Under review as a conference paper at ICLR 2019

HANDLING CONCEPT DRIFT IN WIFI-BASED INDOOR
LOCALIZATION USING REPRESENTATION LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

We outline the problem of concept drifts for time series data. In this work we
analyze the temporal inconsistency of streaming wireless signals in the context of
device-free passive indoor localization. We show that data obtained from WiFi
channel state information (CSI) can be used to train a robust system capable of
performing room level localization. One of the most challenging issues for such
system is the movement of input data distribution to an unexplored space over
time, which leads to an unwanted shift in the learned boundaries of the output
space. In this work we propose a phase and magnitude augmented feature space
along with a standardization technique that is little affected by drifts. We show that
this robust representation of the data yields better learning accuracy and requires
less number of retraining.

1 INTRODUCTION

Concept drift is one of the most common problems that degrades the predictive performance of
passive WiFi-based localization systems. In most of the predictive models it is assumed that a
static relationship between input and output exits. Thus in the context of machine learning, there
is a mapping function f(x) = y, where the algorithm tries to estimate the underlying relationship
between the input x and the output y. The presence of concept drift means that the accuracy of the
predictive models that is trained from historical data degrades over time due to evolving nature of
the data. Hence, predictive models often needs to be retrained frequently with a new set of labelled
data, which might be expensive to obtain. These pattern changes can be categorized based on their
transition speed from one state to another into abrupt, or gradual drifts (Gama et al.,[2014). In either
case, the deployed solution is expected to diagnose unintended changes automatically and adapt
accordingly.

The problem of concept drift in WiFi-based localization systems, was first mentioned in (Ghourchian
et al.,[2017), which presents a technology that utilizes only off-the-shelf WiFi-enabled devices such
as access points, laptops, smart TV for passive sensing in the environment of interest. The authors
have applied an online semi-supervised approach to automatically detect gradual shifts in the feature
space and propose an adaptive learning strategy to regain the prediction accuracy. We aim to address
the same problem without making any assumption about the drift type. In this work, we illustrate
that from time to time, both sudden and gradual drifts, can occur to the streaming WiFi data, which
often hinder the performance of the trained models when tested on the measurements.

Majority of the existing WiFi-based indoor localization systems are device-based, where the user’s
location is determined by a WiFi-enabled target device that needs to be carried by the subject all
the time (Wang et al.l | 2017). Practical challenges of using device-based approaches, impose some
restrictions and therefore, a device-free and passive solution is a promising line of research both
for academia and industry. For example, (Wang et al) [2015azb} |Sen et all [2012), are some of
the existing research where device free passive WiFi localization is used along with deep learning.
In (Chen et al. 2017), the authors address drifts and the inconsistency of WiFi fingerprints for
stationary subjects. However, most of these researches and their experiments were performed in
a very controlled environment and within a limited time frames. On the other hand, the effect of
concept drift mostly appears over time due to real-world conditions such as natural WiFi channel or
bandwidth switches, or when certain exogenous factor such as temperature and humidity changes.
Therefore, the existing methods do not address them explicitly and the experimental results does
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not reflect the performance of the model taken from measurements that are a few days apart. In
this paper, we use the idea of feature augmentation in order to include both phase and magnitude
of the CSI data. To the best of our knowledge this is the first work that exploits both the phase and
magnitude of the CSI in order to construct a feature space that is less affected by drifts. We show that
once such a feature space has been constructed,we can use classical machine learning algorithms in
order to create a more robust model. In the next sections, we discuss nature of the WiFi CSI data
being obtained and how drifts cause a shift in the feature space. In Section[3]we discuss our methods
including the phase and the magnitude sanitization procedure. In Section ?? we present the training
strategy for off line training and online prediction. Finally in Section[5] we conclude our paper and
present discussions on future work.

