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Abstract

In this paper, we study private sparsification of graphs. In particular, we give an
algorithm that given an input graph, returns a sparse graph which approximates
the spectrum of the input graph while ensuring differential privacy. This allows
one to solve many graph problems privately yet efficiently and accurately. This is
exemplified with application of the proposed meta-algorithm to graph algorithms
for privately answering cut-queries, as well as practical algorithms for computing
MAX-CUT and SPARSEST-CUT with better accuracy than previously known.
We also give an efficient private algorithm to learn Laplacian eigenmap on a graph.

1 Introduction

Data from social and communication networks have become a rich source to gain useful insights
into the social, behavioral, and information sciences. Such data is naturally modeled as observations
on a graph, and encodes rich, fine-grained, and structured information. At the same time, due to
the seamless nature of data acquisition, often collected through personal devices, the individual
information content in network data is often highly sensitive. This raises valid privacy concerns
pertaining the analysis and release of such data. We address these concerns in this paper by presenting
a novel algorithm that can be used to publish a succinct differentially private representation of network
data with minimal degradation in accuracy for various graph related tasks.

There are several notions of differential privacy one can consider in the setting described above.
Depending on privacy requirements, one can consider edge level privacy that renders two graphs
that differ in a single edge as in-distinguishable based on the algorithm’s output; this is the setting
studied in many recent works [9, 19, 25, 54]. Alternatively, one can require node-level privacy which
preserves privacy of each node, which has been the focus in [10, 11, 28, 44]. In this paper, we
consider settings where nodes are known public entities and the edges represent sensitive or private
events and attributes relating two nodes.

In particular, we consider the following notion of differential privacy. We say that an algorithm that
takes a graph as input and returns a graph, is differentially private if given any two graphs that differ
in a single edge by weight at most one 1, the output of the algorithm does not change by much (see
Section 3 for a formal definition).

Given the ubiquitous nature of the problem, several recent works have studied various graph problems
within the framework of differential privacy. These include the works on differentially private
algorithms for computing degree distribution [28, 27, 44], on subgraph counting [40, 45], on private
MIN-CUT [22] and on estimating parameters of generative graphical models [39]. Each of the works
referenced above present algorithms that are tailor-made for a specific graph problems. We, on the

1This is the standard neighboring relation used in Blocki et al. [9] (and references therein). The underlying
reason for considering this privacy notion is as follows: since we do not restrict the weight on the graph, presence
or absence of an edge, as required in standard edge-level privacy, can change the output drastically.
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other hand, are interested in understanding the problem more generally. We pose the following
question: given an input graph, can we efficiently generate a succinct yet private representation that
allows us to simultaneously solve multiple graph-related tasks accurately?

Two popular representations of graphs that succinctly capture several graph properties include spectral
sparsification and cut sparsification. Spectral sparsification [52] is the following problem: given a
graph G with n nodes, output a subgraph eG of G such that (1� ")LG � LeG � (1 + ")LG , i.e.,

8x 2 Rn, (1�")x>LGx  x>LeGx  (1+")x>LGx, (1)

where LG is the Laplacian of the graph G (see Definition 1). This is a generalization of cut sparsifica-
tion [8], where x is restricted to binary vector. Spectral sparsification of a graph is a fundamental
problem that has found application in randomized linear algebra [13, 33], graph problems [29], linear
programming [34], and mathematics [37, 51].

There are many non-private algorithms for computing spectral sparsification of graphs [2, 7, 35,
36, 50, 52]. However, to the best of our knowledge, there is no prior work on differentially private
graph sparsification. This paper initiates this study by formally stating the goal of private graph
sparsification and presents the first algorithm for efficiently computing a graph sparsification. The
main contributions of this paper are as follows.

1. We show that differential privacy is not achievable under the traditional notion of spectral
sparsification of graphs since the output itself may reveal information about the edges.
Furthermore, we put forth an alternate but a well-posed formulation of differentially private
graph sparsification problem.

2. We give an efficient algorithm that outputs a private sparse graph with O(n/"2) edges. Since
our output is a graph and preserves the spectrum of the input graph, we can solve many
graph related combinatorial problems efficiently while preserving differential privacy.

