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ABSTRACT

In this paper we propose autoencoder architectures for learning a Cohen-Welling
(CW)-basis for images and their rotations. We use the learned CW-basis to build
a rotation equivariant classifier to classify images. The autoencoder and classi-
fier architectures use only tensor product nonlinearity. The model proposed by
Cohen & Welling (2014) uses ideas from group representation theory, and extracts
a basis exposing irreducible representations for images and their rotations. We
give several architectures to learn CW-bases including a novel coupling AE archi-
tecture to learn a coupled CW-bases for images in different scales simultaneously.
Our use of tensor product nonlinearity is inspired from recent work of [Kondot
(2018a). Our classifier has very good accuracy and we use fewer parameters.
Even when the sample complexity to learn a good CW-basis is low we learn clas-
sifiers which perform impressively. We show that a coupled CW-bases in one scale
can be deployed to classify images in a classifier trained and tested on images in
a different scale with only a marginal dip in performance.

1 INTRODUCTION

A fundamental problem in vision is understanding how the human eye sees objects and images as
being the same even when they undergo transformations. To obtain such a behaviour in a machine
learning set-up, a natural idea is to construct representations of the object which remain the same
even when the object undergoes transformations. This "handcrafting’ of representations of the ob-
ject invariant to transformations was the preferred method of the vision community for a long time.
Since the pathbreaking achievements of modern convolutional neural networks beginning with the
seminal work of [Krizhevsky et all (2012) the focus has changed - the interest is more now on devel-
oping algorithms that learn to construct these invariant representations from transformed examples.

Goodfellow et all (2009) were among the first to address the question of invariance in deep net-
works. [(Cohen & Welling (2014) were among the first to use representation theory of compact Lie
groups to give it a sound mathematical framework. Developing on on ideas from earlier works
of Rao & Ruderman (1999) and [Sohl-Dickstein et al. (2010) on the Lie group model, Cohen and
Welling build a model for the abelian group of transformations SO(2), the group of rotations of the
plane. Using their model they learn a nice basis for the underlying vector space in which the images
sit, which allows them to read off the types and multiplicities of the irreducible representations of
SO(2) which occur in images under rotations. In this basis exposing irreducible representationsl,
the action of an element of SO(2) on an image is very easy to describe. From projections of images
onto this basis] Cohen and Welling obtain features of images which they use for classification.

A number of experts attribute the impressive performance of modern deep convolutional networks
(CNN’s) to the fact that more complex and abstract features are learned as one moves down the
network. Nonlinearity seems to be essential to learn such features. Deep networks achieve their
nonlinearity by the use of activation functions such as RELU, [Krizhevsky et al. (2012). Convolution
networks are by design invariant to translations. Given the incredible success of these deep networks
the quest is now to build networks that have invariance to a larger group of symmetries.

'a phrase from|Cohen & Welling (2014)
*hereafter called a CW-basis
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In [Bruna & Mallat (2013) the authors show that the first two layers of the scattering net-
work yield a powerful representation of images which is invariant to geometric transformations.
Gens & Domingos (2014) proposed deep symmetry networks, symnets, that form feature maps
over large symmetry groups. They showed that Symnets over the affine group have smaller
sample complexity. More recently, Group Convolutional Networks (GCNN’s) were introduced
in |Cohen & Welling (2016a) and Harmonic nets were introduced by Worrall et al! (2017). Both
GCNN’s and Harmonic nets are designed to learn representations of images invariant to a larger
set of symmetries than translations. The resulting networks perform impressively - the error rate
reported by GCNN’s on the MNIST-rot(MNIST Variations) data set is only 2.28%. Harmonic nets
are now the state of the art on MNIST-rot with a reported 1.62% error.

More recently (Cohen & Welling (2016b) introduced Steerable CNN’s based on more sophisticated
ideas from group representation theory. This puts constraints on the network weights and architec-
ture, and results in a reduction in the number of parameters to be learned. Steerable CNN’s were
shown to outperform ResNets, [He et al! (2016), and achieve state of the art results on CIFAR 10,100.

In both GCNN’s as well in in steerable CNN’s equivariance to the symmetries of a group G is
achieved by a generalized form of convolution. The standard convolution in CNN’s is replaced with
the convolution of functions from G to C. [Kondor & Trivedi (2018b) proved the converse - they
showed that any neural network which achieves equivariance with respect to the action of a group
G, necessarily implements such a generalized convolution of functions on G.