2 DATA DESCRIPTION

In wireless communication, channel state information (CSI) contains potential information that de-
scribes the propagation of a signal from transmitter to receiver. The CSI contains vital information
that describes the combined effect of scattering, fading and decay with distance. In other words
CSI reflects the variation in the channel that is experienced during propagation. Transmitted from
a source, a wireless signal can experience various forms of distortion including fading, shadowing
and multipath effects. For our application, we considered a WiFi channel at the 5GHz band which
can be considered as a flat fading channel. Our network interface card (NIC) implements an OFDM
system with 56 subcarriers, all of which can be read from CSI measurement. The receiver (Rx)
and the transmitter (Tx) have 4 antennas each and in total our NIC establishes 16 links or streams
altogether (one per Rx-Tx pair). The channel frequency response C'SI; ; for subcarrier i and stream
k is a complex number which is defined as:

CSTy = |CSIy|exp{jsin LCSTy} (D

where |C'STy| and ZC STy denote the magnitude and the phase response respectively. Let Z be the
total number of subcarriers, M be the total number of packets and S be the total number of streams.
Therefore, our system produces 3 dimensional complex gain matrix with cardinality |Z| x | M| x |S].
In the sequel, we show WiFi mesh variation for an empty capture of an indoor area and a capture
containing walking inside a particular room of that area, obtained on different time stamps.

Figure[I|shows the CSI amplitudes captured over 60 seconds (with sample rate of 20packets/second),
Figure 1(a) shows the empty capture i.e. a capture with no motion and Figure 1(b) shows a capture
with walking activity in Room 1. Figure[2]shows a similar capture taken after 9 hours. These figures
illustrate the effect of drift on the WiFi mesh, both for empty and walking captures. This change
in distribution of the data along the feature space is what we refer to as concept drift. In the next
section we formally discuss the methodology that we adapt in order to construct a new robust feature
space that is less affected by drift.

3 METHODOLOGY

In this section, we discuss the methods that we followed starting from the sanitization of the raw
CSI data. Then We proceed on discussing the ways in which we incorporated both the phase and
magnitude of the CSI and justify why the combined feature space is little affected by drifts.

3.1 INITIAL PREPROCESSING

We start our data processing with Received signal strength indicator (RSSI) drops filter. This filter
looks at the successive packets and measures sudden peaks for RSSI values, these peaks can be
results of constructive interference from neighboring devices, multipath fading and temporal dy-
namics. The filter then discards the corresponding packets from the CSI. Since we have multiple
subcarriers and streams which correspond to different links between the transmitter and the receiver,
at each point in time, they can take values which are scaled to a wide range. Hence after discarding
the packets based on RSSI corrections, we perform normalization of the CSI amplitudes to a prede-
fined range. The Lynorm of the CSI vector is then calculated for each of the CSI vectors in order to
re-scale their values to the predefined range.
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(a) Empty capture (b) Room 1

Figure 1: Variation of CSI mesh with no motion and walking in Room 1
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(a) Empty capture (b) Room 1

Figure 2: Variation of CSI mesh with no motion and walking in room 1 after 9 hours

3.2 PHASE INFORMATION

In this section we outline the process by which we extract the phase information from the CSI
and use it for feature augmentation. Prior research conducted with extraction of phase information
from CSI reported an extensive amount of preprocessing being involved (Yang et al) 2013). In
(Wang et al. 2017), the authors discuss the stability of phase for consecutive antennas for 5Ghz
OFDM channel. Since, our NIC implements a SGHz OFDM channel, we utilize the fact that phase
difference between successive antennas are stable. We consider the phase difference between stream
1-2,stream 2-3 and stream 3-4 as they correspond to the links from a single transmitter to all 4 of
the receiving antennas. A phase correction is then performed for the phases such that their values lie
with in the range (—m, 7). We then use a Hampel filter in order to remove the DC component of the
phase information and to detrend the phase data. For our Hampel filter we use a large sliding window
of 300 samples and with a small threshold of 0.01 in order to get the general trend of the data. Once
the trend has been computed, it is then removed from the the phase difference information. Then,
we further leverage Hampel filter with a smaller sliding window of 15 samples and a threshold of
0.01 in order to remove the high frequency noise from the streaming phase data. In Figure [3]we can
see that the raw phase information has a wider spread and hence is more unstable compared to the
phase difference information between successive antennas. In Figure [3[a) we show the plot for the
raw phase information that corresponds to subcarrier 1 and stream 1 and in Figure[3{b) we show the
plots for the phase difference between stream 1 and stream 2 which corresponds to the links from
a single transmitter and two adjacent receiving antennas. In the next section we discuss about the
feature augmentation and the standardization technique that we use in order to create a feature space
that is robust to drifts.

3.3 FEATURE AUGMENTATION

We propose an augmented feature space, comprising of both phase and magnitude of the WiFi CSIL.
For our feature space we consider CSI magnitude for 8 streams and phase difference data from the
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(a) Polar plot for stream 1 (b) Polar plot of difference between stream 1 and 2

Figure 3: Comparison for stable and unstable CSI phase for an Empty Capture
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(a) Empty capture (b) Drifted Empty Capture

Figure 4: Variation of CSI mesh in the presence of drift

Augmented Feature Valuos.

