
Under review as a conference paper at ICLR 2019

INVARIANCE AND INVERSE STABILITY UNDER RELU

Anonymous authors
Paper under double-blind review

ABSTRACT

We flip the usual approach to study invariance and robustness of neural networks
by considering the non-uniqueness and instability of the inverse mapping. We
provide theoretical and numerical results on the inverse of ReLU-layers. First,
we derive a necessary and sufficient condition on the existence of invariance that
provides a geometric interpretation. Next, we move to robustness via analyzing
local effects on the inverse. To conclude, we show how this reverse point of view
not only provides insights into key effects, but also enables to view adversarial
examples from different perspectives.

1 INTRODUCTION

Invariance and stability/robustness are two of the most important properties characterizing the
behavior of a neural network. Due to growing requirements like robustness to adversarial examples
(Szegedy et al., 2014) and the increasing use of deep learning in safety-critical applications, there
has been a surge in interest in these properties. Invariance and stability are considered to be the key
mechanisms in dealing with uninformative properties of the input (Achille & Soatto, 2017; Mallat,
2016) and are studied from the information theoretical perspective in form of the loss of information
about the input (Tishby & Zaslavsky, 2015; Saxe et al., 2018).

Invariance and stability are also tightly linked to robustness against adversarial attacks (Cisse et al.,
2017; Tsuzuku et al., 2018; Simon-Gabriel et al., 2018), generalization (Sokolić et al., 2017; Gouk
et al., 2018) and even the training of Generative Adversarial Networks (Miyato et al., 2018). In
general, stability is studied via two basic properties: 1) locally via a norm of the Jacobian (Sokolić
et al., 2017; Simon-Gabriel et al., 2018), 2) globally via the Lipschitz constant (Cisse et al., 2017;
Miyato et al., 2018; Tsuzuku et al., 2018). From a high-level perspective, both of these approaches
study an upper bound on stability as the Lipschitz constant and a Jacobian norm quantifies the highest
possible change under a perturbation with a given magnitude. We, unlike the approaches above, aim
to broaden our understanding by analyzing the lowest possible change under a perturbation.

More formally, we study which perturbations ∆x do not (or only little) affect the outcome of a
network F . Our analysis considers a given input data point x and investigates the ∆x’s, such that

F (x) = F (x+ ∆x) (invariant) or ‖F (x)− F (x+ ∆x)‖ ≤ ε (stable),

where a small ε > 0 is given. While these properties can be crucial for many discriminative tasks
(Mallat, 2016), the model could be flawed if perturbations that alter the semantics have only a minor
impact on the features. This is a reverse perspective on adversarial examples (Szegedy et al., 2014),
which commonly considers small input perturbations that lead to large changes and thus to arbitrary
decisions of the network.

This flipped view and the study of smallest changes calls for a different approach: we study the
instabilities of the inverse instead of the stabilities of the forward mapping. In particular, if F is
invariant to perturbations ∆x, then x and x+∆x lie in the preimage of the output z = F (x), i.e. F is
not uniquely invertible. Robustness towards large perturbations induces an instable inverse mapping
as small changes in the output can be due to large changes in the input.

Based on the piecewise linear nature of ReLU networks (Montufar et al., 2014), we characterize the
preimage of ReLU-activations as a single point, finite (bounded) or infinite (unbounded). Further, we
study the stability of the linearization of rectifier networks via its singular values. To illustrate these
locally changing properties and to demonstrate their tight connection, we visualize the behavior on a
synthetic problem in Figure 1.

1

Under review as a conference paper at ICLR 2019

Figure 1: Left: Prediction of a small ReLU-network (one hidden layer with 3 neurons) trained
to distinguish samples from two circles. Middle: Characterization of the preimage of first layer
activations into unbounded (infinite), compact (finite) or unique (a single point). Right: Condition of
the linearization of the first layer at each point.
As ReLU-layers are piecewise linear, the local behavior is constant on polytopes. Further, the regions
with infinite/finite preimages correspond to regions with condition number of one or zero, while
singleton preimages link to condition numbers larger than one. Thus, both properties are tightly
connected and investigating one property alone yields an incomplete picture.

Our contributions are as follows:

• We derive conditions when the preimage of an output of a ReLU-layer has finite or infinite
volume or is a single point. Based on these conditions, we derive an algorithm to check
these conditions and exemplify its usability by applying it to investigate the preimages of a
trained network. (See Section 2.)

• We study the stability of the inverse via analyzing the linearization at a point in input space,
which is accurate within a polytope. We provide upper bounds on the smallest singular
value of a linearization and prove how the removal of uncorrelated features could effect the
stability of the inverse mapping. Based on these ideas, we experimentally demonstrate how
singular values evolve over the different layers in rectifier networks. (See Section 3.)

• We introduce a reverse view on adversarial examples and connect it to invariance and
robustness by leveraging our analysis of preimages. (see Section 5)

1.1 RELATED WORK

While analyzing invariance and robustness properties is a major topic in theoretical treatments of deep
networks (Mallat, 2016), studying it via the inverse is less common. Several works like Mahendran &
Vedaldi (2015), Mahendran & Vedaldi (2016) or Dosovitskiy & Brox (2016) focus on reconstructing
inputs from features of convolutional neural networks (CNNs) to visualize the information content of
features. Instead, we investigate potential mechanisms affecting the invertibility.

Carlsson et al. (2017) gives a first geometrical view on the shape of preimages of outputs from ReLU
layers, which is directly related to the question of injectivity of the mapping under ReLU. Shang
et al. (2016) analyzes the reconstruction property of cReLU (concatenated ReLU); however, the more
general situation of using the standard rectifier is not studied. A notable other line of work assumes
random weights in order to derive guarantees for invertibility, see Gilbert et al. (2017) or Arora et al.
(2015), whereas we focus on the preimage of ReLU-activations without assumptions on the weights.

Moreover, several reversible network structures were recently proposed (Gomez et al., 2017; Chang
et al., 2018; Jacobsen et al., 2018). Most notably, in Jacobsen et al. (2018) a bijective network,
up to its last layer, was trained successfully on ImageNet which does not exhibit any invariance.
However, the network is very robust towards many directions in the input which is reflected in a
strongly instable inverse. Hence, even carefully designed network show at least one of the two effects
(invariance and robustness) studied in this work. Especially stability has seen growing interest due to
adversarial examples (Szegedy et al., 2014), yet stability is mostly studied with respect to the forward
mapping, see e.g. Cisse et al. (2017).

2

Under review as a conference paper at ICLR 2019

Two main resources for our view of rectifier networks as piecewise linear models are Montufar et al.
(2014) and Raghu et al. (2017). Closest to our approach is the work of Bruna et al. (2014) on global
statements of injectivity and stability of a single layer including ReLU and pooling. The authors
focus on global injectivity and stability bounds via combinatorial statements over all configurations
attainable by ReLU and pooling. These conditions are valid on the entire input space, while the
restriction to parts of the input space may be far from these worst-case conditions.

Further works focus on applications like inverse problems with learned forward models (Jensen et al.,
1999; Lu et al., 1999) and parameter estimation problems (Lähivaara et al., 2018), which are often
formulated as inverse problems and require the inversion of networks.

1.2 NOTATION

In this section, we briefly state our notation as a reference:

• Input: x = x0 ∈ Rd0 , sometimes short-
ened to d := d0.
• Pre-activations: zl = Alxl−1 + bl ∈ Rdl ,

with weight matrix Al ∈ Rdl×dl−1 and
bias bl ∈ Rdl .