If one were to factor out depth, it appears that it is the nonlinearity of the activation functions used
in deep networks that is responsible for their impressive performance. But nonlinear functions like
RELU are mathematically hard to analyze. It would be nice to design networks which construct fea-
tures, just as deep networks seem to do in their various layers, with more mathematically amenable
activation functions. This is the first motivation of this study.

Our other motivation comes from what is done in Pattern theory, Mumford (1997), where to learn
images a stochastic model of the images to be learned is first built. To build a stochastic model
of natural images it is important to view images under different scales simultaneously (Mumford
1997, Chapter 6)). Scattering networks address this issue because they use a wavelet basis for
images.

This leads us to the following motivating questions. Can one use a mathematically amenable nonlin-
earity like tensor-product nonlinearity to design neural nets for image classification, leveraging ideas
from group representation theory? How does one obtain complex abstract features from simple fea-
tures using such a nonlinearity? Does it help to view images under different scales simultaneously
to build such neural nets?

In this paper we make a modest attempt to answer such questions. We combine ideas from
Cohen & Welling (2014) and Kondor (2018a), and design neural networks leveraging notions of
tensor products of group representations. We decouple the classification process in two steps - first
discover Cohen-Welling bases and then deploy them to train classifiers using ideas from Kondor.

2 PRELIMINARIES

We start with some definitions which set the stage for the work of |Cohen & Welling (2014). Let G
be a group and let V' be a finite-dimensional vector space over a field - we will always assume that
the underlying field is the field of complex numbers C, or the field of real numbers R. Let GL(V')
denote the group of invertible linear transformations of V.

Definition 1 We say G acts on V if there is a group homomorphism p from G to GL(V).

So g € G acts on a vector v € V by sending v to p(g)v. If V' has dimension d, then with respect to
a basis of V, p(g) is given by a d x d matrix. The action is then given by multiplying p(g) with v.
We denote this by g - v.

Definition 2 We say a subspace W of V' is G-invariant under the action of G if for all g € G and
allw e W, p(g)w € W. If V has no proper subspace which is G-invariant we say V is irreducible.
The restriction of the action of G to a G-invariant subspace W is called a subrepresentation.
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Suppose V' has an invariant subspace W, and we can also find a G-invariant subspace U such that
W @ U = V. Then one can choose a basis of W and of U giving us a basis of V. In this basis each
p(g) will be a block diagonal matrix consisting of two blocks of size dim (W) and dim(U). For
certain groups (called reductive groups) there is always such a U, and the group of rotations of the
plane, SO(2), is an example of such a group. For reductive groups we can continue this process till
we have a decomposition of V' into irreducibles, V =U; & Us & ... @ Uy.

Definition 3 If V and W are representations of a group G, a G-morphism (aka a G-equivariant
map) from'V to W is a linear map ¢ from'V to W such that ¢(g - v) = g - ¢(v).

If V and W are vector spaces over complex numbers Schur’s lemma, Serre (1977), places restrictions
on the dimension of the space of G-morphisms. First, if V' and W are irreducible representations of
G, Schur’s lemma states the space of G-morphisms between them is either one dimensional (i.e every
G-morphism between them is given by a scalar matrix) or zero dimensional (i.e the zero morphism
is the only G-morphism between them). This allows us to group irreducible representations into
types, with two of them being of the same type when there is a nonzero G-morphism between them.

Given a decomposition of a vector space with a G-action into a direct sum of irreducibles as above,
we collect all irreducibles of the same type together and write V' = m1S;; @ maSia -+ ® xStk
Here tk is an indexing set for types, Sy; is an irreducible G-representation of type ti, and Sy; and
Sy; are of different types when ¢ # j. We then say Sy; occurs in V' with multiplicity m; in the
decomposition of V. Now assuming that V' = @ﬁjmiSﬁ and W = @E’fmSti, it follows that the
dimension of the space of G-morphisms between V and W is ) . m;n;.

Cohen & Welling (2014) considered the problem of supervised learning of images under the group
SO(2). Viewing an N x N image as an N? dimensional vector, an element of SO(2) acts on
an N? dimensional vector by taking the vector representing the image to the vector representing
the rotated image. SO(2) is an abelian group (rotating an image by 6, and then by 65 or rotating
it first by A5 and then 6, yields the same image). Hence, over complex numbers, the irreducible
representations of SO(2) are one-dimensional (see, [Kanatani (1990)). When the underlying space
is a real vector space (as was considered in/Cohen & Welling (2014)), the types are parametrized by
nonnegative integers n (over complex numbers the irreducible representations are parametrized by
all integers). The irreducible representation corresponding to type n = 0, Sy is one-dimensional and
is an invariant under SO(2). For n > 0, the irreducible representation .S, is two dimensional (over
complex numbers this splits into two one-dimensional representations parametrized by £n).