The works most closely related to that of ours are that of Blocki et al. [9], Dwork et al. [19], and Gupta
et al. [23]. Blocki et al. [9] and Dwork et al. [19] give an algorithm that returns a symmetric matrix
that may not correspond to a graph but can be used to answer cut queries accurately while Gupta
et al. [23] output a private graph that approximates cut functions, but cannot approximate spectral
properties. Our algorithm for computing private sparse graph not only solves the two problems
simultaneously but also improves upon both of these works.

Spectral sparsification of graphs finds many applications including, but not limited to, spectral
clustering, heat kernel computations, separators, etc. Since differential privacy is preserved under
post-processing, our result can be used in these applications to get a private algorithm for these tasks
(see Table 1 in Section 4 for more details). On top of these improvements, we can leverage the fact
that our output is a graph that approximates the spectrum of the input graph to efficiently compute
Laplacian eigenmap, a useful technique used in manifold learning (see Section 4 for more details).

2 Preliminaries and Notations

The central object of interest in this paper is the Laplacian of a graph.
Definition 1 (Laplacian of graph). Let G be an undirected graph with n vertices, m edges, and edge
weights we. Consider an arbitrary orientation of edges of G, and let EG be the signed edge adjacency
matrix of G given by

(EG)e,v :=

8
<

:

+
p
we if v is e’s head

�
p
we if v is e’s tail

0 otherwise
.

The Laplacian of G is defined as LG = E>

G
EG . Equivalently, LG = DG � AG , where AG is the

adjacency matrix and DG is the degree matrix. One can verify that LG1 = 1>LG = 0, where 1
denotes all 1 vector and 0 denotes all 0 vector.

For a vertex u 2 V , let �u 2 {0, 1}n denote the row vector with 1 only at the u-th coordinate. Lets
represent the edges of the graph with vectors b1, . . . , bm 2 {�1, 0, 1}n such that be = �u � �v
where the edge e connects u, v 2 V . Then, LG =

P
e2EG

b>
e
be. The spectral sparsification of a
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graph can be casted as the following linear algebraic problem: given a sparsity parameter s and row
vectors b1, . . . , bm, find a set of scalars ⌧1, . . . , ⌧m such that | {⌧i : ⌧i 6= 0} |  s and (1� ")LG �P

e2EG
⌧eb>e be � (1+")LG . For any graph G with edge-adjacency matrix EG , the effective resistance

(also known as leverage score) of the edge ei 2 EG is defined as e⌧i := e>
i
(E>

G
EG)†ei = e>

i
L†

G
ei.

It is well known that by sampling the edges (rows of EG) of G according to its leverage score, we
obtain a graph eG such that (1� ")LG � LeG � (1 + ")LG (for example, see [50]).

Notations. We use the notation (A | B) to denote the matrix formed by appending the columns
of matrix B to that of matrix A. We denote by A† the Moore-Penrose pseudoinverse of A and by
kAk2 its spectral norm. We use caligraphic letters to denote graphs, VG to denote the vertices of G
and EG to denote the edges of G. We drop the subscript when it is clear from the context. We use the
symbol Kn to denote an n vertex complete graph and Ln to denote its Laplacian. For any S, T ✓ VG ,
the size of cut between S and T , denoted by �G(S, T ), is the sum of weight of the edges that are
present between S and T . When T = V \S, we denote the size of cut between S and V \S by �G(S).
For a set S ✓ [n], we use the notation 1S =

P
i2S

ei, where {e1, · · · , en} denote the standard basis.

3 Differentially Private Graph Sparsification

We begin by noting that differential privacy is incompatible with the requirements of spectral
sparsification in equation (1), because if we output a sparse subgraph of the input graph, then it will
leak information about eO(n) edges present in the graph. This motivates us to consider the following
“relaxation" of the spectral sparsification problem.
Definition 2 ((",↵,�, n)-Private Spectral Sparsification). Let G be the set of all n vertex positive
weighted graphs. We are interested in designing an efficient algorithm M : G! G such that

1. (Privacy) For all graphs G,G0
2 G that differ in only one edge by weight 1, and all possible

measurable S ✓ G, Pr[M(G) 2 S]  e↵Pr[M(G0) 2 S] + �.

2. (Sparsity) M(G) has at most eO(n) edges, and

3. (Spectral approximation) eG  M(G) satisfies (LG � ⇣Ln) � LeG � ⌘LG + ⇠Ln where
functions ⌘, ⇠, and ⇣ dependent on input parameters n, ",↵,�.