• Activation: xl = φ(zl) ∈ Rdl , where φ :
R→ R the pointwise applied activation
function, if not specified differently g :=
ReLU.

• Number of layers: L ∈ N

• Entire network: F : Rd 3 x 7→ F (x) := z := zL ∈ RdL , sometimes short D := dL.

For matrices A ∈ Rm×n and I ⊂ [m] := {1, . . . ,m}, A|I denotes the matrix consisting of the rows
of A whose index is in set I – analogously for vectors. Also A|y�0 describes the restriction to the
index set {i : yi > 0} for y ∈ Rm, analogously for ≺,=,�,�. For vectors y ∈ Rm, y � 0 is the
elementwise relation, analogously for ≺,=,�,�. Furthermore, we define N (A) as the null space of
a matrix A. The Euclidean inner product is denoted by 〈·, ·〉.
For every matrix A ∈ Rm×n with the rows ai, i ∈ [m], we associate the set A = {ai}mi=1. Vice versa,
we associate every finite set in Rn with a matrix (only possible up to permutation of the indices).

2 PREIMAGES OF RELU LAYER

2.1 THEORETICAL ANALYSIS

In this section, we analyze different kinds of preimages of a ReLU-layer and investigate under which
conditions the inverse image of a given point is a singleton (a set containing exactly one element) or
has finite/infinite volume. These conditions will yield a simple algorithm able to distinguish between
these different preimages, which is applied in Section 2.2.

For the analysis of preimages of a given output one can study single layers separately or multiple
layers at once. However, since the concatenation of two injective functions is again injective while a
non-injective function followed by an injective function is non-injective, studying single layers is
crucial. We therefore develop a theory for the case of single layers in this section. Notice that in case
of multiple layers one is also required to investigate the image space of the previous layer.

We will focus our study on the most common activation function, ReLU. One of its key features is
the non-injectivity, caused by the constant mapping on the negative half space. It provides neural
networks with an efficient way to deploy invariances. Basically all other common activation functions
are injective, which would lead to a straightforward analysis of the preimages. However, injective
activations like ELU (Clevert et al., 2016) and Leaky ReLU (Maas et al., 2013) only swap the
invariance for robustness, which in turn leads to the problem of having instable inverses. This
question of stability will be analyzed in more detail in Section 3.

We start by introducing one of our main tools – namely the omnidirectionality.

Definition 1 (Omnidirectionality)

i) A ∈ Rm×n is called omnidirectional if every linear open halfspace in Rn contains a row of A,
i.e. for every given x ∈ Rn \ {0} there exists an index i ∈ [m], such that 〈ai, x〉 > 0.

3

Under review as a conference paper at ICLR 2019

p

Figure 2: Gray lines are hyperplanes with normal vectors (arrows) from the rows of A and translation
b. Left: Omnidirectional tuple (A, b) for p ∈ R2, as hyperplanes intersect in p and normal vectors are
omnidirectional. Two in the middle: Intersection in p, but vector-free halfspaces (hence, not omnidi-
rectional). Right: hyperplanes do not intersect in a point, but normal vectors are omnidirectional.

ii) A ∈ Rm×n and b ∈ Rm are called omnidirectional for the point p ∈ Rn if A is omnidirectional
and b = −Ap.

Thus, if A is omnidirectional, for every direction of a hyperplane through the origin forming two
halfspaces, there is a vector from the rows of A inside each open halfspace, hence the term omnidi-
rectional (see Figure 2 for an illustration). Note that the hyperplanes are due to ReLU as it maps
the open halfspace to positive values and the closed halfspace to zero. A straightforward way to
construct an omnidirectional matrix is by taking a matrix whose rows form a spanning set F and use
the vertical concatenation of F and −F . This idea is related to cReLU (Shang et al., 2016).

The following Corollary gives several equivalent formulations of omnidirectionality, which will turn
out to be useful for the proof of the subsequent Theorem 4 in this section. The short proofs of the
statements are provided in Appendix A1.

Corollary 2 (Equivalences of omnidirectionality) The following statements are equivalent:

i) A ∈ Rm×n is omnidirectional.

ii) Ax � 0 implies x = 0, where x ∈ Rn.

iii) There exists a unique x ∈ Rn, such that Ax � 0.

iv) There exist no x ∈ Rn \ {0}, such that Ax � 0.

More importantly, omnidirectionality is directly related to the ReLU-layer preimages and will provide
us with a method to characterize their volume (see Theorem 4). To analyze such inverse images, we
consider y = ReLU(Ax+ b) for a given output y ∈ Rm with A ∈ Rm×n, b ∈ Rm and x ∈ Rn. If
we know A, b and y, we can write the equation as the following mixed linear system:

A|y�0x+ b|y�0 = y|y�0 (1)
A|y=0x+ b|y=0 � 0, (2)

where A|y�0 denotes the restriction of the matrix A to the rows, which are specified by the index set
{i : yi > 0} (see Section 1.2 for the used notation).

Remark 3 It is possible to enrich the mixed system to include conditions/priors on x (e.g. x ∈ Rn
≥0).

The inequality system in equation 2 links its set of solutions and therefore the volume of the
preimages of the ReLU-layer with the omnidirectionality of A and b. Defining A := AOT , where
O ∈ Rk×n denotes an orthonormal basis of N (A|y�0) with k := dimN (A|y�0) and b := b|y�0 +
A|y�0(PN (A|y�0)⊥x), where PV denotes the orthogonal projection into the closed space V, leads to
the following main theorem of this section, which is proven in Appendix A1.

Theorem 4 (Preimages of ReLU-layers) Let A, b and k = dimN (A|y�0) be as above. The preim-
age of a point y under a ReLU-layer is

i) for k = 0 a singleton.

ii) for k > 0 a singleton, if and only if there exists an index set I for the rows of A and b, such that
(A|I , b|I) is omnidirectional for some point p ∈ Rk.

4

Under review as a conference paper at ICLR 2019

iii) for k > 0 a compact polytope with finite volume, if and only if A is omnidirectional.

Thus, omnidirectionality allows in theory to distinguish whether the inverse image of a ReLU-layer
is a singleton, a compact polytope or has infinite volume. However, obtaining a method to check if
a given matrix is omnidirectional is crucial for later numerical investigations. For this reason, we
will go back to the geometrical perspective of omnidirectionality (see Figure 2). This will also help
us to get a better intuition on the frequency of occurrence of the different preimages. The following
Theorem 5 gives another geometrical interpretation of omnidirectionality, whose short proof is given
in Appendix A1.

Theorem 5 (Convex hull) A matrix A ∈ Rm×n is omnidirectional if and only if 0 ∈ Conv(A)
o
,

where Conv(A)
o is the interior of the convex hull spanned by the rows of A (see Definition 10 in

Appendix A1).

Therefore, the matrix must contain a simplex in order to be omnidirectional, as the convex hull of the
matrix A ∈ Rm×n has to have an interior. Hence, we have the following:

Corollary 6 If A ∈ Rm×n is omnidirectional, then m > n.

By considering the geometric perspective, a tuple (A ∈ Rm×n, b ∈ Rm) is omnidirectional for a
point p ∈ Rn, if and only if the m hyperplanes generated by the rows of A with bias b intersect at p
and their normal vectors (rows of A) form an omnidirectional set. We can use Corollary 6 to conclude
that singleton preimages of ReLU-layers are very unlikely to happen in practice (if we do not design
for it), since a necessary condition is that n + 1 hyperplanes have to intersect in one point in Rn.
Therefore we conclude, that singleton preimages of ReLU layers in practice only and exclusively
occurs, if the mixed linear system already has sufficient linear equalities.