It follows, say, from [Kanatani (1990, 2.3.7, 2.4.7) that there is a change of basis of the underlying

vector space V' with respect to which the action of the rotation group is given by a block diagonal

matrix D with blocks of size 1 and 2. It is easy to describe these blocks. Blocks of size 1 correspond

to invariants, of type n = 0, and have entry 1. The number of such blocks is called the multiplicity of

the space of invariants in V. The block corresponding to nonzero n is the elementary rotation matrix
cgs(n@) — sin(nf) . It follows that the number of such blocks is the multiplicity of irreducible
sin(nf)  cos(nf)

typenin V.

So there exists an N x N orthogonal matrix W and a diagonal matrix D), as above, with the
property that when an image z is rotated by 6 the transformed image is given by W DW'z. In
Cohen & Welling (2014), the authors address the question of determining the matrix W and the
multiplicity with which a given n appears. The input is collection of pairs (z,y), of an image x
and it’s transformation y when it is rotated by an unknown angle 6. The authors find W using
expectation-maximization over an interesting prior. The W their algorithm outputs is almost always
a small subspace of the image space, spanning only some of the irreducible subspaces (similar to an
SVD procedure which just outputs only the top few singular vectors). So strictly speaking we should
be calling this a CW-subbasis since it may not span the image space, but we ignore this technicality.

An image x is then projected onto the W constructed and the vector of projected values, W7z, were
used by Cohen and Welling as elementary features of the image for classification.

Recently [Kondor (20184) proposed a neural network for learning the behaviour and properties of
complex many-body physical systems.The neurons in this system operate entirely in the Fourier
space.The neurons compose activations following Schur’s lemma, thereby ensuring that the activa-
tions are covariant to rotations.
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We pose our motivating questions more precisely using the language of Cohen-Welling.

1. Can we obtain a CW-basis of images and their rotations using tensor product nonlinearity?

2. How can elementary features obtained using a CW-basis be combined to get more complex
abstract features for building good classifiers?

3. Can one discover CW-bases of images in two scales in tandem, with one influencing the
discovery of the other? Do such coupled bases perform better in classification? Can one
use these coupled CW-bases interchangeably?

Our contributions We give an affirmative answer to all the questions. We give several architectures
to construct such bases. We use Kondor’s framework to construct a classifier which takes elementary
features and combines them using simple ideas from the representation theory of SO(Q)H We give
a simple coupled autoencoder architecture which answers question 3 above - we use tensor product
nonlinearity crucially. While such bases are not better at classification we show that they can be
interchangeably used with a marginal drop in performance.

2.1 NOTIONS FROM REPRESENTATION THEORY

To describe our set up and explain our experiments we will need a few more notions from represen-
tation theory. Throughout we will assume that the underlying group G is a reductive group, in fact
the reader may think of G as SO(2).

If V is a representation of a group G then the dual vector space V* acquires a natural GG action given
by (g- f)(v) = f(g~v), for f € V*,v € V. If V, U are representations of a reductive group then
V ®U is arepresentation of the product group G x GG. Furthermore, since G is a subgroup of G x G
under the diagonal embedding (¢ mapping to (g,¢)), V ® U is a representation of G. And by what
we described above V' ® U splits into a direct sum of irreducible representations of GG identified by
their types and multiplicities. It also follows that the tensor algebra, T(V) = @,;V®? of V, is an
(infinite dimensional, algebraic) representation of G.

Remark 4 When G is SO(2) and 0 # i < j then S; ® S; splits into a direct sum S;1; & S;_;.
When i =0, S; ® S; is isomorphic to S;, (Kanatani (1990)).

To make precise the question about coupled bases and features from a coupled bases we need one
more definition.

Definition 5 We say G-representations V and W are coupled if W is the image of a G-morphism
of a finite dimensional subrepresentation of the tensor algebra of V, and V is the image of a G-
morphism of a finite dimensional subrepresentation of the tensor algebra of W.

The above definition is equivalent to requiring that VW can be realized as a subrepresentation (or a
quotient) of the tensor algebra of V' and V' can realized as a subrepresentation (or a quotient) of the
tensor algebra of W.