The function ⇣ and ⇠ can be seen as the distortion we are willing to accept to preserve privacy. That
is, we would like ⇣ and ⇠ to be as small as possible. Informally, we view adding Ln as introducing
plausible deniability pertaining to the presence of an edge in the output; it could be coming from
either G or the complete graph.

The choice of Ln is arbitrary and for simplicity. Our choice of Ln is motivated by the fact that an
n vertex unweighted complete graph is the same irrespective of the input graph once the number
of vertices is fixed. We can instead state item 3 by replacing Ln by Laplacian of any graph whose
edges are independent of any function of G. For example, we can use a d-regular expander instead
of Kn; however, this would not change our result as one can prove that a d-regular expander are
spectral sparsification of Kn. In the definition, we consider edge level privacy, a setting studied in
many recent works [9, 19, 25, 54]2 .

We first enumerate why previous work do not suffice. The two works most related work to ours is by
Blocki et al. [9] and Upadhyay [54] used random projection on the edge-adjacency matrix of graph G

to output a matrix, R. One can show that the spectrum of R>R approximates the spectrum of LG

if the dimension of random projection is high enough. It is claimed in Blocki et al. [9] that their
output is a sanitized graph. However, even though their output is a Laplacian, one major drawback
of random projection is that it does not preserve the structure of the matrix, which in our case is a
edge-incidence matrix of a graph (we refer the readers to [13, 55] for more discussion on benefits and
pitfalls of random projections). Likewise, the output of Dwork et al. [19] is a full rank matrix (and

2Note that the number of non-zero singular values of n vertex graph can be at most n� 1 [20], where n is
the number of nodes in the graphs. That is, if we consider node-level privacy, then the Laplacian of a graph G
has at most n singular values and that for neighboring graph G0 is at most n� 1 singular values. Thus outputting
any spectral sparsification would not preserve privacy.
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hence not a Laplacian) that is not positive semi-definite matrix. Consequently, their result cannot be
used for spectral sparsification and other applications considered in this paper. On the other hand,
Gupta et al. [23] only approximates cut functions and not the spectrum.

The existing techniques for graph sparsification are either deterministic [7]3 or use importance
sampling that depends on the graph itself [50, 52]. A popular approach (and the one we use) involves
sampling each edge with probability proportional to its effective resistance. We show that effective
resistance based sampling can be done privately, albeit not trivially.

In order to comprehend the issues with private sampling based on the effective resistance, consider
two neighboring graphs, G and G

0, such that G has two connected components and G
0 has an edge

e between the two connected components of G. No sparsifier for G will have the edge e; however,
every sparsifier for G0 has to contain the edge e. This allows one to easily differentiate the two cases.
Furthermore, we show that the effective resistance is not Lipschitz smooth, so we cannot hope to
privately compute effective resistance through output perturbation. One could argue that we can
instead use (a variant of) smooth sensitivity framework [40], but it is not clear which function is a
smooth bound on the sensitivity of effective resistance.

3.1 A High-level Overview of Our Algorithm

As we noted earlier, spectral sparsification of a graph can be posed as a linear algebra problem and
computing effective resistance suffices for private sparsification of graphs. We propose an algorithm
to sample using privately computed effective resistance of edges. Our algorithm is based on the
following key ideas:

1. Private sketch of the left and right singular vectors of the edge-adjacency matrix is enough
to compute all the effective resistances privately and a (possibly dense) private graph, Gint,
that approximates the spectrum of the input graph.

2. We then sparsify Gint to output a graph with O(n/"2) edges with a small depreciation in the
spectral approximation using any known non-private spectral sparsifier.

Computing effective resistance privately. We use the input perturbation technique (and its variants)
first introduced by Blocki et al. [9] to compute effective resistances privately. The scalars {⌧1, . . . , ⌧m}

and Gint are then computed using these effective resistances. Blocki et al. [9] first overlay a weighted
complete graph Kn on the input graph G to get a graph bG and then multiply its edge-adjacency
matrix EbG with a Gaussian matrix, say N . We view this algorithm as a private sketching algorithm,
where the sketch is R := NEbG . We prove in the supplementary material that if N is of appropriate
dimension as chosen in Step 2 of Algorithm 1, then (1� ")LG � E>

bG
N>NEbG � LG . However, R

does not contains enough information to estimate the effective resistances of EbG . For this, we sketch
the left singular space as L :=

�
EbG | wI

�
M for a Gaussian matrix M . We use different methods

to sketch the right and left singular space so as to preserve differential privacy. Combined together
L and R has enough statistics to privately estimate effective resistance, e⌧e, of each edge e using a
simple linear algebra computation (Step 2 of Algorithm 1).