Algorithm to check uniqueness: The above results can be used to derive an algorithm to check
whether a preimage of a given output is finite, infinite or just a singleton. A singleton inverse image
is obtained as long as rank(A|y�0) = n holds true, which can be easily computed. To distinguish
preimages with finite and infinite volumes, it is enough to check if A is omnidirectional (see Theorem
4iii), which can be done numerically by using the definition of the convex hull, Theorem 5 and
Corollary 6. This leads to a linear programming problem, which is presented in Appendix A3 and
was also used to create Figure 1.

2.2 NUMERICAL ANALYSIS

In this section, we demonstrate for a simple model that the preimage of a layer can be a singleton,
infinite or finite depending on the given point. For this purpose, we trained a MLP with two hidden
ReLU layers of size 3500 and 784 on MNIST (LeCun & Cortes, 2010). We chose the layer size of
3500, because the likelihood of having roughly 784 (input dimension of MNIST) positive outputs
was high for this setting. In Figure 4, we plotted the number of samples in the test set that have
infinite (red curve) or finite (blue curve) preimages over the number of positive outputs. It can be
assumed that all samples which have more or equal to 784 (the input dimension) positive outputs
have a singleton preimage and are therefore finite. In the dark gray region between 723 and 784, both
effects occurred, which can be seen by the overlap of the red and blue curve.
To determine whether a preimage for less than 784 positive outputs was compact we used Theorem
4iii and the algorithm described in Appendix A3.

3 STABILITY

3.1 THEORETICAL ANALYSIS

In this section we analyze the robustness of rectifier MLPs against large perturbations via studying
the stability of the inverse mapping. Concretely, we study the effect of ReLU on the singular values
of the linearization of network F . While the linearization of a network F at some point x only
provides a first impression on its global stability properties, the linearization of ReLU networks is
exact in some neighborhood due to its piecewise-linear nature (Raghu et al., 2017). In particular, the

5

Under review as a conference paper at ICLR 2019

•x

��

•x

��

Figure 3: Removal of vectors due to ReLU (red crosses)
for the marked points x (left:unbiased setting, right:
biased setting). The remaining vectors are only weakly
correlated to the removed one, thus yielding an unstable
inverse.

300 400 500 600 723 900 1,000
0

10

20

30

40

784

infinite singleton

in-/finite

positive outputs

#
(i

n-
)fi

ni
te

pr
e-

im
ag

e

Finite
Infinite

Figure 4: The number of (in-)finite volumed
preimages of a ReLU layer over the test set
of MNIST. Only within the gray strip we
see finitely and infinitely volumed preim-
ages.

input space Rd of a rectifier network F is partitioned into convex polytopes PF , corresponding to a
different linear function on each region (see Figure 1). Hence, for each polytope P in the set of all
input polytopes PF , the network F can be simplified as F (x) = APx+ bP for all x ∈ P .

In particular, each of the linearized matrices AP can be written via a chain of weight matrix mul-
tiplications that incorporates the effect of ReLU. To this end, the following definition introduces
admissible index sets that formalize all possible local behaviors (Bruna et al., 2014) and diagonal
matrices to locally model the effect of ReLU, see Wang et al. (2016):

Definition 7 (Admissible index sets, ReLU as diagonal matrix) An index set I l for a layer l is
admissible if ⋂

i 6∈Il

{xl : 〈xl, ali〉 > −bi} ∩
⋂
i∈Il

{xl : 〈xl, ali〉 ≤ −bi} 6= ∅.

Further, let DI denote a diagonal matrix with (DI)ii = 1 for i 6∈ I and (DI)ii = 0 for i ∈ I , where
I is an admissible index set. Using this notation, the mapping of pre-activation z ∈ Rd under ReLU
can be written as

ReLU(z) = DI z with I = {i ∈ [d] : zi ≤ 0}.

Thus, the linearization AP of a network with L layers is a matrix chain AP =
ALDIL−1AL−1 · · ·DI1A1, where Al are the weight matrices of layer l and I l := {i ∈ [dl] :
(Alxl−1 + bl)i ≤ 0}.
Of special interest for a stability analysis is the range of possible effects by the application of the
rectifier. Since the effect by ReLU corresponds to the application of DI for admissible I , we now
turn to studying the changes of the singular values of a general matrix A compared to DI A. For
example, the matrix A could represent the chain of matrix products up to pre-activations in layer l.
Then, the effect of ReLU can be globally upper bounded:

Lemma 8 (Global upper bound for largest and smallest singular value) Let σl be the singular
values of DIA. Then for all admissible index sets I , the smallest non-zero singular value is upper
bounded by min{σl : σl > 0} ≤ σ̃k, where k = N − |I| and σ̃1 ≥ ... ≥ σ̃N > 0 are the non-zero
singular values of A.
Furthermore, the largest singular value is upper bounded by max{σl : σl > 0} ≤ σ̃1.

Lemma 8 analyzes the best case scenario with respect to the highest value of the smallest singular
value. While this would yield a more stable inverse mapping, one needs to keep in mind that N (AP)
grows by the corresponding elimination of rows via DI . Moreover, reaching this bound is very

6

Under review as a conference paper at ICLR 2019

unlikely as it requires the singular vectors to perfectly align with the directions that collapse due to
Di. Thus, we now turn to study effects which could happen locally for some input polytopes P .

An example of a drastic effect through the application of ReLU is depicted in Figure 3. Since one
vector is only weakly correlated to the removed vector and the situation is overdetermined, removing
this feature for some inputs x in the blue area leaves over the strongly correlated features. While the
two singular values of the 3-vectors-system were close to one, the singular vectors after the removal
by ReLU are badly ill-conditioned. As many modern deep networks increase the dimension in the
first layers, redundant situations as in Figure 3 are common, which are inherently vulnerable to such
phenomena. For example, Rodrı́guez et al. (2017) proposes a regularizer to avoid such strongly
correlated features. The following lemma formalizes the situation exemplified before:

Lemma 9 (Removal of weakly correlated rows) Let A ∈ Rm×n with rows aj and I ⊆ [m]. For a
fixed k ∈ I let ak ∈ N (DIA)⊥. Moreover, let

∀j 6∈ I : |〈aj , ak〉| ≤ c
‖ak‖2√
M

, (3)

with M = m− |I| and constant c > 0. Then for the singular values σl 6= 0 of DIA it holds

0 < σK = min{σl : σl 6= 0} ≤ c.

Note that I has to be admissible when considering the effect of ReLU.
Lemma 9 provides an upper bound on the smallest singular value, given a condition on the correlation
of all aj and ak. However, the condition 3 depends on the number M of remaining rows aj . Hence,
in a highly redundant setting even after removal by ReLU (large N), c needs to be large such that
the correlation fulfills the condition. Yet, in this case the upper bound on the smallest singular value,
given by c, is high. We discuss this effect further and provide quantitative results in the Appendix A5.

Effect under multiple layers: For the effect of ReLU applied to multiple layers, we are particularly
interested in following questions:

• Can the application of another layer have a pre-conditioning effect yielding a stable inverse?

• What happens when we only compose orthogonal matrices which have stable inverses?