Definition 6 Ler V' be the vector space of 14 x 14 images and let W be the vector space of 28 x 28
images. Assume the rotation group SO(2) acts on both. We say a Cohen-Welling basis X of V is
coupled to a Cohen-Welling basis Y of W if the vector space dual of the subspace spanned by X
(with its SO(2)-action) is coupled to the vector space dual of the subspace spanned by 'Y .

Recall that by projecting an image onto a CW-basis we get elementary features of the image which
are used for classification. These elementary features are elements of the vector space dual of the
space spanned by the CW-basis, hence the need for the word dual in the above definition. Motivated
by the above definition we say features obtained from coupled CW-bases are coupled features.

The definition above is motivated by our question of whether one can build CW-bases in two differ-
ent scales with one influencing the discovery of the other and vice-versa. Our definition suggests

3 As we were getting this write up ready we were pointed to some recent work of[Kondor et al| (2018d) - the
authors do similar work, but use the rotation group SO(3) - for completeness we have included their results in
Table [
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that in order to generate coupled CW-bases we will need to view the images at different scales si-
multaneously, and use tensor product nonlinearity to generate them, thereby forcing the influence
we are looking for.

Remark 7 In the appendix we describe our problem and solution in a language that is more familiar
to the ML community - as that of seeking filters in the Fourier space of images.

Remark 8 One last remark is in order before we describe our setup and experiments. We are work-
ing over the field of real numbers, so Schur’s lemma does not apply in our situation. Nevertheless
when we look for SO(2)-morphisms between two irreducible vector spaces with an SO(2)-action
we will assume that the morphisms are of the kind Schur’s lemma dictates - either we have no mor-
phism or the morphism is given by a scalar matrix r1d, r a real number and 1d being the identity
matrix.

3 EXPERIMENTS AND RESULTS

We use the notation W, for a CW-basis of images of size £ x £. So Wy is a £?> x d matrix for some
d (usually smaller than [2). Then, rotation of an ¢ x ¢ image = by an angle 6 is the /2-size vector
Wng(H)WeT x, where Dy is the block diagonal matrix described in section 2] of size d x d. If a
column of W, represents a basis vector which is invariant, the corresponding block is 1, and if a
pair of columns in Wy is a basis for an irreducible representation of type n, the block in Dy for this
pair is the elementary rotation matrix described in section[2l If there is no confusion we ignore the
subscripts. We give three neural net architectures to discover CW-bases of images.

3.1 LEARNING CW-BASES

1. An autoencoder(AE) architecture. The autoencoder(AE) architecture is given
as Alogrithm [1I An equivalent block diagram is given in the Appendix (see
figure [@). Details of computing Z; below are given in Appendix, Section [El

Algorithm 1: AutoEncoder

Input: X; € R™ i e {1,2,...}
Hyper-parameters:a;, b;, 8

Letda:a0+zj=12xaj 5 db:b0+2j:12ij
Output: Wyg € R784%da
Output: ¢ € R *da // Equivariant linear maps (Block diagonal
Output: ¢ € Ra* (db+dv?) // matrices) as dictated by Remark [
fori=1,2,... do
0; € U[0,360) // Choosen uniformly at random
Y; = Rotate (X, 6;) // Rotate is the standard image rotation
Yi = WiYi
2, = $(6(¥:) © 9(¥i) @ 6(12)
X; = WasD(—0,)Z; // Unrotate and reconstruct the image
end
L=3% |Xi*Xi\§ // Loss function
Was, ¢, = min (L + B|WogWas — Idg, xd,|1)
Woas,¢,9

return Wag, ¢, ¢

2. Coupled Autoencoder(CAE) architecture. In this setup, Figure [Il we learn W14 and Wog in
tandem. We feed both, an image X and a scaled down version of the image x to the network.
The network on top takes x and produces X a 28x28 image. The bottom network takes X
and produces = a 14x14 image. The two networks are connected and we use the same Wog,
and W4 in the top and bottom layer. Hyperparameters are multiplicities of SO(2)-irreducible
representations in Wag and Wi4. We learn the W14, Wag and two SO(2)-equivariant maps ¢
and 7. The bottom network takes X, rotates it by 6 and projects the resulting Y on the current
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Wag, to get Y = WEY. Applying ¢ we get ¢(Y). We unrotate ¢(Y) using D14(—6) to get
z. We generate a 14x14 image using the current W74 to get £ = Wi42. The top network takes
x and rotates it by the same 6. This is projected onto the current W14 to get §. We apply ¢ to
9 @ (¢ ® ) and unrotate the resulting vector using Dag(—6) to get Z. We use the current Wag

to get X = WhsZ. We minimize the reconstruction error | X — X |2 + |z — #|2.

