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ABSTRACT

This paper addresses unsupervised few-shot object recognition, where all training
images are unlabeled and do not share classes with labeled support images for
few-shot recognition in testing. We use a new GAN-like deep architecture aimed
at unsupervised learning of an image representation which will encode latent ob-
ject parts and thus generalize well to unseen classes in our few-shot recognition
task. Our unsupervised training integrates adversarial, self-supervision, and deep
metric learning. We make two contributions. First, we extend the vanilla GAN
with reconstruction loss to enforce the discriminator capture the most relevant
characteristics of “fake” images generated from randomly sampled codes. Sec-
ond, we compile a training set of triplet image examples for estimating the triplet
loss in metric learning by using an image masking procedure suitably designed to
identify latent object parts. Hence, metric learning ensures that the deep represen-
tation of images showing similar object classes which share some parts are closer
than the representations of images which do not have common parts. Our results
show that we significantly outperform the state of the art, as well as get similar
performance to the common episodic training for fully-supervised few-shot learn-
ing on the Mini-Imagenet and Tiered-Imagenet datasets.

1 INTRODUCTION

This paper presents a new deep architecture for unsupervised few-shot object recognition. In train-
ing, we are given a set of unlabeled images. In testing, we are given a small number K of support
images with labels sampled fromN object classes that do not appear in the training set (also referred
to as unseen classes). Our goal in testing is to predict the label of a query image as one of these N
previously unseen classes. A common approach to this N -way K-shot recognition problem is to
take the label of the closest support to the query. Thus, our key challenge is to learn a deep image
representation on unlabeled data such that it would in testing generalize well to unseen classes, so
as to enable accurate distance estimation between the query and support images.

Our unsupervised few-shot recognition problem is different from the standard few-shot learning
(Snell et al., 2017; Finn et al., 2017), as the latter requires labeled training images (e.g., for episodic
training (Vinyals et al., 2016)). Also, our problem is different from the standard semi-supervised
learning (Chapelle et al., 2009), where both unlabeled and labeled data are typically allowed to
share either all or a subset of classes. When classes of unlabeled and labeled data are different in
semi-supervised learning (Chapelle et al., 2009), the labeled dataset is typically large enough to
allow transfer learning of knowledge from unlabeled to labeled data, which is not the case in our
few-shot setting.

There is scant work on unsupervised few-shot recognition. The state of the art (Hsu et al., 2018) first
applies unsupervised clustering (Caron et al., 2018) for learning pseudo labels of unlabeled training
images, and then uses the standard few-shot learning on these pseudo labels for episodic training –
e.g., Prototypical Network (Snell et al., 2017) or MAML (Finn et al., 2017). However, performance
of this method is significantly below that of counterpart approaches to supervised few-shot learning.

Our approach is aimed at learning an image representation from unlabeled data that captures pres-
ence or absence of latent object parts. We expect that such a representation would generalize well
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Figure 1: We use a GAN-like deep architecture to learn an image encoding z on unlabeled training
data that will be suitable for few-shot recognition in testing. Our unsupervised training integrates
adversarial, self-supervision, and metric learning. The figure illustrates our first contribution that
extends the vanilla GAN (the red dashed line) with regularization so the encoding ẑ′ of a “fake”
image is similar to the randomly sampled code z′ which has been used for generating the “fake”
image. The self-supervision task is to predict the rotation angle of rotated real training images.
Deep metric learning is illustrated in greater detail in Fig. 3.

to unseen classes in our few-shot recognition task. This is because of the common assumption in
computer vision that various distinct object classes share certain parts. Thus, while our labeled and
unlabeled images do not show the same object classes, there may be some parts that appear in both
training and test image sets. Therefore, an image representation that would capture presence of these
common parts in unlabeled images is expected to also be suitable for representing unseen classes,
and thus facilitate our N -way K-shot recognition.