(a) Augmented feature space for empty capture (b) Augmented feature space after 9 hours

Figure 5: Variation of augmented feature space for the empty capture taken at an interval of 9 hours

first four streams i,e we take the phase difference between stream 1, stream 2; stream 2, stream3 and
stream 3,stream 4. We consider the first 800 packets for our data, therefore for 8§ streams and all 56
subcarriers the cardinality of the magnitude M of the CSI is of the order |56| x |800| x |4| whereas
for the phase information the data matrix has a cardinality of |56| x [800| x |3]. Our combined
feature space F suitable for learning is a 2-D matrix comprising of both phase and magnitude with
cardinality [800] x |392| for each location class (Room). Once the augmented feature space is
obtained, we perform a standardization that standardizes the features by removing the mean and
scaling to unit variance. Figure []shows the change is feature space observed when there is a
drift, Fig [5] shows that the augmented feature space is almost resistant to drifts. In the next section
we discuss broadly the result of different learning algorithms for this augmented feature space.We
discuss the training strategy that we have adapted for the experiments and present detailed results
and the effect of each algorithm on this enriched feature space.
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4 TRAINING STRATEGY

We present an offline training and an online prediction strategy for our system. We use classical
machine learning algorithms to train on the un-drifted dataset using the augmented features. During
testing, the algorithm in tested on the drifted data, which when projected to the combined feature
space is least resistant to drifts. Thus trained models are used for the online prediction of the data
that has drifts. We compare the performance of different learning algorithms for our training and
classification for, a) the case of training only on magnitude data, b) training only on phase data and
¢) training on the combined data, which represents our most stable feature space.

4.1 OFFLINE TRAINING

In this scenario, we train the data offline and perform classification using different learning algo-
rithms. We mainly use Support Vector Machines (SVM) (Hearst et al., [1998)) and Random Forest
algorithms (Liaw et al.,|2002). We then provide an incremental learning framework, that is popular
with streaming data, specially for dealing with datasets associated with concept drifts. In the se-
quel we provide a detailed analysis of the performance of learning under these different frameworks
and present the suitability of a learning framework that will be used for the real time localization
application.

4.1.1 DATA ACQUISITION

We start our data collection procedure from apartments of three different sizes with different layouts
(Apt 1, Apt 2 and Apt 3). We use two different devices for the experiments. Namely, the Tx and
the Rx which corresponds to the routers for transmission and the reception, respectively. Both of
the devices are placed further apart in the apartment and the experiment begins by taking an empty
capture at the first instance. This empty capture corresponds to no motion at any of the rooms in the
apartment. We next proceed towards capturing 1 minute data by walking in each of the rooms of the
apartment, respectively, in order to obtain annotated data. The data is then collected and processed
and converted to the augmented feature space as described in Section [3.1} [3.2]and [3.3] respectively.
For Apt 1 we captured 5 rounds of data each of which is roughly 30 minutes apart. Although drift is
more apparent for measurements taken over longer intervals, for measurements associated with Apt
1 we force a channel switched (abrupt drift) before collecting the Sth round by switching the devices
off. This ensures that a drift has occurred since drifts are expected during a channel change. For Apt
2 we perform a more rigorous measurement and hence take 6 rounds of data, where we captured 3
rounds which are 12 hours apart and the last 2 rounds which are 2 days apart. For Apt 2 we take the
measurements in such a diverse manner so that the effect of drift can be thoroughly studied. Finally
for Apt 3 , we capture 3 rounds of data where round 1 and round 2 are data which are 6 hours
apart and round 3 is captured at an interval of 12 hours from round 2. Figure [f] shows the layout
of the three apartments in which the experiments were conducted. Through all of the experiments
we ensured that the position of Tx and Rx remains fixed. Although our proposed augmented feature
space results in a dataset with high dimension, we found through repetitive experiments that using
Principal Component Analysis (PCA) for dimensionality reduction yields very poor classification
accuracy even when appropriate components are chosen based on explained cumulative variance
analysis. Hence, we do not perform any dimensionality reduction on our dataset.

For our experiments, all the learning algorithms are trained on rounds showing no drift and tested
on rounds that has both gradual and abrupt drifts.