Tensor

(NonLinearity)
1 [—
14x14 Rotated
Image T 14x14 ——h .
X Image Wit , 208
: Wos ag
i ] F
| Rotate by
1 angled
Scale : ST
Down| | :
Input ' —
Rotated
12::3? 28x28 Wae Project Taa
i Image 28 Tmage
X i Apply N
D(—6) ;

Figure 1: Coupled autoencoder architecture (CAE)

3 Bootstrapping W14 to Wsg, Wag to Wy4. The appendix describes an architecture in which we
bootstrap, starting with a W4 learned in experiment 1 or 2 and learn a Wag.

3.2 CLASSIFICATION USING THE LEARNED CW-BASIS

Figure 2] shows a 2 layer classification network for 28 x 28 images - this can be extended to any
number of layers, and other image sizes. This is a logical extension of the auto encoder network. It is
a CNN in Fourier domain using tensor product nonlinearity as inThomas et al. (2018). Assume the
dimension of Wag is dy. We project the image x onto Wag to get Wiz, Let L1 be a vector space
with an SO(2)-action - hyperparameters are multiplicities /1 ; of irreducibles SO(2)-representations
S; in Ly. We learn an SO(2)-equivariant map ¢ from the image space of Wi to L;. The SO(2)-
decomposition of Iy = ¢ (Wisz) @ (¢1(Wkr) ® ¢1(Wkx)) is computed. This is the input to the
next layer. There we choose a vector space Lo with a SO(2)-action which splits into irreducibles
S; with multiplicities lo; (hyperparameters). We learn a second SO(2)-equivariant map ¢, from
L1 ® (L1 ® Ly) to Lo and compute ¢ (7). We compute the tensor product of ¢» (1) with itself and
produce Iy = ¢2(11) @ (P2(l1) ® ¢2(l1)). This is the input to the next layer. So we learn as many
SO(2)-equivariant maps as there are layers. In the final layer, [ is projected onto the invariant space
(the multiplicity of Spin Ly & (Ly ® L) and fed to a soft max classifier.

3.3 RESULTS

1. Construction of CW-basis

We construct CW-basis Wy, for 14 x 14 images and CW-basis Wsg for 28 x 28 in the
AE and CAE architectures. We evaluate these bases in terms of image reconstruction
error (MSE). We also used rotation reconstruction error by comparing with scikits-image

Input
28x28

W
Image * Project

Softmax
Classification

Figure 2: Classification network



Under review as a conference paper at ICLR 2019

rotation. The data set for which these errors are reported is MNIST-rot. ~We choose
[10,5,5,5,5,4,4,4,4,4,3,3,3,3,3,2,2,2,2,2,1,1, 1,1, 1] as our multiplicities for the a;’s (hy-
perparameters) and [8,4,4,4,4,3,3,3,3,3,2,2,2,2,2/1,1,1,1, 1] for the b;’s (hyperparame-
ters). Figure 3] and Figure [ shows graphs of the error functions for Wag constructed in
AE, CAE architectures as a function of the number of samples given to learn the Wsg. Even
when the number of samples is as small as 50, we discover CW-bases which are good at rotation
and reconstruction in both architectures. In Figure[Z in the Appendix we visualize a few basis
elements learned.

0.045 c 0.045 CAE
=—ii— CAE -
0.04 AE 0.04 AE
0.035 0.035
0.03 0.03
w 0.025 W 0.025
%}
> 002 = o002
0.015 0.015
0.01 0.01
0.005 0.005
0 0
0 50 100 150 200 250 300 350 400 450 500 0 50 100 150 200 250 300 350 400 450 500
No. of Samples No. of Samples

Figure 3: MSE - Reconstruction (MNIST-rot) Figure 4: MSE - Rotation of images (MNIST-rot)

2. Results on Classification, MNIST In Figure [3] we plot the accuracy of these various Wag ob-
tained above when deployed for classification. We plot the accuracy of the classifier as a function
of the number of samples used to construct the CW-bases. When the number of samples is as
low as 50 a CAE-Wsg performs better than an AE-Wsg. Beyond 100 samples the difference is
insignificant. Plots using a bootstrapping CW-basis are similar to that of the AE and omitted.

In Table [I we give the mean accuracy(and stdev) of our classifier when trained and tested on
combinations using MNIST(NR) and MNIST-rot(R). The R/NR column for example denotes
the accuracy when trained on MNIST-rot and tested on MNIST (LeCun et al.). For comparison
we use Planar, Spherical CNN accuracies given in [Cohen et all (2018). We also compare with
FFS2CNN, (see|Kondor et al! (2018d)).