Note that a way to enforce an approximate orthogonality constraint was proposed for CNNs in
Cisse et al. (2017), however only for the filters of the convolution. For both situations the answer
is similar: the nonlinear nature of ReLU induces locally different effects. Thus, if we choose a
pre-conditioner Al for a specific matrix Al−1

P , it might not stabilize the matrix product for matrices
Al−1

P∗ corresponding to different input polytopes P ∗.
For the case of composing only orthogonal matrices, consider a network up to layer l − 1, where the
linearization Al−1

P has orthogonal columns (assume the network gets larger, thus Al−1
P has more rows

than columns). Then, the application of ReLU in form of AlDIlAl−1
P removes the orthogonality

property of the rows of Al−1
P , if setting entries in the rows from I l to zero results in non-orthogonal

columns (likely when considering dense matrices). Hence, DIlAl−1
P is not orthogonal for some I l. In

this case, the matrix product AlDIlAl−1
P is not orthogonal, which results in decaying singular values.

This is why, even when especially designing the network by e.g. orthogonal matrices, stability issues
with respect to the inverse arise. To conclude this section, we remark that the presented results are
rather of a qualitative nature showcasing effects of ReLU on the singular values. Yet, the analysis
does not require any assumptions and is thus valid for any MLP (including CNNs without pooling).
To give an idea of quantitative effects we study numerical examples in the subsequent subsection.

3.2 NUMERICAL ANALYSIS

In this section, we show how the previously discussed theoretical stability properties can be examined
for a given network. In particular, we conduct experiments on CIFAR10 (Krizhevsky & Hinton,
2009) using two baseline CNNs, see A4 for details on architectures and training setup. Our CNNs
use only strides instead of pooling and use no residual connections and normalization layers. Thus,

7

Under review as a conference paper at ICLR 2019

0

10000

20000

30000

si
ze

of
ou

tp
ut

102

103

104
#

si
ng

ul
ar

va
lu

es

0 1 2 3 4 5 6 7 8 9 10 11
layers

100
102
104
106

co
nd

iti
on

Figure 5: Blue: WideCIFAR, Red: ThinCIFAR.
Top: number of output units per layer, Middle:
number of singular values, Bottom: Behavior
of condition number, each curve over the layers.
Here, layers are split into conv-layer and ReLU-
activation layer. Singular values and condition
number are the median over 50 samples from the
CIFAR10 test set.

0 500 1000 1500 2000 2500 3000 3500
Index of singular value

10−4

10−3

10−2

10−1

100

101

102

Si
ng

ul
ar

va
lu

e

Layer 1
Layer 2
Layer 3
Layer 4
Layer 5
Layer 6

Figure 6: Decay of singular values over the lay-
ers of the network. Here, each layer includes
the convolution and ReLU-activation. Reported
number are taken from median over 50 samples.

the architectures fit to the theoretical study as the strided discrete convolution can be written as a
matrix-vector multiplication.

Singular values over multiple layers: Experimentally most interesting is the development of
singular values over multiple layer as several effects are potentially at interplay. Figure 6 shows how
all singular values evolve in convolutional layers (layers 1-6, after application of ReLU). While the
shape of the curve is similar for layer 1-5, it can be seen that the largest singular value grows, while
the small singular values decrease significantly. Note that this growth of the largest singular values is
in line with observations for adversarial examples, see Szegedy et al. (2014). While many defense
strategies like Cisse et al. (2017) or Jia (2017) focus on the largest singular value, the behavior of the
smaller singular values is often overlooked. Additionally, we provide in Appendix A5 a numerical
analysis of the condition from Lemma 9 to gain an understanding of possible effects of ReLU on the
singular values. Furthermore, we add results for a thinner CNN (ThinCIFAR) and for the MLP from
Section 2.2 in Appendix A6.

Relationship between stability and invariance: While invariance is characterized by zero singular
values, the condition number only takes non-zero singular values into account, see e.g. layer 6 from
Figure 6. This tight relationship is further investigated in Figure 5 which compares the output size,
the condition number and the number of non-zero singular values vs. the layers for WideCIFAR
and ThinCIFAR. In combination with lower output dimension, ReLU has a different effect for
ThinCIFAR. The number of singular values decreases in layer 5, which cuts off the smallest singular
values, resulting in a lower condition number. Yet, there are more invariance directions within the
corresponding linear region. For a visual comparison see Figure 1.

Computational costs and scaling analysis: First, we remark that the linearization of a network
F for an input point x0 can be computed via backpropagation. Based on this linearization the
computation of the full SVD scales cubically. Especially, early CNN-layers have high dimensional
outputs which may cause memory issues when computing the entire SVD. We thus choose a small
CNN trained on CIFAR10 as these inputs are only of size 32× 32× 3. To scale this analysis up to e.g.
ImageNet with VGG-networks, a restriction to a window of the input image is necessary to reduce
the complexity of the full SVD especially for early layers. See Jacobsen et al. (2018), where the
singular values restricted to input windows were used to estimate the stability of the entire i-RevNet
trained on ImageNet.

8

Under review as a conference paper at ICLR 2019

4 SCOPE

Characterization of preimages over multiple layers: Theorem 4 yields a characterization (single-
ton, finite, infinite) of the preimage of a point y under a single ReLU-layer. When considering the
preimage of y under multiple layers l to l − i, two difficulties arise: 1) If the preimage of y under
layer l is not a singleton, one needs to compute the intersection of the image of layer l − 1 and the
preimage of y under layer l − 1. 2) For all points in the intersection, the conditions of Theorem 4
need to be checked, which requires the solution of a linear program, see Algorithm 1 in Appendix A3.
Hence, our analysis is currently restricted to a layer-by-layer approach. However, this layer-wise and
local study could enable to pin down the specific layers where information, which is expressed in
non-singleton preimages.

Preimages for convolutional layers: In general, convolutional layers are affine transforms Ax+ b,
but have a sparse and shared structure compared to dense matrices used in MLPs. Thus, the trivial
case rank(A|y�0) = n (Algorithm 1, Appendix A3) needs to be explicitly checked. For MLPs it was
assumed in section 2.2 that rank(A|y�0) = |{i : yi > 0}| as dense matrix rows are almost surely
linear independent in practice.

Inverse stability for convolutional networks: For inverse stability, we consider the linearization
AP = ALDIL−1AL−1 · · ·DI1A1 for an input polytope P . In convolutional networks, each Al

implements a multi-channel discrete convolution. While singular values of each Al can be efficiently
computed by leveraging the convolutional structure, see Sedghi et al. (2018), the shared structure is
not preserved in the matrix chain AP due to the application of ReLU (expressed via DIl). Thus, a
tighter analysis that leverages the convolutional structure in Al, compared to our general assumption
that Al can be any linear mapping, is not straightforward with current tools but would certainly lead
to further insights.

Extension of inverse stability across polytopes: In our stability analysis, we employ a piecewise-
linear viewpoint which allows to characterize stability via the singular values of the linearization
which is exact within an input polytope. However, when considering an ε-ball Bε(y) around a point
y = APx+ bp to model e.g. reconstruction from noisy activations y, further questions arise: 1) Can
all points in Bε(y) be reached by an x∗ from the polytope P ? 2) Are points from another polytope
P ′ mapping to points in Bε(y)? In this case, the inverse stability needs to be augmented by nonlinear
considerations to model movements between piecewise-linear regions.