Constructing Gint. We overlay a weighted Kn in order to privately sketch the left singular space
leading to

�
n

2

�
effective resistances. We define a set of scalars e⌧1, . . . , e⌧(n2) using the computed

effective resistance as in Step 2 of Algorithm 1. Let eG0 be the graph formed by overlaying a weighted
complete graph with edge weights sampled i.i.d. from a Gaussian distribution on bG. We cannot use
existing non-private algorithms for spectral sparsification on graph eG0 as it may have negative weight
edges. To get a sanitized graph on which we can perform sparsification, we solve the following:

SDP-1 : min
�
� : LḠ � LeG0 � �Ln, LeG0 � LḠ � �Ln, LḠ 2 C

 
.

Here C is the convex cone of the Laplacian of graphs with positive weights. Note that, SDP-1 has
a solution with � = O(w

n
). This is because the original graph G achieves this value. Since, the

semidefinite program requires to output a graph Ḡ with Laplacian LḠ , we are guaranteeed that its

3Deterministic algorithms cannot be differentially private. On the other hand, if not done carefully, the
sampling probability that depends on the graph can itself leak privacy.
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Algorithm 1 PRIVATE-SPARSIFY(G, ", (↵,�))

Input: An n vertex graph G = (VG , EG), privacy parameters: (↵,�), sparsification parameter: ".
Output: A graph eG.

1: Initialization. Set m =
�
n

2

�
, p = m+ n. Sample random Gaussian matrices M 2 Rp⇥n, N 2

Rn/"
2
⇥m, Q 2 Rp⇥p/"

2

, such that Mij ⇠ N (0, 1
n
), Nij ⇠ N (0, "

2

n
), and Qij ⇠ N (0, "

2

p
).

2: Set w = O( 1
↵"

p
n log n log(1/�) log (1/�)).

3: Compute L :=
�
EbG | wI

�
M,R := NEbG , where EbG =

q�
1� w

n

�
EG +

p
w

n
EKn .

4: Define e⌧i = Li

�
R>R

�†
L>

i
for every i 2 [m] and pi = min

�
ce⌧i"�2 log(n/�), 1

 
.

5: Construct a diagonal matrix D 2 R(
n
2)⇥(

n
2) whose non-zero diagonal entries are Dii := p�1

i

with probability pi.
6: Construct a complete graph H with edge weights i.i.d. sampled from N (0, 12 log(1/�)

↵2 ).
7: Construct eG0 such that LeG0 = LbG + LH. Solve the SDP-1 to get a graph Ḡ.
8: Output eG formed by running the algorithm of Lee and Sun [35] on E>

Ḡ
DEḠ .

output, Ḡ, will have � = O(w
n
). The Laplacian of the graph Gint is then constructed by computingP

e
e⌧eu>

e
ue, where ue are the edges of Ḡ. The graph Gint can be a dense graph, but we show that it

approximates the spectrum of the input graph up to eO(w
n
) additive error. To reduce the number of

edges, we then run any existing non-private spectral sparsification algorithm to get the final output.

3.2 Main Result

We now state our result that achieves both the guarantees of Definition 2.
Theorem 3 (Private spectral sparsification). Given privacy parameter (↵,�), accuracy parameter
", an n vertex graph G, let Ln denote the Laplacian of an unweighted complete graph, Kn, and
w = O

⇣
log(1/�)

↵"

p
n log n log(1/�)

⌘
. Then we have the following:

1. PRIVATE-SPARSIFY is a polynomial time (↵,�)-differentially private algorithm.

2. eG  PRIVATE-SPARSIFY(G, ", (↵,�)) has O(n/"2) edges, such that with probability at
least 9/10, we have

(1� ")
⇣⇣

1�
w

n

⌘
LG +

w

n
Ln

⌘
� LeG � (1 + ")

⇣⇣
1�

w

n

⌘
LG +

w

n
Ln

⌘
.