The fourth row shows the accuracy of our classifier that used a CAE-Wsg. This was obtained
using CAE architecture which was given 12000 training samples of MNIST-rot to discover the
Wag. Our classifier performs better in all the scenarios.

0.965
0.96
0.955
0.95

0.945

Accuracy

0.94 == CAE

== AE
0.935
0 50 100 150 200 250 300 350 400 450 500

No. of Samples to learn W

Figure 5: Classification accuracy (MNIST-rot)

Coupling interchangeability To test how coupled the CAE-Wsg and CAE-W, are, we did the
following experiment - the classifier trained in row 4 with CAE-Wsg was presented with down
sized 14x14 images for classification. No additional training was done. Instead we use the top
half of the coupling network from Figure[T]- given a test image y we compute § = W1,y using
the CAE-W14. Then ¢((§ ® §) @ §) is fed to the trained classifier of row 4. These results are
reported in row 5 as [28/14 Tensor].

For comparison we took the 14x14 images and scaled them up to 28x28 and then fed them to the
trained classifier of row 4. These results are reported in Row 6 as [28/14 Scale]. Using CAE-W14
is better, indicating that a coupled bases retains scale information well.

We repeated the same experiment when the coupled network is given only 500 samples to learn
the CAE-Wss and CAE-W74. As row 8 shows, performance is still very good.
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Table 1: MNIST - Accuracies - rotated, unrotated combinations

Samples used

R/R R/NR NR /NR NR/R
to learn W

Planar ! - 23.00 - 98.00 11.00
Spherical CNN ! - 95.00 - 96.00 94.00
FFS2CNN 2 - 95.80 - 96.00 95.86
Ours 12000 96.73 (0.35) 96.90(0.23) 97.68 (0.08) 98.48 (0.06)
28 / 14 Tensor 12000 96.17 (0.35) 96.51(0.27) 97.10(0.70) 97.51 (0.09)
28 / 14 Scale 12000 94.79 (0.59) 95.56 (0.55) 93.86 (0.87) 91.66 (1.36)
Ours 500 96.40 (0.09) 96.64 (0.06) 97.41(0.09) 98.24 (0.05)
28 / 14 Tensor 500 95.78 (0.12) 95.98 (0.09) 96.53 (0.12) 97.03 (0.07)
28 / 14 Scale 500 94.37 (0.39) 95.34(0.23) 92.67 (1.02) 89.62 (1.51)

! Values as reported in Table 1 of|Cohen et al.! (2018)
2 Values as reported in|Kondor et al| (2018d)

3. Results on Classification, Fashion-MNIST. In Table [2] we report mean classification accu-
racy(and stdev) on the Fashion-MNIST data set(Xiao et al. (2017)). We rotate each data point
around the origin by an angle chosen uniformly between 0 and 27 to create F-MNIST-rot. The
CW basis was learned in the AE architecture with Fashion-MNIST as input. The classifier is a
four layer network (96K parameters). We compared with a Depth 5 CNN (102K parameters).

Table 2: Fashion MNIST - Accuracies - rotated, unrotated combinations

Samples used R/R R/NR NR /NR NR /R
to learn W
CNN - 80.86 (0.57) 79.83 (0.66) 90.68 (0.31) 20.86 (0.46)
Ours 20000 86.34 (0.18) 84.67 (0.27) 86.70 (0.29) 85.42 (0.18)

3.4 IMPLEMENTATION

Our autoencoders and classifiers were implemented as neural nets in Python (TensorFlow). We used
the Adam optimizer.

4 CONCLUSION AND FUTURE WORK

We answer in the affirmative all our motivating questions - we design architectures which learn
CW-bases and classify using only tensor product nonlinearity. We obtain some state of the art
results. It appears that coupling bases do retain scale information and can be interchangeably used
for classification albeit with a small drop in performance. There is no appreciable advantage in using
coupled bases for classification excepting when the bases are learned using small samples of inputs.

Tensor product nonlinearity allows us to decouple the classification problem in two steps. One
advantage of decoupling the process is that the basis can be obtained offline. Our ideas can be
extended to other groups. We have begun experiments with the action of the S;, on images.

We are testing our architectures on CIFAR-10. One issue we run into when using architectures with
a lot of depth, is that accuracy increases and then drops. A similar issue is resolved in RES-nets
He et all (2016) by computing residual functions. In ongoing work we proceed similarly since the
residual function is SO(2)-equivariant.