Toward learning such an image representation, in our unsupervised training, we integrate adversar-
ial, self-supervision, and deep metric learning. As shown in Fig. 1, we use a GAN-like architecture
for training a discriminator network D to encode real images x in their d-dimensional deep repre-
sentations z = Dz(x) ∈ [−1, 1]d, which will be later used for few-shot recognition in testing. We
also consider a discrete encoding z = Dz(x) ∈ {−1, 1}d, and empirically discover that it gives
better performance than the continuous counterpart. Hence our interpretation that binary values in
the discrete z indicate presence or absence of d latent parts in images.

In addition to Dz , the discriminator has two other outputs (i.e., heads), Dr/f and Drot, for adver-
sarial and self-supervised learning, respectively as illustrated in Fig. 2. D is adversarially trained to
distinguish between real and “fake” images, where the latter x′ are produced by a generator network
G, x′ = G(z′), from image encodings z′ which are randomly sampled from the uniform distribution
U [−1, 1]d. Sampling from the uniform distribution is justified, because latent parts shared among a
variety of object classes appearing in the unlabeled training set are likely to be uniformly distributed
across the training set. We extend the vanilla GAN with regularization aimed at minimizing a re-
construction loss between the sampled z′ and the corresponding embedding ẑ′ = D(G(z′)). As
our experiments demonstrate, this reconstruction loss plays an important role in training both D and
G in combination with the adversarial loss, as both losses enforce G generate as realistic images
as possible and D capture the most relevant image characteristics for reconstruction and real/fake
recognition.

Furthermore, following recent advances in self-supervised learning (Doersch et al., 2015; Zhang
et al., 2016; Noroozi & Favaro, 2016; Noroozi et al., 2017; Zhang et al., 2017), we also augment
our training set with rotated versions of the real images around their center, and train D to predict
their rotation angles, α̂ = Drot(Rotate(x, α)) ∈ {0, 1, 2, 3} ∗ 90◦. As in other approaches that
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Figure 3: Our second contribution is to use metric learning
of the discriminator shown in Figures 1, 2. We compile
a set of training triplets 〈anchor, positive, negative〉 for
estimating the standard triplet loss.

use self-supervised learning, our results demonstrate that this data augmentation strengthens our
unsupervised training and improves few-shot recognition.

Finally, we use deep metric learning toward making the image encoding z = Dz(x) represent latent
parts and in this way better capture similarity of object classes for our few-shot recognition. We
expect that various object classes share parts, and that more similar classes have more common
parts. Therefore, the encodings of images showing similar (or different) object classes should have a
small (or large) distance. To ensure this property, we use metric learning and compile a new training
set of triplet images for estimating the standard triple loss, as illustrated in Fig. 3. Since classes in
our training set are not annotated, we form the triplet training examples by using an image masking
procedure which is particularly suitable for identifying latent object parts. In the triplet, the anchor
is the original (unmasked) image, the positive is an image obtained from the original by masking
rectangular patches at the image periphery (e.g., top corner), and the negative is an image obtained
from the original by masking centrally located image patches. By design, the negative image masks
an important object part, and thus the deep representations of the anchor and the negative should have
a large distance. Conversely, masking peripheral corners in the positive image does not cover any
important parts of the object, and thus the deep representation of the positive should be very close
to that of the anchor. In this way, our metric learning on the triplet training examples ensures that
the learned image representation z accounts for similarity of object classes in terms of their shared
latent parts. As our results show, this component of our unsupervised training further improves
few-shot recognition in testing, to the extent that not only do we significantly outperform the state
of the art but also get a performance that is on par with the common episodic training for fully-
supervised few-shot learning on the Mini-Imagenet (Vinyals et al., 2016; Ravi & Larochelle, 2016)
and Tiered-Imagenet (Ren et al., 2018) datasets.

Our contributions are twofold:
• Extending the vanilla GAN with a reconstruction loss between uniformly sampled codes,
z′ ∼ U [−1, 1]d, and embeddings of the corresponding “fake” images, ẑ′ = D(G(z′)).