4.1.2 TRAINING AND VALIDATION

In order to validate whether walking in different rooms of an indoor space actually correspond to dis-
tinguishable clusters from WiFi propagation perspective, we do an unsupervised clustering analysis
over the dataset to evaluate our location partitioning. From the elbow analysis of the unsupervised
clustering we found that WiFi mesh distortions can also be categorized in an unsupervised manner,
where the number of clusters correspond to walking or physical activities in number of areas in the
apartment.

Figure [7]presents the elbow analysis done in Apt 1 which consists of labelled data for 6 locations.
For the elbow analysis described in Figure[7]we can see that there is not much reduction in distortion
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Figure 6: Layout of the apartments where experiments are conducted
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Figure 7: Elbow analysis of K-means clustering algorithm

when increasing the number of clusters from 6 to 8 thus we can conclude that the way in which
we label the data in fact represents the different distribution that arises due to motion in different
positions.

In order to do offline training, we use Support Vector Machines (SVM) and Random Forest (RF)
classifiers as the base learners. For each of these learners, we consider a K class classification
problem where K is the number of positions / rooms where walking is performed. We chose SVM
since it is effective in high dimensional spaces and because of its memory efficiency since it only
uses a subset of the dataset in order to calculate the support vectors. We implement the SVM for
performing non-linear classification using RBF kernels.

We chose the Random Forest classifier, since it is a meta estimator that creates decision trees for
different sub-samples of the training set and averaging the performance over them in order to find a
better predictive accuracy. The performance for both the classifiers are compared when trained on
the rounds with no drift and tested on the rounds with drift, which is set aside as a held out set. We
also compare the time of training of these two base learners in order to justify the suitability of the
corresponding learner for real-time indoor localization.

4.1.3 INCREMENTAL LEARNING

In this section we present an incremental learning algorithm based on the proposed feature space. We
chose an incremental learning framework since this allows the input data to continuously extend the
existing knowledge of the model. Although the proposed feature space is almost resistant to concept
drifts, we incorporate incremental learning so that the model can adapt to new data without forgetting
its existing knowledge, in such a way it will adapt quickly to a very slow change in distribution of
the data. For our learner, we use a SGD classifier with hinge loss and L2 regularizer, this results
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Table 1: Accuracy in % of the learning algorithms for different feature space

Datasets | Features (Magnitude Only) | Features (Phase Only) | Augmented Features
Inc. Incr Inc
SVM | RF SVM SVM | RF SVM SVM | RF SVM
Apt 1 77.94 | 59.84 | 54.85 55.09 | 46.04 | 38.92 | 80.52 | 60.31 | 70.67
Apt2 90.2 | 87.8 | 67.26 78.8 | 88.67 | 7433 | 92.0 | 89.8 | 75.12
Apt 3 78.24 | 60.5 | 35.6 3295 | 36.12 | 38.3 | 74.53 | 63.95 | 83.35

in an SVM that can be updated incrementally. For the incremental learning framework, we keep
on updating the model parameters for each round with the augmented feature space, where minimal
drift is present. We then test the models on the rounds, where the feature space corresponding to
only phase or the magnitude would perform poorly, and use our proposed stable feature space for
the multi-class classification problem.

Table|l|shows the performance of different learning algorithms for CSI features incorporating mag-
nitude only, phase only and the proposed augmented feature space. The table shows that for all the
learning algorithms the augmented feature space performs better and is more resistant to drifts. Also
we note that in case of streaming data, the performance of incremental SVM described is consis-
tently better for the augmented feature space. Thus we show that in case of large incoming data,
the augmented feature space presents more robust features in terms of representing the WiFi CSI for
localization.

5 CONCLUSION AND FUTURE WORK

We have presented a comprehensive study in order to handle drifts for WiFi CSI data. We focused on
the challenges presented by drifts for the application of indoor localization and proposed a combined
feature space that is robust to drifts. We then incorporate this augmented feature space and provided
a detailed analysis of the performance of different learning algorithms. Although we mainly focus
on off line training, our work also focuses on robust online prediction in the presence of drifts. Such
a stable feature space will will mean that we do not have to learn the abrupt and gradual drifts and
retrain our models each time when there one. Our proposed feature space will also allow for applying
deep convolution neural network, that has been only applied to either the phase or the magnitude
information, but not both. The proposed feature space can be projected into an RGB image where,
vital information can captured using a convolution layer which we keep for future work.
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