Proof Sketch of Theorem 3. Our algorithm requires performing matrix computations and solving a
semi-definite program. All matrix computation requires at most O(n3) time. Solving a semi-definite
program takes poly(n) time, where the exact polynomial depends on whether we use interior point,
ellipsoid method, or primal-dual approach. To prove privacy, we need to argue that computing L
and R is (↵/3,�/3)-differentially private. Blocki et al. [9] showed that computing R is (↵/3,�/3)-
differentially private while computing G

0 is private due to Gaussian mechanism. The privacy guarantee
on L follows using arguments similar to [9].

For the accuracy proof, recall that we approximate the left singular space by L and the right singular
space by R by using random Gaussian matrix, and then use (L(R>R)†L>)ii to approximate effective
resistance e⌧i (see Step 2) – this follows from the concentration property of random Gaussian matrices.
It is straightforward, then, to argue that sampling using the effective resistance thus computed would
result in a graph. Proving that the estimated effective resistances provide the spectral approximation
is a bit more involved and relies on matrix Bernstein inequality [53].

Our proof requires the spectral relation between Ḡ and bG since Xi is defined with respect to the edges

of Ḡ and e⌧i is defined with respect to bG. Since the solution of SDP-1 is � = c
q

logn log(1/�)
n↵2 , we have

LeG0 � c

r
log n log(1/�)

n↵2
Ln � LḠ � LeG0 + c

r
log n log(1/�)

n↵2
Ln.
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Another application of matrix Bernstein inequality gives us for some small constant ⇢ > 0,

Pr

"
LbG � ⇢

r
log n log(1/�)

n↵2
Ln � LeG0 � LbG + ⇢

r
log n log(1/�)

n↵2
Ln

#
� 1� �.

Let ei be the edges in Ḡ defined in Algorithm 1. Define random variables Xi as follow:

Xi :=

(
eie

>
i

pi
with probability pi

0 with probability 1� pi
.

Let Y =
P

i
Xi. Then we show the following:

E[Y ] =
X

i

E[Xi] = LḠ and Xi � O

✓
"2

c log(n/�)

◆
LḠ .

Applying matrix Bernstein inequality [53] gives

Pr [(1� ")LḠ � Y � (1 + ")LḠ ]�1� ne�c"
�2 log(n/�)/3

for large enough c. Now E>

Ḡ
DEḠ = Y implies (1� ")LḠ � E>

Ḡ
DEḠ � (1+ ")LḠ with probability

at least 99/100. Now E>

Ḡ
DEḠ can be the Laplacian of a dense graph. Using the result of Lee and

Sun [35], we have (1� ")LeG � LḠ � (1 + ")LeG and that LeG has O(n/"2) edges. Combining all
these partial orderings gives us the accuracy bound.

Extension to Weighted Graphs We can use a standard technique to extend the result in Theorem 3
to weighted graphs. We assume that the weights on the graph are integers in the range [1, poly n].
We consider different levels (1 + ")i for i 2 [c log n] for some constant c. Then, we consider input
graphs of the following form, LG =

P
c logn

i=1 LG,i, where LG,i has edges with weights
�
0, (1 + ")i

 
.

In other words, we use the (1 + ")-ary representation of weights on the edges and partition the graph
accordingly and run Algorithm 1 on each LG,i. Again, since there are at most poly log n levels, the
number of edges in eG is eO( n

"2
). Since eG is (↵ poly log n,� poly log n)-differentially private, we can

run another instance of [35] to get a graph bG with O( n

"2
) edges.

Private Estimation of Effective Resistances. Drineas and Mahoney showed a close relation between
effective resistance and statistical leverage scores [16]. Their result imply that effective resistance are
important statistical property of a graph. As a by-product of Algorithm 1, we can privately estimate
the effective resitances of the edges. As mentioned earlier, this is not possible through previous
approaches. For example, both Blocki et al. [9] and Dwork et al. [19] only approximates the right
singular space, which is not sufficient to capture enough statistics to estimate the effective resistances.
While effective resistance have been less explored, statistical leverage scores have been widely used
by statisticians. Consequently over the period of time, researchers have explored some other statistical
applications includes random feature learning [47] and quadrature [6] of effective resistances.

4 Applications of Theorem 3

Since differential privacy is preserved under any post-processing, the output of Algorithm 1 can be
used in many graph problems. It is well known that the spectrum of a graph defines many structural
and combinatorial properties of the graph [20]. Since Theorem 3 guarantees a sparse graph, it
allows us to significantly improve the run-time for many graph algorithms, for example, min-cuts and
separators [49], heat kernel computations [41], approximate Lipschitz learning on graphs [32], spectral
clustering, linear programming [34], solving Laplacian systems [33], approximation algorithms [29,
42], and matrix polynomials in the graph Laplacian [12].