Robustness of classifiers to noise is an active area of research, (see |Goodfellow et al! (2018)). We
believe our classifiers built from bases learnt in a CAE architecture should be robust to noise - our
belief comes from the fact that coupling bases can be used interchangeably. We plan to investigate
this.
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Appendices

A CONVOLUTION IN THE FOURIER DOMAIN

A CNN is equivariant to translations - i.e, whether we translate the image and convolve it with a
filter or we convolve the image first and then translate it we get the same result. Thus the filters are
naturally equivariant to the group of translations. We would like obtain such an equivariance with
respect to the group of rotations.

To do so it is easier to work in the Fourier space of the group SO(2). However a vector space basis
in the Fourier space is not readily available - (this is what we call CW basis - Cohen and Welling
compute this in their paper). Now every CW basis vector comes indexed by a non-negative integer
(Paragraph 5 on Page 3). There could be multiple basis vectors indexed with the same integer which
is called the multiplicity (Paragraph 6 of page 3). So in the Fourier space an image is a linear
combination of CW basis vectors with coefficients (which of course depend upon the image). Lets
call them CW coefficients. Denoting the CW basis by W, & = W7z are the CW-coefficents of
x. We first compute the CW basis given a reasonable number of samples of images x and their
rotations. The CW basis does not necessarily span the entire Fourier space, we need to find enough
basis vectors which give a good approximation (Paragraph 7, page 3).

Convolution of an image with a SO(2)-equivariant filter means that whether we rotate an image
and then convolve, or first convolve and then rotate we should end up transforming the image in the
same way. This translates to the following in the Fourier domain - taking linear combinations of CW
coefficients of CW-basis vectors of the same type m, thereby getting an equivariant linear map. The
entries of this linear map L is what we seek to find. So if we have a space V with a CW basis having
my; basis vectors indexed by integer ¢ and another space W with n; basis vectors indexed by integers
i, the search space for SO(2)-equivariant filters in the Fourier domain has dimension ), m;n;,
corresponding to block diagonal matrices, the i-th block being of size n;m; (see paragraph 4 on
page 3).

The natural nonlinearity in the Fourier space is multiplication of CW coefficients. When we multiply
the coefficient of a basis vector of type m and the coefficient of a basis vector of type n, we get two
coefficients, for basis vectors of type m+n and m-n (content of Remark 4). These are quadratic func-
tions, of the starting CW coefficients - since this nonlinearity is obtained by taking tensor products
of irreducible representations, we call it tensor product nonlinearity.

Our learning and classification takes place in the Fourier world.

B PROOFS

Here we prove that the bases obtained in the coupling architecture satisfy the definition of coupling.
The proof is straightforward assuming that we have zero loss.

Let Wsg and W14 be the final CW-bases learned. Following the bottom half of the network describ-
ing the coupling architecture, we see that under the morphism ¢, the image space of Wi surjects
onto the image space of W,. Surjection follows since the dotted arrow going from W14 on the top
to W14 below shows that we can start with any linear combination of the basis elements of Wiy
at the top and obtain it as the image of ¢ applied to an appropriate linear combination of basis ele-
ments of Was. So the image space of W, is isomorphic to a quotient of the image space of Wi.
On the other hand following the top half of the network it is clear that ¢) maps the image space of
Wi, @ (W ® W1,) surjectively onto the image space of W. Surjectivity follows by reasoning as
above. Hence the bases obtained in the coupling architecture satisfy definition

C LEARNING CW-BASIS

1. AutoEncoder(AE) architecture We describe this using figure Figure [6] (this architecture works
for 14x14 images, 56x56 images). The hyperparameters are multiplicities with which SO(2)
irreducible representations occur in the images viewed as vectors in a 784 dimensional vector
space with an action of SO(2). We choose nonzero multiplicities a; for representations S; with
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0 < j < 24 giving us a subspace of the image space of dimension dy = ag + Y, ;2% aj.
We denote this subspace by Wsg and learn a CW-basis also denoted Wag, a 784 X dy matrix.
We initialize Wsg randomly. We rotate a 28 x 28 image = by a random angle 6, to get y and
project y onto Wag to get § = Wiky. We learn an SO(2)-equivariant map ¢ from the image
space of W to a vector space L with an SO(2)-action, with multiplicities (hyperparameters) b;.
Consider ¢(j) € L. Now L ® L gets a natural SO(2) action. Recall that the tensor product of an
SO(2) irreducible representation of type m and an SO(2)-irreducible representation of type type
n yields irreducible representations of types m + n and m — n, (w.l.o.g m > n). We use this to
compute the decomposition of ¢(4) ® #(§). The last set of parameters to be learned are an SO(2)-
equivariant map ¢ from L@ (L® L) to the image space of Wis. Let z = (6(9) ® (4 (9) @6(7))).
We unrotate z using D(—6). Then we reconstruct the image & = Wag D(—6)z We expect this to
be close to = so we minimize the reconstruction error |# — z|? with a regularizer to ensure that
W Woas is identity.

