screening. The physical
model is shown in Figure 3. The objects to be screened are 3D digits with an obstacle that par-
tially blocks the objects. The existence of the obstacle results in significant variation of information
among different locations. There are 8 locations(angles) to illuminate the x-ray onto the object
(ranging from 0◦ to 157.5◦). Inquiry on each location returns a 2D projected image. The goal is to
recognize the label of the object confidently with least number of inquiries. Before any inquiries, a
randomized rotation is applied on the object along z axis. An additive Gaussian noise n ∼ (0, 0.02)
is adopted on the observed images. TUN is trained on 5000 objects with random locations, effec-
tively making the training dataset much larger. TUN is tested on 3000 set of observations generated
from 1000 held-out un-seen objects. The generator network G firstly encodes the information of
one or more observations into a fixed length representation vector. Then it generates M instances
of possible measurements at the un-observed locations. based on the representation vector. In our
model, M = 10. We show this process in Figure 4. In Figure 4 Left, the first measurement at loca-
tion 4 is observed. We can see a corner feature in the measurement in the yellow box. Obviously the
information from the observation is insufficient to reconstruct the 3D object not to mention the label
of the object. We show three generated instances from the generator network at location 6 and 7
which are different in labels(digit 7 and 0) and fonts, yet consistent with the observation. In Figure 4
Middle, measurements at location 4 and 5 are both obtained. The generated samples at location 6
and 7 are more convergent to the ground truth as more information in observations are extracted. The
generator network in this situation almost collapses to a deterministic neural network. This shows
that our generator network generates the samples following the distribution xk ∼ Pr(xk|vk, Obs).
In the second step of TUN, the generated samples are fed into the inspector network D, which
estimates the probability of the labels Pr(y|xk, vk, Obs) and evaluates the task specific information
gain. We will perform both qualitative and quantitative analysis on the task specific information
gain with TUN in the following paragraph. Firstly, we visualize the intermediate feature space in
the initial sensing step of an example shown in Figure 5 Left. The obtained observations at location
5 is non-informative. We generated 100 instances at each location and fed them into the inspector
network and visualized the feature space in the inspector network using t-SNE(Maaten & Hinton,
2008). We select the vector at the layer before logits in the inspector network to visualize. The
feature space is colored by locations and divided into three regions. The region 1 covers the features
of the generated instances from exact observed location (location 5). Region 2 covers the features
from the locations close to the observed one (location 4 and 6). Region 3 contains the features
from the locations far from the observed location. Clearly the features get more disperse as the
distance to the observed location increases. This indicates that rich information lies in the locations
in region 3. Although this is a qualitative analysis on the feature space, it justifies the necessity to
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Figure 4: The imagination step of TUN on high dimensional dataset. Left: The 3 instances of
the generations at location 6 and 7 given the observations at location 4. The generated instances
are different in labels(digit 0 and 7) and fonts, but they all keep the corner feature occurred in the
observation.Middle: The generations given two observations at location 4 and 5. The generated
instances are much more convergent as more information is extracted from the observations. Right:
The ground truth of the measurements at location 6 and 7.

Figure 5: Task-specific feature distribution. We visualize the initial intermediate feature distribution
in the inspector network using t-SNE. Clearly the features become more scatty at further locations
from the observed location. The feature space is colored by locations. Region 1: Features of gener-
ated instances at the observed location. Region 2: Features at locations that are close to the observed
location. Region 3: away from observed location. Region 3: Features at locations far from the ob-
served locations.

sample multiple instances from the generator network. We will perform quantitative analysis of this
example with the inspector network in next paragraph.

The information gain is evaluated from the averaged entropy in Equation 7 from M samples. The
averaged entropy indicates the estimated remaining uncertainty of the labels after we obtain the
observation at location vk. Our strategy is to pick the location with least remaining uncertainty,
which equivalently maximizes the mutual information in Equation 2 (note the negative sign before
the entropy). We show this quantitatively in the example in Figure 6. This is the same example
as described in Figure 5. The first observation is at location 5 shown in yellow box in Figure 6a
bottom, which is a non-informative observation. The averaged entropy for next step is shown in
Figure 6a top. The entropy plot estimates the potential remaining uncertainty at the un-observed
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Figure 6: Entropy estimation: (a) The remaining entropy at un-observed locations given a single
observation at location 5. The optimal next location in this step is location 2 at which the expected
remaining entropy is least. (b) As we obtain the measurement at location 2 following TUN, the
estimated remaining entropy at all the un-observed locations are almost zeros, indicating that the
model is quite confident about the label with those observations.

Figure 7: Accuracy and entropy at different numbers of inquiries for TUN, Gaussian process(GP)
based and random sampling(RS) strategies. The advantages of sensor placement strategies starts at
two observations. The proposed framework, TUN, outperforms GP and RS strategies consistently.

locations, thus the less remaining uncertainty the better the location is. The entropy is averaged
from 10 samples, and the standard deviation is shown as bars in Figure 6. The entropy plot at the
initial step indicates that our model believes there is less remaining uncertainty after we obtain the
measurement at location 1,2, or 8 than that at location 3,4,6, or 7. Thus the next location selected by
TUN is location 2 (which has least averaged remaining entropy). The successive estimation for the
entropy is shown in Figure 6b in which the agent inquires and obtains the observation at location 2
following TUN. With the observations at location 2 and 5, the remaining entropy is very low with
neglectable variance. This entropy plot shows TUN is quite confident on the label of the object, and
believes there is not much information left at un-observed locations. A threshold can be used as a
stopping criterion in practice.

We compare TUN with random sampling strategy(RS) and Gaussian Process(GP) strategy. We
adapt squared exponential kernel in GP and employ the 2D coordinates and the projection angle
[x, y, cosθ, sinθ] as features. The GP model is fitted with training data and performs the predic-
tion of measurement at un-observed locations. To evaluate the quality of the strategies, we trained
classifiers with different number of the observations. The training data for the classifiers are gen-
erated from 5000 held-out objects with random noise and rotation. All the observations in training
the classifiers are taken from random sampling strategy. The performance in both accuracy and
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entropy(confidence) with different sensing budget are shown in Figure 7. The first location is ran-
domly selected in all three strategies, thus, the performances are the same for all strategies. Start
from the second step, TUN outperforms other strategies consistently with higher accuracy and less
uncertainty.

4 CONCLUSION

In this work, we present a task-driven sensor placement framework to maximize the information
gain. The proposed framework (TUN) is able to perceive and understand the observation, approx-
imate the conditional distribution of the object, and estimate the information gain pertaining to the
task. In the security screening experiment we demonstrated, TUN outperforms random strategy and
GP strategy consistently.
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