• The masking procedure for compiling triplet image examples and deep metric learning of
z so it accounts for image similarity in terms of shared latent parts.

The rest of this paper is organized as follows. Sec. 2 reviews previous work, Sec. 3 specifies our
proposed approach, Sec. 4 presents our implementation details and our experimental results, and
finally, Sec. 5 gives our concluding remarks.

2 RELATED WORK

This section reviews the related work on few-shot learning including standard, semi-supervised and
unsupervised few-shot learning. Few-shot learning is a type of transfer learning, where the goal is
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to transfer knowledge learned from a training set to the test set such that the model can recognize
new classes from a few examples (Miller et al., 2000; Fe-Fei et al., 2003).

Approaches to supervised few-shot learning can be broadly divided into three main groups based on
metric learning, meta-learning, and hallucination. Metric-learning based approaches seek to learn
embeddings such that they are close for same-class examples and far away for others. Representative
methods include Matching networks (Vinyals et al., 2016), Prototypical networks (Snell et al., 2017)
and Relation networks (Sung et al., 2018). Meta-learning based approaches learn a meta-learner for
learning a task-adaptive learner such that the latter performs well on new classes by parameter fine-
tuning. Representative methods include MAML (Finn et al., 2017), Reptile (Nichol et al., 2018),
and many others (Gidaris & Komodakis, 2018; Sun et al., 2019b; Jamal & Qi, 2019). Finally, hal-
lucination based few-shot learning first identifies rules for data augmentation from the training set.
These rules are then used in testing to generate additional labeled examples for few-shot recogni-
tion. Representative methods include Imaginary network (Wang et al., 2018), f-VEAGAN-D2 (Xian
et al., 2019) and Delta-encoder (Schwartz et al., 2018).

Semi-supervised few-shot learning was introduced in (Ren et al., 2018), and further studied in (Sun
et al., 2019a). These approaches augment the labeled training set with unlabeled images.

Hsu et al. (2018) introduced the unsupervised few-shot learning problem, where the entire training
set is unlabeled. They first create pseudo labels from unsupervised training, then apply the standard
supervised few-shot learning on these pseudo labels of training examples. While Hsu et al. (2018)
use clustering to identify pseudo labels, Antoniou & Storkey (2019) and Khodadadeh et al. (2018)
treat each training example as belonging to a unique class.

We differ from the above closely related approaches in two ways. First, we do not use the common
episodic training for few-shot learning. Second, we ensure that our image representation respects
distance relationships between dissimilar images when their important parts are masked.

3 OUR APPROACH

Our training set consists of unlabeled examples xu with hidden classes yu ∈ Ltrain. In testing,
we are given support images xs with labels ys ∈ Ltest sampled from N = |Ltest| unseen classes,
Ltrain∩Ltest = ∅, where each unseen class has K examples. Our N -way K-shot task is to classify
query images xq into one of these N classes, yq ∈ Ltest. For this, we first compute deep image rep-
resentations zq = Dz(xq) and zs = Dz(xs) of the query and support images using the discriminator
of the deep architecture shown in Fig. 1. Then, for every unseen class n = 1, . . . , N , we compute
the prototype vector cn as the mean of the K image encodings zs = Dz(xs) of class n:

cn =
1

K

∑
xs

ys=n

Dz(xs). (1)

Finally, we take the label of the closest cn to zq as our solution:
ŷq = n̂ = arg min

n
∆(zq, cn), (2)

where ∆ denotes a distance function, specified in Sec. 3.4. The same formulation of few-shot
recognition is used in (Snell et al., 2017).

Our deep architecture consists of a generator G and a discriminator D networks, which are learned
by integrating adversarial, self-supervision and metric learning. To this end, we equip D with three
output heads: image encoding head Dz , rotation prediction head Drot for self-supervision, and the
standard discriminating head Dr/f for distinguishing between real and “fake” images in adversarial
training, as depicted in Fig. 3.