5 PRACTICAL IMPLICATIONS

While the focus of this work was an in-depth analysis of potential effects on crucial properties like
invariance and robustness due to ReLU, we envision several practical implications of our approach:

Network design and regularization: As both the concept of omnidirectionality and removal of
rows due to ReLU showed, there is a breadth of potential effects. In terms of network design,
controlling such effects could be desirable. In particular, a change to injective activation functions
(tanh, leakyReLU, ELU etc.) remove the discussed preimages, but immediately transfer to an instable
inverse due to saturation. Furthermore, Lemma 9 draws a connection to regularizing correlation
between feature maps as introduced in Rodrı́guez et al. (2017). Hence, both omnidirectionality
and correlation between rows can be thought of as geometrical properties which could partially
be controlled by regularization or architecture design. Furthermore, the analysis also shows the
difficulty of controlling these properties in vanilla architectures. However, by incorporating additional
structure like dimension splitting in reversible networks (Jacobsen et al., 2018) or invertible residual
connections (Behrmann et al., 2018), the preimage is by design a singleton.

Connection to information loss: Our analysis is tightly related to mutual information I(xl;x) loss,
which has gained growing interest due to the information bottleneck (Tishby & Zaslavsky, 2015;
Saxe et al., 2018). In particular, invariance in layer l may induce I(xl;x) ≤ I(xl−1;x) due to the
data processing inequality (Cover & Thomas, 2006). Similarly, an instable inverse can induce an
information loss as activations xl are quantized due to finite precision on hardware.

Implications for adversarial examples: Despite being crucial for many discriminative tasks to
contract the space along uninformative directions (Mallat, 2016), invariance and robustness may
induce severe vulnerabilities for adversarial examples (Szegedy et al., 2014). For instance, a model

9

Under review as a conference paper at ICLR 2019

Figure 7: Invariances of the first layer (100 ReLU neurons) of a vanilla multilayer perceptron (MLP).
Despite the semantically very different examples, the features are identical as the original image ”3”
and the two perturbed variants ”6” and ”4” are in the same preimage. Further details in Appendix A7.

would be flawed if perturbations that alter the semantics only have a minor impact on the features of
the network. Classically, adversarial examples are viewed as small perturbations which induce large
changes in the network outputs (Goodfellow et al., 2014). Yet, reversing this perspective leads to
another failure case: if large changes in the input alter its semantics for a given task, but the networks
output is robust or even invariant to such changes, the model might just be as flawed from this reverse
point of view.
This change in perspective leads to a natural way of addressing invariance and robustness via invert-
ibility: If F is invariant to perturbations ∆x, then x and x + ∆x lie in the preimage of the output
z = F (x) i.e. F is not uniquely invertible. Robustness towards large perturbations induces an instable
inverse mapping as small changes in the output can be due to large changes in the input.
Finally Figure 7 demonstrates such a striking failure, where perturbations alter the semantics drasti-
cally, yet the activations even after the first layer are identical. To find these examples, we leveraged
the developed theory about preimages and a linear programming formulation, see Appendix A7.

6 CONCLUSION AND OUTLOOK

We presented the inverse as an approach to tackle the invariance and robustness properties of ReLU
networks. Particularly, we studied two main effects: 1) conditions under which the preimage of
a ReLU layer is a point, finite or infinite and 2) how ReLU can effect the inverse stability of the
linearization. By deriving approaches to numerically examine these effects, we highlighted the broad
range of possible effects. Moreover, controlling such properties may be desirable as our experiment
on adversarial examples showed.

Besides the open questions on how to control the structure of preimages and inverse stability via
architecture design or regularization, we envision several theoretical directions based on our work.
Especially, incorporate nonlinear effects like moving between linear regions of rectifier networks
could lift the analysis closer to practice. Furthermore, studying similarities of omnidirectionality as a
geometrical property and singular values could further strengthen the link between these two crucial
properties.

REFERENCES

Alessandro Achille and Stefano Soatto. Emergence of invariance and disentangling in deep represen-
tations. arXiv preprint arXiv:1706.01350, 2017.

Sanjeev Arora, Yingyu Liang, and Tengyu Ma. Why are deep nets reversible: a simple theory, with
implications for training. arXiv preprint, arXiv:1511.05653, 2015.

Jens Behrmann, David Duvenaud, and Jörn-Henrik Jacobsen. Invertible residual networks. arXiv
preprint arXiv:1811.00995, 2018.

Joan Bruna, Arthur Szlam, and Yann LeCun. Signal recovery from pooling representations. In
Proceedings of the 31st International Conference on Machine Learning, 2014.

Stefan Carlsson, Hossein Azizpour, Ali Razavian, Josephine Sullivan, and Kevin Smith. The preimage
of rectifier activities. In International Conference on Learning Representations (workshop), 2017.

Bo Chang, Lili Meng, Eldad Haber, Lars Ruthotto, David Begert, and Elliot Holtham. Reversible
architectures for arbitrarily deep residual neural networks. The Thirty-Second AAAI Conference on
Artificial Intelligence, 2018.

10

Under review as a conference paper at ICLR 2019

François Chollet et al. Keras. https://github.com/keras-team/keras, 2015.

Moustapha Cisse, Piotr Bojanowski, Edouard Grave, Yann Dauphin, and Nicolas Usunier. Parseval
networks: improving robustness to adversarial examples. In Proceedings of the 34 International
Conference on Machine Learning, 2017.

Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochreiter. Fast and accurate deep network
learning by exponential linear units (elus). International Conference on Learning Representations,
2016.

Thomas M. Cover and Joy A. Thomas. Elements of Information Theory (Wiley Series in Telecommu-
nications and Signal Processing). Wiley-Interscience, New York, NY, USA, 2006.

G.B. Dantzig. Linear programming and extensions. Princeton University Press, 1963.

Alexey Dosovitskiy and Thomas Brox. Inverting convolutional networks with convolutional networks.
In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, 2016.

Anna Gilbert, Yi Zhang, Kibok Lee, Yuting Zhang, and Honglak Lee. Towards understanding the
invertibility of convolutional neural networks. In 26th International Joint Conference on Artificial
Intelligence, 2017.

Aidan N. Gomez, Mengye Ren, Raquel Urtasun, and Roger B. Grosse. The reversible residual net-
work: backpropagation without storing activations. In Advances in Neural Information Processing
Systems 30, 2017.

Ian Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial
examples. 2014.

Henry Gouk, Eibe Frank, Bernhard Pfahringer, and Michael Cree. Regularisation of neural networks
by enforcing lipschitz continuity. arXiv preprint arXiv:1804.04368, 2018.

Jörn-Henrik Jacobsen, Arnold W.M. Smeulders, and Edouard Oyallon. i-revnet: deep invertible
networks. In International Conference on Learning Representations, 2018.

C. A. Jensen, R. D. Reed, R. J. Marks, M. A. El-Sharkawi, Jae-Byung Jung, R. T. Miyamoto, G. M.
Anderson, and C. J. Eggen. Inversion of feedforward neural networks: algorithms and applications.
In Proceedings of the IEEE, volume 87(9), pp. 1536–1549, 1999.

Kui Jia. Improving training of deep neural networks via singular value bounding. IEEE Conference
on Computer Vision and Pattern Recognition, 2017.

Diederik P. Kingma and Jimmy Ba. Adam: a method for stochastic optimization. Proceedings of the
32nd International Conference on International Conference on Machine Learning, 2015.

Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny images, 2009.