For example, Theorem 3 with Goemans and Williamson [21] (and Arora et al. [5]) allows us to
output a partition of nodes that approximates MAX-CUT (SPARSEST-CUT, respectively). We can
also answer all possible cut queries with the same accuracy as previous best in O(|S|) time instead of
O(n|S|) time. This is a significant improvement for practical graphs. Lastly, we exhibit the versatility
of our result by showing its application in extracting low-dimensional representations when data arise
from sampling a probability distribution on a manifold, a typical task in representation learning.

6



Problem Additive Error Previous Best Error Theorem
(S, V \S) queries eO

⇣
|S|

p
n

↵

⌘
eO
⇣

|S|
p
n

↵

⌘
[9, 19] Theorem 4

(S, T ) queries eO
⇣

|S||T |
↵
p

n

⌘
eO
✓p

n|S||T |
↵

◆
[23] Theorem 4

MAX-CUT eO
⇣

|Sm|
p
n

↵

⌘
eO
⇣

n3/2

↵

⌘
[23] Theorem 5

SPARSEST-CUT eO( 1p
n↵2

) eO(
p
n

|Ss|↵ ) [23] Theorem 5

Eigenmap eO
⇣p

n
↵

⌘
eO
⇣p

n
↵

⌘
[19] Theorem 6

Table 1: Applications of Our Results for � = ⇥(n� logn) (↵ > 0 is an arbitrary constant, Sm is vertex set
inducing MAX-CUT, Sc is vertex set inducing SPARSEST-CUT, Q is vertex set for cut query).

In the rest of this section, we discuss these applications in more detail (see Table 1 for comparison).
For this section, let w = O( log(1/�)

↵"

p
n log n log(1/�)).

Answering (S, T ) cut queries efficiently. Cut queries is one of the most widely studied problem in
private graph analysis [9, 23, 54] and has wide applications [43, 46]. Given a graph G, an (S, T )-cut
query requires us to estimate the sum of weights of edges between the vertex sets in S and T . Since
our output is a graph, we can use it to answer (S, T ) cut queries privately and more efficiently.
Theorem 4 (Cut queries). Given a graph with n vertices, there is an efficient (↵,�)-differentially
private algorithm that outputs a graph eG, which can be used to answer all possible (S, T )-cut queries

with additive error O( |S||T |

↵"

q
logn log3(1/�)

n
). In particular, when T = V \S, then our algorihtm

incur an additive error O(min{|S|,|V \S|}

↵"
log3(1/�)

p
n log n log(1/�)).

This improves the result of Gupta et al. [23] who incur an O( 1
↵

p
n|S||T |) additive error. Note that

Blocki et al. [9] and Dwork et al. [19] can be used to only answer cut queries when T = V \S. For
(S, V \S)-cut queries, recall that Dwork et al. output C = E>

G
EG +N , where N is a Gaussian matrix

with appropriate noise to preserve differential privacy. For a set of q cut queries of form (S, V \S)
with |S|  |V \S|, standard concentration result of Gaussian distribution implies that Dwork et
al. [19] incur |1>

S
N1S | = O(|S|

p
log(1/�) log(q)/↵) additive error, where 1S 2 {0, 1}n has 1 only

in coordinate corresponding to S ✓ [n]. In particular, if we wish to answer all possible cut queries,
it leads to an additive error O(|S|

p
n log(1/�)/↵). We thus match these bounds [9, 19, 54] while

answering an (S, V \S) query in O(|S|/"2) amortized time instead of O(|S|2) amortized time.

Optimization problems. Given a graph G = (V,E) on a vertex set V , the goal of MAX-CUT to
output a set of vertices S ✓ V that maximizes the value of �S(G). It is well known that solving
MAX-CUT exactly and even with (0.87856 + ⇢)-approximation for ⇢ > 0 is NP-hard [31]. However,
Goemans and Williamson [21] gave an elegant polynomial time algorithm for computing 0.87856�⌘
approximation to MAX-CUT for some ⌘ > 0, thereby giving an approximation algorithm that is
optimal with respect to the multiplicative approximation. Another problem that is considered in graph
theory is the problem of finding SPARSEST-CUT. Here, given a graph G = (V,E) on a vertex set
V , the goal is to output a set of vertices S ✓ V that minimizes the value �S(G)

|S|(n�|S|) . The proposed
algorithms for these problems first computes a private sparse graph as in Algorithm 1 followed by a
run of the non-private algorithm ([21] in the case of MAX-CUT and [5] in the case of SPARSEST-CUT)
to obtain a set of vertices S. We show the following guarantee.
Theorem 5 (Optimization problems). There is a polynomial-time algorithm that, for an n-vertex
graph G := (V,E), is (↵,�)-differentially private with respect to the edge level privacy and produces
a partition of nodes (S, V \S) satisfying