3.1 ADVERSARIAL LEARNING

We specify the adversarial loss functions for training D and G as
Ladv
D = E

x∼pdata(x)
[min(0,−1 +Dr/f (x))] + E

z∼p(z)
[min(0,−1−Dr/f (G(z)))], (3)

Ladv
G = − E

z∼p(z)
[Dr/f (G(z))], (4)
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where E denotes the expected value, pdata(x) is a distribution of the unlabeled training images,
and p(z) is a distribution of latent codes which are sampled for generating “fake” images. In our
experiments, we have studied several specifications for p(z) aimed at modeling occurrences of latent
parts across images, including the binomial distribution Bin(0.5), the Gaussian distributionN (0, 1),
and the uniform distribution U[−1, 1]. For all these specifications, we get similar performance. As
shown in Lim & Ye (2017), optimizing the objectives in equation 3 and equation 4 is equivalent to
minimizing the reverse KL divergence.

3.2 SELF-SUPERVISED LEARNING

For self-supervision, we rotate real images of the unlabeled training set around their center, and train
D to predict the rotation angle α using the following cross-entropy loss:

Lrot
D = −1

4

3∑
α=0

[α ∗ logDrot(x̃α)], x̃α = Rotate(x, α), (5)

where x̃α is the rotated version of x with angle α ∈ {0, 1, 2, 3} ∗ 90◦. We are aware that there are
many other ways to incorporate self-supervision (e.g., “jigsaw solver” (Noroozi & Favaro, 2016)).
We choose image rotation for its simplicity and ease of implementation, as well as state-of-the-art
performance reported in the literature.

3.3 REGULARIZATION BY RECONSTRUCTION OF LATENT CODES

We extend the vanilla GAN by making D reconstruct the probabilistically sampled latent code z′ ∼
p(z), which is passed to G to generate synthetic images. Thus, we use z′ as a “free” label for
additionally training of D and G along with the adversarial and self-supervision learning. The
reconstruction loss is specified as the binary cross-entropy loss

Lbce
D = Lbce

G = −1

d

d∑
m=1

[z′m ∗ log σ(ẑ′m) + (1− z′m) ∗ log(1− σ(ẑ′m)], ẑ′ = Dz(G(z′))),

(6)

where z′ is converted to range [0, 1]d for computing loss, d is the length of z′, z′m is the mth element
of the latent code, ẑ′m is the predicted mth value of the discriminator’s encoding head Dz , and σ(·)
is the sigmoid function.

3.4 DEEP METRIC LEARNING

We additionally train D to output image representations that respect distance relationships such that
the more latent parts are shared between images, the closer their representations. To this end, we
compile a training set of triplets 〈anchor, positive, negative〉. The anchor z = Dz(x) represents
an original image x from the unlabeled training set. The positives {z+i : i = 1, . . . , 4}) represent
four images, z+i = Dz(x

+
i ), obtained by masking one of the four corners of the anchor image:

top-left, top-right, bottom-left, and bottom-right. The masking patch is selected to be relatively
small and thus ensure that no to little foreground is masked in the positives. The negatives {z−j :

j = 1, 2, . . . } represent images, z−j = Dz(x
−
j ), obtained by placing a masking patch over central

locations in the anchor image so as to ensure covering foreground parts. Given the training set of
triplets {〈z, z+i , z

−
j 〉}, we specify the triplet loss for deep metric learning as

Ltriplet
D = max[0,min

j
∆(z, z−j )−max

i
∆(z, z+i ) + ρ], (7)

where ρ is a distance margin, and ∆ is the following distance function:

∆(z, z′) = 1− z>z′

‖z‖2 · ‖z′‖2
. (8)
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3.5 OUR UNSUPERVISED TRAINING

Alg. 1 summarizes our unsupervised training that integrates adversarial, self-supervision and deep
metric learning. For easier training of D and G, we divide learning in two stages. First, we perform
the adversarial and self-supervision training by following the standard GAN training, where for
each image sampled from the training set, t1 = 1, . . . , T1, G is optimized once and D is optimized
multiple times over t2 = 1, . . . , T2 iterations (T2 = 3). After convergence of the first training stage
(T1 = 50, 000), the resulting discriminator is saved and denoted as D(1). In the second training
stage, we continue with metric learning of D over the triplet image examples in t3 = 1, . . . , T3
iterations (T3 = 20, 000), while simultaneously regularizing that the discriminator updates do not
significantly deviate from the previously learned D(1).