Timo Lähivaara, Leo Kärkkäinen, Janne M. J. Huttunen, and Jan S. Hesthaven. Deep convolutional
neural networks for estimating porous material parameters with ultrasound tomography. The
Journal of the Acoustical Society of America, 143(2):1148–1158, 2018.

Yann LeCun and Corinna Cortes. MNIST handwritten digit database, 2010. URL http://yann.
lecun.com/exdb/mnist/.

Bao-Liang Lu, H. Kita, and Y. Nishikawa. Inverting feedforward neural networks using linear and
nonlinear programming. IEEE Transactions on Neural Networks, 10(6):1271–1290, 1999.

Andrew L Maas, Awni Y Hannun, and Andrew Y Ng. Rectifier nonlinearities improve neural network
acoustic models. In Proceedings of the 30th International Conference on Machine Learning, 2013.

Aravindh Mahendran and Andrea Vedaldi. Understanding deep image representations by inverting
them. In In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, 2015.

Aravindh Mahendran and Andrea Vedaldi. Visualizing deep convolutional neural networks using
natural pre-images. International Journal of Computer Vision, 120(3):233–255, 2016.

11

https://github.com/keras-team/keras
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/

Under review as a conference paper at ICLR 2019

Stéphane Mallat. Understanding deep convolutional networks. Philosophical Transactions
of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 374
(2065), 2016. ISSN 1364-503X. doi: 10.1098/rsta.2015.0203. URL http://rsta.
royalsocietypublishing.org/content/374/2065/20150203.

Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and Yuichi Yoshida. Spectral normalization for
generative adversarial networks. In International Conference on Learning Representations, 2018.

Guido F Montufar, Razvan Pascanu, Kyunghyun Cho, and Yoshua Bengio. On the number of linear
regions of deep neural networks. In Advances in Neural Information Processing Systems 27, 2014.

Maithra Raghu, Ben Poole, Jon Kleinberg, Surya Ganguli, and Jascha Sohl-Dickstein. On the
expressive power of deep neural networks. In Proceedings of the 34th International Conference on
Machine Learning, 2017.

Pau Rodrı́guez, Jordi Gonzàlez, Guillem Cucurull, Josep M. Gonfaus, and F. Xavier Roca. Regu-
larizing cnns with locally constrained decorrelations. In International Conference on Learning
Representations, 2017.

Andrew Michael Saxe, Yamini Bansal, Joel Dapello, Madhu Advani, Artemy Kolchinsky, Bren-
dan Daniel Tracey, and David Daniel Cox. On the information bottleneck theory of deep learning.
In International Conference on Learning Representations, 2018.

Hanie Sedghi, Vineet Gupta, and Philip M. Long. The singular values of convolutional layers. arXiv
preprint arXiv:1805.10408, 2018.

Wenling Shang, Kihyuk Sohn, Diogo Almeida, and Honglak Lee. Understanding and improving
convolutional neural networks via concatenated rectified linear units. In Proceedings of the 33rd
International Conference on Machine Learning, 2016.

Carl-Johann Simon-Gabriel, Yann Ollivier, Bernhard Schölkopf, Léon Bottou, and David Lopez-Paz.
Adversarial vulnerability of neural networks increases with input dimension. arXiv preprint
arXiv:1802.01421, 2018.

Jure Sokolić, Raja Giryes, Guillermo Sapiro, and Miguel RD Rodrigues. Robust large margin deep
neural networks. IEEE Transactions on Signal Processing, 65(16):4265–4280, 2017.

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian J. Goodfellow,
and Rob Fergus. Intriguing properties of neural networks. International Conference on Learning
Representations, 2014.

Naftali Tishby and Noga Zaslavsky. Deep learning and the information bottleneck principle. In
Information Theory Workshop (ITW), 2015 IEEE, pp. 1–5. IEEE, 2015.

Yusuke Tsuzuku, Issei Sato, and Masashi Sugiyama. Lipschitz-margin training: Scalable certification
of perturbation invariance for deep neural networks. arXiv preprint arXiv:1802.04034, 2018.

Shengjie Wang, Abdel rahman Mohamed, Rich Caruana, Jeff Bilmes, Matthai Plilipose, Matthew
Richardson, Krzysztof Geras, Gregor Urban, and Ozlem Aslan. Analysis of deep neural networks
with extended data jacobian matrix. In Proceedings of the 33rd International Conference on
Machine Learning, 2016.

12

http://rsta.royalsocietypublishing.org/content/374/2065/20150203
http://rsta.royalsocietypublishing.org/content/374/2065/20150203

Under review as a conference paper at ICLR 2019

A1 APPENDIX FOR SECTION 2

Proof (Corollary 2, Equivalences of omnidirectionality) We show the equivalences by proving i)
⇒ ii)⇒ iii)⇒ iv)⇒ i).
Let A ∈ Rm×n be omnidirectional, i.e. for every x 6= 0, it holds that Ax � 0. This is equivalent to

Ax � 0⇒ x = 0,

which is ii). The implications from ii) to iii) and from iii) to iv) are obvious. From iv), we have that

∀x 6= 0 ∃ i ∈ {1, . . . ,m} : 〈x, ai〉 > 0,

which is equivalent to i), the omnidirectionality of A. Altogether, this shows the equivalence of all
four points. �

Definition 10 (Convex hull) For A ∈ Rm×n, the convex hull is defined as

Conv(A) =

{
m∑
i=1

αiai : ∀i αi ∈ R≥0 ∧
∑
i

αi = 1

}
,

where ai ∈ Rn are the rows of A.

Theorem 11 (Stiemke’s theorem, see Dantzig (1963)) Let A ∈ Rm×n be a matrix, then the fol-
lowing two expressions are equivalent.

• @y : Ay � 0

• ∃x � 0 : ATx = 0

Here z � 0 means that 0 6= z � 0 .

Theorem 12 (Singleton solutions of inequality systems) Let A ∈ Rm×n, b ∈ Rm and x ∈ Rn.
Furthermore, let the inequality system

Ax+ b � 0,

written as (A, b), have a solution x0.
Then this solution is unique if and only if there exists an index set, I , for the rows s.t. (A|I , b|I) is
omnidirectional for x0.

Proof (Theorem 12, Singleton solutions of inequality systems)
“⇐”
Let (A|I , b|I) be omnirectional for x0. Then it holds that A|Ix+ b|I = A|I(x− x0) � 0. Due to the
omnidirectionality of A|I , x0 is the unique solution of the inequality system A|Ix+ b|I � 0. The
existence of a solution for the whole system Ax+ b � 0 is guaranteed by assumption and therefore
x0 is the unique solution of Ax+ b � 0.
“⇒”
Here we will prove

“@I : (A|I , b|I) omnidirectional for some p ⇒ solution non-unique”.

We will start by doing the following logical transformations:

@I : (A|I , b|I) omnidirectional for some p
⇔ @(I, p) : (A|I omnidirectional ∧ b|I = −A|Ip)
⇔ ∀(I, p) : ¬(A|I omnidirectional ∧ b|I = −A|Ip)
⇔ ∀(I, p) : (A|I not omnidirectional ∨ b|I 6= −A|Ip).

Now we define the vector c0 := Ax0 + b � 0 and the set I as the index set given via c0 = 0.