MAX-CUT: �S(G)�(0.87856� ⌘)

✓
1� "

1 + "

◆
max
S✓V

�S(G)�O

✓
w|S|

↵

◆
.

There is a polynomial-time algorithm that, for an n-vertex graph G := (V,E), is (↵,�)-differentially
private with respect to the edge level privacy and produces a partition of nodes (S, V \S) satisfying

SPARSEST-CUT:
�S(G)

|S|(n� |S|)
 O(

p
log n)

✓
1 + "

1� "

◆
min
S✓V

✓
�S(G)

|S|(n� |S|)

◆
+O

✓
w log2 n

n

◆
.
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The above theorem states that we can approximately and privately compute MAX-CUT and SPARSEST-
CUT of an arbitrary graph in polynomial time. Further, the price of privacy in the form of the additive
error scales sublinearly with n. On the other hand, if we use the privatized graph of [23], it would
incur an error of O(n

3/2

↵
) for MAX-CUT and O(

p
n

"|S|
) for SPARSEST-CUT.

One may argue that we can use the output of Dwork et al. [19] or Blocki et al. [9] to solve theses
optimization problem. Unfortunately, it is not the case. To see this, let us recall their output. For a
given graph G, Blocki et al. [9] output R>R, where R is as computed in Step 4 of Algorithm 1. On
the other hand, Dwork et al. [19] computes LG +N , where N is a symmetric Gaussian matrix with
entries sampled i.i.d. with variance required to preserve privacy.

Both these approach output a symmetric matrix; however, the output of Dwork et al. [19] is neither a
Laplacian nor a positive semi-definite matrix, a requirement in all the existing algorithms. On the
other hand, even though the output of Blocki et al. [9] is a positive semi-definite matrix, it can have
positive off-diagonal entries. As such, we cannot use them in the existing algorithms for MAX-CUT
or SPARSEST-CUT since (analysis of) existing techniques for these optimization problems requires
graph to be positively weighted (see the note by Har-Peled [24])4. Even if we can use their output,
our algorithm allows a faster computation since we significantly reduce the number of constraints in
the corresponding semi-definite programs for these optimization problems.

Learning laplacian eigenmap. A basic challenge in machine learning is to learn a low-dimensional
representation of data drawn from a probability distribution on a manifold. This is also referred to as
the problem of manifold learning. In recent years, many approaches have been proposed for manifold
learning, including that of ISOMAP, local linear embedding, and Laplacian eigenmap.

In particular, the state-of-the-art Laplacian eigenmaps are relatively insensitive to outliers and noise
due to locality-preserving character. In this approach, given n data samples {x1, . . . , xn} 2 Rd, we
construct a weighted graph G with n nodes and a set of edges connecting neighboring points. The
embedding map is now provided by computing the top k eigenvectors of the graph Laplacian. There
are multiple ways in which we assign an edge e = (u, v) and edge weight between nodes u and v. We
consider the following neighborhood graph: we have an edge e = (u, v) if kxu � xvk2  ⇢ for some
parameter ⇢. If there is an edge, then that edge is given a weight as per the heat kernel, e�kxu�xvk

2
2/t

for some parameter t 2 R. The goal here is to find the embedding map, i.e., an orthonormal projection
matrix, UU>, close to the optimal projection matrix, UkU>

k
, where the columns of Uk are the top-k

eigenvectors of LG . Using our framework, we can guarantee the following for privately learning the
Laplacian eigenmap matching the bound achieved by previous results [19].

Theorem 6 (Laplacian eigenmap). Let G be the neighborhood graph formed by the data samples
{x1, · · · , xn} 2 Rd as described above. Let LG,k = UkU>

k
LG , where the columns of Uk are the

top-k eigenvectors of LG . Then, there is an efficient (↵,�)-differentially private learning algorithm
that outputs a rank-k orthonormal matrix U 2 Rn⇥k such that

��(I� UU>)LG

��
2
 (1 + ") kLG � LG,kk2 +O (w) .