SO(2) Equivariant Maps

Unrotate
Apply
D0

Rotated
28x28
Image

y

Reconstruct

Image
Was =

Rotate
by 6

s : e : 28x28
g8x28 | e T e .
Image Basis to be learned Im;ge

X

Figure 6: Autoencoder architecture (AE).

2. Bootstrapping architecture

In this experiment we start with a known W34 obtained using experiment 1 for 14x14 images, to
learn a Wag. The setup to go from W14 to Whasg is exactly the part of the network in Figure[Tlgoing
from X to X along the top. The hyperparameters are the multiplicities of SO(2)-irreducible

representations in Wag. We learn the SO(2)-equivariant ¢) and Wag by minimizing | X — X|2.
Similarly starting with a known Wsg we can learn W14 by following the path in Figure Il from z
to Z along the bottom.

D VISUALIZATION OF CW BASIS

Figure [7 shows a few basis elements learned using AE architucture on MNIST-rot.

E EXAMPLE

Let us see an example of how Z; is calculated in Algorithm [l Let d,, and dj, be as given in the
Algorithm. ¢ € R%*9a i5 a block diagonal matrix with blocks of sizes by x ag, 2b; X 2a1, 2by X

2ag, ... The first block has (b *ag) entries ,the second block has (b1 * a1 ) entries with the following
structure.
a11 0 12 0 . Agq1 0
0 11 0 12 e 0 Qgq1
Q21 0 Q292 0 N Qg2 0
0 Q21 0 Qg2 ... 0 Qgq2
Qa1p, 0 Q2p, 0 oo Qb 0
0 Q1p, 0 Q2p, e 0 Qgqby
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Figure 7: Basis for 28 x 28 images learned from MNIST-rot using AE

The multiplicities in Y are a = [2,1,2] and that of ¢(Y) are b = [0,1,1]. Hence d, = 8,d, = 4
and ¢ with arbitrary chosen values is given below.

0 0100000
o oo 10 0 0 0
=10 0002 0 3 0

0000l 203

Boxes indicate the block for type 1 and type 2.

Let(Y) = (p.q,7, )"

When we tensor (p,q)7 of type n with (r,s)7 of type m (m > n), we get (pr — gs,ps + qr)T of
type (m+n) and (pr + gs,ps — gr) of type (m-n) (see Remark[d)). In this example, when we tensor

oY) with itself, we get

P+ ¢
0
r2 -+ 52
0
pr—+qs
ps —qr
pr+gs
sy @)= 1%
2pq
pr—qs
ps + qr
pr—qs
ps +qr
r2 — g2
2rs

with the following types : multiplicities - type 0 : 4, type 1 : 2, type 2: 1, type 3 : 2, type 4 : 1.
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During implementation we avoid duplicates and zeros and we use the following:

P +q
r2 + 52
pr—+qs
ps —qr
Ve = |0
oY) -

Also, $(Y) @ ¢(Y) @ ¢(Y) after grouping the types, is given below:

P’ + ¢

r? 4 52

pr+qs

psS —qr
p

s(V)@o(Y)@o¥)= |V, 1

The linear map 1) € R% > is similar to ¢. Only the input and output multiplicities are different. In
the example we have ¢ = [2,2,2,1,1] and a = [2,1,2]. A particular v with some fixed values is
given below,

1200 00 0O0OO0OO0O OOOTOO

3 4000000 O0C O OO0OTO0OTO

0O 0> 06 000 0O 0O O0O0OO0OTO

|0 005 0 6,00 0 0 0O0O0O0

¥ = 0 000O0OO0O]|7 0 8 0]j]0O0O0O0
0 000O0OO0OJ|J07 0O 8,000 0

0 000O0OO0O]|9 0 10 0j0 000

0 000OO0OO0OJ|09 0 1000 0 00

And Z, = (oY) ® ¢(Y) @ ¢(Y))
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