This means that A|I is not omnidirectional, because otherwise A|Ix0 + b|I = 0 due to the definition
of I, which would lead to the contradiction that (A|I , b|I) is omnidirectional for x0. But this
means ∃x′ 6= 0 : A|Ix′ � 0 as a result of Corollary 2. Since A|Icx0 + b|Ic ≺ 0, we also have

13

Under review as a conference paper at ICLR 2019

∀x ∃ε > 0 : A|Ic(x0 + εx) + b|Ic ≺ 0. This holds in particular for x′, so we define accordingly
x∗ := εx′ 6= 0. Therefore, we have A|Ic(x0 + x∗) + b|Ic ≺ 0 as well as

A|I(x0 + x∗) + bI = A|Ix0 + bI︸ ︷︷ ︸
=c0=0

+ εA|Ix′︸ ︷︷ ︸
�0

� 0.

Altogether it holds that A(x0 + x∗) + b � 0 with x∗ 6= 0, which means that x0 is a non-unique
solution for the inequality system Ax+ b � 0. �

Proof (Theorem 4, Preimages of ReLU-layers) We consider the ReLU-layer

y = ReLU(Ax+ b),

given its output y ∈ Rm with A ∈ Rm×n, b ∈ Rm and x ∈ Rn. Clearly, this equation can also be
written as the mixed linear system

A|y�0x+ b|y�0 = y|y�0,
A|y=0x+ b|y=0 � 0.

This allows us to consider the two cases

N (A|y�0) = {0} and N (A|y�0) 6= {0}.
In the first case, we have a linear system which allows us to calculate x uniquely, i.e. we can do
retrieval. This leads us to the second case, the interesting one. In this case we can only recover
x uniquely if and only if the system of inequalities “pins down” PN (A|y�0)x, where PV is the
orthogonal projection into the closed space V . Formally this requires

A|y�0(PN (A|y�0)⊥x+ PN (A|y�0)x) + b|y�0 � 0

to have a unique solution for x ∈ Rn and PN (A|y�0)⊥x fixed (given via the equality system). By
defining b := b|y�0 +A|y�0(PN (A|y�0)⊥x) we have

A|y�0(PN (A|y�0)x) + b � 0.

If O ∈ Rk×n now denotes an orthonormal basis of N (A|y�0), where k := dimN (A|y�0), we can
write

Ax+ b � 0,

where A := AOT and x := Ox is a general element in Rk. It now follows from Theorem 12 that
the inequality system (A, b) has a unique solution if and only if (A, b) has a subset of rows that are
omnidirectional for some point p. �

Proof (Theorem 5, Convex hull) Since N (A) = {0} follows from both sides of the equivalence,
the following sequence of equivalencies holds. 0 ∈ Conv(A)

o ⇔ ∃x � 0 : ATx = 0
Theorem 11⇐=====⇒

@y : Ay � 0. Together with N (A) = {0}, which means that @y 6= 0 : Ay = 0, leads altogether to
@y 6= 0 : Ay � 0. �

A2 PROOFS FOR SECTION 3

Proof (Lemma 8, Global upper bound for largest and smallest singular value) The upper bound
on the largest singular value is trivial, as ReLU is contractive or in other terms ‖DIAx‖2 ≤ ‖Ax‖2
for all I and x ∈ Rn.
To prove the upper bound for the smallest singular value, we assume

σM := min{σl : σl > 0} > σ̃k (4)

and aim to produce a contradiction. Consider all singular vectors ṽk∗ with k∗ ≥ k from matrix A. It
holds for all ṽk∗

σ̃k ≥ σ̃k∗ = ‖Aṽk∗‖2 ≥ ‖DIAṽk∗‖2, (5)

as DI is a projection matrix and thus only contracting. As

σM = min
‖x‖2=1

x∈N (DIA)⊥

‖DIAx‖2,

14

Under review as a conference paper at ICLR 2019

all ṽk∗ 6∈ N (DIA)⊥. Otherwise, a ṽk∗ would be a minimizer by estimation 5, which would violate
the assumption 4.

Due to N (DIA)⊥ ⊕ N (DIA) = Rn, it holds ṽk∗ ∈ N (DIA). As ṽk∗ are orthogonal,
dim(span(vk∗)) = |I| + 1 (note: k∗ = k, ..., N and k = N − |I|, thus there are |I| + 1 singular
vectors vk∗ in total). Furthermore, ṽk∗ were not in N (A) by definition (corresponding singular
values were strictly positive).
Hence, the nullspace of DI must have dim(N (DI)) ≥ |I|+ 1. But DI is the identity matrix except
|I| zeros on the diagonal, thus dim(N (DI)) = |I|, which yields a contradiction. �

Proof (Lemma 9, Removal of weakly correlated rows) Consider v = ak

‖ak‖2 . Then,

(DIAv)k = 0,

since k ∈ I (k-th row of DI is zero). Furthermore, for all j 6= k it holds by condition 3

(DIAv)j =
〈ak, aj〉
‖ak‖2

≤ |〈ak, aj〉|
‖ak‖2

≤ c√
M
.

Hence,

‖DIAv‖2 =

√√√√∑
j 6∈I

(
〈ak, aj〉
‖ak‖2

)2

≤

√
M

(
c√
M

)2

= c.

As ak ∈ N (DIA)⊥, v ∈ N (DIA)⊥ as well. Thus,

σK = min
‖x‖2

x∈N (DIA)⊥

‖DIA‖2 ≤ ‖DIAv‖2 ≤ c.

�

15

Under review as a conference paper at ICLR 2019

A3 APPENDIX FOR SECTION 2.2

In this section, we formulate the algorithm to determine whether the preimage of y given by

y = ReLU(Ax+ b)

is finite.
This requires to check whether A (see Theorem 4) is omnidirectional, which is equivalent to

0 ∈ Conv(A)
o
,

see Theorem 5. Since it is reasonable to assume that 0 will not lie on the boundary of the convex
hull, we can formulate this as a linear programming problem. The side-conditions incorporate the
definition of convex hulls (Definition 10, Appendix A1). The objective function is chosen arbitrary,
as we are only interested in a solution.

Algorithm 1 Finite preimage
Input: A ∈ Rm×n, b ∈ Rm, y ∈ Rm

if rank(A|y�0) = n then
return True {Preimage is a singleton}

end if
O ← orthonormal basis of N (A|y�0), (∈ Rk×n)
A← A|y=0O

T , (∈ Rk̃×k)
if k̃ ≤ k then

return False {see Corollary 6}
end if
c← (1; . . . ; 1) {arbitrary objective}

return Does a solution for the linear program

max cTx
subject to

A
T
x = 0

(1; . . . ; 1)Tx = 1

x ∈ [0, 1]k̃

exists?