5 Differentially Private Cut Sparsification

Benzur and Karger [8] introduced the notion of cut sparsification. In this section, we present an
algorithm that outputs a cut sparsifier while preserving (↵, 0)-differential privacy. We use this
algorithm to answer cut queries, approximately computing MAX-CUT, SPARSEST-CUT, and EDGE-
EXPANSION, with (↵, 0)-differential privacy. We show the following:

Theorem 7. Let G = (V,E) be an unweighted graph. Given an approximation parameter 0 < " < 1
and privacy parameter ↵, PRIVATE-CUT-SPARSIFY, described in Algorithm 2, is (↵, 0)-differentially
private. Further, PRIVATE-CUT-SPARSIFY outputs an n vertices eO(n/"2) edges graph, eG, such that,
with probability at least 99/100, we have 8S ✓ V,

(1� ")1>

S
LeG1S �O

✓q
n1>

S
Ln1S

◆
 ↵ · 1>

S
LG1S  (1 + ")1>

S
LeG1S +O

✓q
n1>

S
Ln1S

◆
.

4Alon et al. [3] gave an algorithm for solving MAX-CUT for real-weight graphs using quadratic program (in-
stead of semi-definite program based approach [21]), but that leads to an O(log n) multiplicative approximation.
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Algorithm 2 PRIVATE-CUT-SPARSIFY (G, ",↵)

Input: An n vertex graph G = (VG , EG), privacy parameters (↵,�), approximation parameter ".
Output: A Laplacian LeG .

1: Privatize. Construct a complete graph bG with weights we defined as follows:

we :=

8
>><

>>:

+1 with probability (1 + ↵)/2 if e 2 EG

�1 with probability (1� ↵)/2 if e 2 EG

+1 with probability 1/2 if e /2 EG

�1 with probability 1/2 if e /2 EG

.

2: Compute Ḡ using the linear program of Gupta et al. [23] on bG.
3: Output eG by running the algorithm of Benzur and Karger [8] on Ḡ.

The above theorem says that any cut can be approximated by our cut sparsifier up to eO(
p
n(n� s)s)

error, while preserving (↵, 0)-differential privacy. This is an instance based bound and matches the
accuracy achieved by our graph sparsification result (and the best possible [9, 54]) when s = O(n).

6 Discussion

In this paper, we introduced private spectral sparsification of graphs. We gave efficient algorithms
to compute one such sparsification. Our algorithm outputs a graph with O(n/"2) edges, while
preserving differential privacy. Our algorithmic framework allows us to compute an approximation to
MAX-CUT and SPARSEST-CUT with better accuracy than previously known, and a first algorithm for
learning differentially private Laplacian eigenmaps.

Our algorithm uses both importance sampling and random sketching. At a high level, sketching
allows us to ensure privacy and importance sampling allows us to produce spectral sparsification. To
the best of our knowledge, this is the first instance of using importance sampling in the context of
privacy. Since important sampling is an important tool in non-private low-space algorithms [55], this
we believe can lead to development of other private algorithms.

Our work differs from previous works that use random projections or graph sparsification [9, 54]. The
only work that we are aware of which uses spectral sparsification in the context of differential privacy
is that of Upadhyay [54] with an aim to improve the run-time efficiency of Blocki et al. [9]; however,
their algorithm does not output a graph let alone a sparse graph. Hence, their approach cannot be
used to approximate MAX-CUT or SPARSE-CUT – the only method to solve these problems would
be to run all possible cut queries leading to an error of O(n3/2/↵). This follows because the error
per cut query would be O(

p
n|S|

"
), and since there are 2n possible cuts, an application of Chernoff

bound results in worst case error O(n
3/2

↵
), matching the guarantee of Gupta et al. [23].

On the other hand, Gupta et al. [23] give an algorithm to output a graph that preserves cut functions
on a graph. However, their output does not preserve the spectral properties of the graph and so cannot
be used in spectral applications of graphs, such as Laplacian eigenmap or learning Lipschitz functions
on graphs. Moreover, their algorithm incurs large additive error. We also give a tighter analysis for a
variant of their algorithm to achieve an instance based additive error.
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