A4 ARCHITECTURES FOR NUMERICAL STUDIES

Training details for MLP on MNIST:

• Training using Adam optimizer (Kingma & Ba, 2015)
• Epochs: 25
• Batch size: 1000

Training details for WideCIFAR and ThinCIFAR:

• Training setup from Keras (Chollet et al., 2015) examples: cifar10_cnn
• No data augmentation
• RMSprop optimizer
• Epochs: 100
• Batch size: 32

16

Under review as a conference paper at ICLR 2019

Table 1: Architecture of MLP trained on MNIST
Index Type kernel size stride # feature maps # output units

0 Input layer - - 3
1 Dense layer - - - 100
2 Dense layer - - - 100
3 Dense layer - - - 100
4 Dense layer - - - 100
5 Dense layer - - - 100
6 Dense layer - - - 100
7 Dense layer - - - 100
8 Dense layer - - - 100
9 Dense layer - - - 100
10 Dense layer - - - 100
11 Dense layer (softmax) - - - 10

Table 2: Architecture of MLP trained on MNIST
Index Type kernel size stride # feature maps # output units

0 Input layer - - 3
1 Dense layer - - - 3500
2 Dense layer - - - 784
3 Dense layer (softmax) - - - 10

Table 3: Architecture of WideCIFAR
Index Type kernel size stride # feature maps # output units

0 Input layer - - 3
1 Convolutional layer (3,3) (1,1) 32 -
2 Convolutional layer (3,3) (2,2) 64 -
3 Convolutional layer (3,3) (1,1) 64 -
4 Convolutional layer (3,3) (1,1) 32 -
5 Convolutional layer (3,3) (1,1) 32 -
6 Convolutional layer (3,3) (2,2) 64 -
7 Dense layer - - - 512
8 Dense layer (softmax) - - - 10

Table 4: Architecture of ThinCIFAR
Index Type kernel size stride # feature maps # output units

0 Input layer - - 3
1 Convolutional layer (3,3) (1,1) 32 -
2 Convolutional layer (3,3) (2,2) 32 -
3 Convolutional layer (3,3) (1,1) 16 -
4 Convolutional layer (3,3) (1,1) 16 -
5 Convolutional layer (3,3) (1,1) 16 -
6 Convolutional layer (3,3) (2,2) 32 -
7 Dense layer - - - 512
8 Dense layer (softmax) - - - 10

A5 EFFECT OF RELU NUMERICAL ANALYSIS OF LEMMA 9

In order to better understand the bound on the smallest singular value after ReLU, given by Lemma
9, we numerically proceed as follows:

17

Under review as a conference paper at ICLR 2019

0 500 1000 1500 2000 2500 3000 3500
Index of singular value

10−4

10−3

10−2

10−1

100

101

102

Si
ng

ul
ar

va
lu

e

Layer 3
Layer 4
Layer 9
Layer 10

Figure 8: Effect of ReLU on the singular values for WideCifar. The curves show the effect in layer 2
(layer 3 and 4 in the legend, because ReLU is counted as an extra activation layer) and layer 5 (layer
9 and 10), where each curve is the median over 50 samples.

10−2 10−1 100 101

value of constant c

4850

4900

4950

5000

5050

5100

5150

#
ro

ws
sa

tis
fy

in
g

co
nd

iti
on

Figure 9: Curve showing how many rows ai satisfy condition 3 from Lemma 9 depending on values
of constant c. The red line shows the total number of remaining rows after removal by ReLU,
M = 5120. Even for small constants c most ai fulfill condition 3, yet not all, which is required by
the lemma to give an upper bound on the smallest singular value. The example is from layer 4 of
WideCIFAR, for only one sample from the test set.

1. We choose c ∈ [a, b], where a, b are suitable interval endpoints.

2. Given c, we compute for every ak with k ∈ I the value of c‖ak‖2√
M

(M is the number of
remaining rows, in the example M = 5120).

3. For every ak we count the number of ai satisfying

|〈ai, ak〉| ≤ c
‖ak‖2√
M

.

4. We take the ak with the maximal number of ai satisfying the condition. (Note, that this
ignores the requirement ak ∈ N (DIA)⊥.)

5. If we have an ak, where all ai satisfy the condition, the corresponding constant c gives the
upper bound on the smallest singular value after ReLU.

Figure 9 shows the number of ai satisfying the correlation condition given different choices of c. The
red line is reached for c ≈ 6. However, even the largest singular value after ReLU is smaller than
2.5 (shown in Figure 8). Thus, the bound given by Lemma 9 is far off. This can be explained by the

18

Under review as a conference paper at ICLR 2019

fact, that this situation is quite redundant (M = 5120) and there are rows ai still correlated to the
removed rows ak.
However, in the further Experiments on ThinCIFAR, we observe (see Figure A6) a stronger effect of
ReLU in layer 2, which can be explained by having a less redundant scenario with fewer remaining
rows.

19

Under review as a conference paper at ICLR 2019

A6 FURTHER EXPERIMENTS

0 500 1000 1500 2000 2500 3000 3500
Index of singular value

10−4

10−3

10−2

10−1

100

101

Si
ng

ul
ar

va
lu

e

Layer 3
Layer 4
Layer 9
Layer 10

0 500 1000 1500 2000 2500 3000 3500
Index of singular value

10−4

10−3

10−2

10−1

100

101

Si
ng

ul
ar

va
lu

e

Layer 1
Layer 2
Layer 3
Layer 4
Layer 5
Layer 6

Figure 10: Left: Effect of ReLU on the singular values for ThinCifar. The curves show the effect in
layer 2 (layer 3 and 4 in legend, because ReLU is counted as an extra activation layer) and layer 5
(layer 9 and 10). Right: Decay of singular values over the layers ThinCifar. Here, each layer includes
the convolution and ReLU-activation. Reported number are taken from median over 50 samples.
Best viewed in color.

0 100 200 300 400 500 600 700 800
Index of singular value

10−4

10−3

10−2

10−1

100

101

102

Si
ng

ul
ar

va
lu

e

Layer 1
Layer 2
Layer 3
Layer 4

0 100 200 300 400 500 600 700 800
Index of singular value

10−2

10−1

100

101

102

Si
ng

ul
ar

va
lu

e

Layer 1
Layer 2

Figure 11: Left: Effect of ReLU on the singular values for the MLP on MNIST. The curves show the
effect in layer 1(layer 1 and 2 in legend, because ReLU is counted as an extra activation layer) and
layer 2 (layer 3 and 4). Right: Decay of singular values over the layers of MLP on MNIST. Here,
each layer includes the fully-connected layer and ReLU-activation. Reported number are taken from
median over 50 samples.

A7 INVARIANCE EXPERIMENT USING AN MLP ON MNIST

This section briefly describes how the results in Figure 7 from the introduction were obtained (copied
in Figure 12 for readability). After training the network from 1 (in Appendix A4), we searched the
MNIST test set for input images with yielded the fewest positive activations in the first layer, in
the figure the digits ”3” and ”4”. After selecting the example input x∗, we selected another input c
belonging to a different class (e.g. a ”6” and ”4” in the first example).

20

Under review as a conference paper at ICLR 2019

Figure 12: Invariances of the first layer (100 ReLU neurons) of a vanilla MLP. (Exact architecture in
Appendix A4 Table 1.)

Afterwards, we solved following linear programming problem to find a perturbed x:

max 〈c, x〉
subject to

A|y∗�0x+ b|y∗�0 = y∗|y∗�0
A|y∗≺0x+ b|y∗≺0 � 0

x ∈ [0, 1]k̃

,

where the features of the first layer are computed via

y∗ = ReLU(Ax∗ + b).

Hence, we searched within the preimage of the features y∗ of the first layer for examples x which
resemble images c from another class. By doing this we observe, that the preimages of the MLP may
have large volume. In these cases, the network is invariant to some semantics changes which shows
how the study of preimages can reveal previously unknown properties.

21

	Introduction
	Related Work
	Notation

	Preimages of ReLU Layer
	Theoretical Analysis
	Numerical Analysis

	Stability
	Theoretical Analysis
	Numerical Analysis

	Scope
	Practical implications
	Conclusion and Outlook
	Appendix for Section 2
	Proofs for section 3
	Appendix for Section 2.2
	Architectures for Numerical Studies
	Effect of ReLU Numerical Analysis of Lemma 9

	Further Experiments

	Invariance Experiment using an MLP on MNIST