Algorithm 1: Our unsupervised training consists of two stages. T1 is the number of training itera-
tions of the first stage aimed at adversarial and self-supervision learning; T2 is the number of updates
of D per one update of G in the first training stage; T3 is the number of training iterations in the
second stage aimed at metric learning. β, γ, δ, λ are non-negative hyper parameters.

. First stage (1)
for t1 = 1, . . . , T1 do

Sample the latent code z′ ∼ p(z);
Generate the corresponding “fake” image x′ = G(z′), and compute ẑ′ = Dz(x

′);
Compute: Ladv

G as in equation 4, and Lbce
G as in equation 6;

Back-propagate the total loss L(1)
G = Ladv

G + βLbce
G to update G.

for t2 = 1, . . . , T2 do
Sample the latent code z′ ∼ p(z), generate x′ = G(z′), and compute ẑ′ = Dz(x

′);
Randomly sample a real training image x ∼ pdata(x);
Compute: Ladv

D as in equation 3, Lrot
D as in equation 5, Lbce

D as in equation 6;
Back-propagate the total loss L(1)

D = Ladv
D + δLrot

D + γLbce
D to update D(1).

end for
end for

. Second stage (2)
for t3 = 1, . . . , T3 do

Randomly sample a real training image x ∼ pdata(x) and take it as anchor;
Generate the positive and negative images by appropriately masking the anchor;
Form the corresponding triplet examples;
Compute: Ltriplet

D as in equation 7;
Back-propagate the total loss L(2)

D = Ltriplet
D + λ‖D(1)

z (x)−D(2)
z (x)‖22 to update D(2).

end for
Take D(2) as the learned discriminator D.

4 RESULTS

Datasets: We evaluate our approach on the two common few-shot learning datasets: Mini-Imagenet
(Vinyals et al., 2016; Ravi & Larochelle, 2016) and Tiered-Imagenet (Ren et al., 2018). Mini-
Imagenet contains 100 randomly chosen classes from ILSVRC-2012 (Russakovsky et al., 2015).
We split these 100 classes into 64, 16 and 20 classes for meta-training, meta-validation, and meta-
testing respectively. Each class contains 600 images of size 84× 84.

Tiered-Imagenet is a larger subset of ILSVRC-2012 (Russakovsky et al., 2015), consists of 608
classes grouped into 34 high-level categories. These are divided into 20, 6 and 8 categories for
meta-training, meta-validation, for meta-testing. This corresponds to 351, 97 and 160 classes for
meta-training, meta-validation, and meta-testing respectively. This dataset aims to minimize the
semantic similarity between the splits as in Mini-Imagenet. All images are also of size 84× 84.

We are the first to report results of unsupervised few-shot recognition on the Tiered-Imagenet
dataset.
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For our unsupervised few-shot problem, we ignore all ground-truth labeling information in the train-
ing and validation sets, and only use ground-truth labels of the test set for evaluation. We also resize
all images to size 64×64 in order to match the required input size of the GAN. For hyper-parameter
tuning, we use the validation loss of corresponding ablations.

Evaluation metrics: We first randomly sample N classes from the test classes and K examples
for each sampled class, and then classify query images into these N classes. We report the average
accuracy over 1000 episodes with 95% confidence intervals of the N -way K-shot classification.

Implementation details: We implement our approach, and conduct all experiments in Pytorch
(Paszke et al., 2017). The backbone GAN that we use is the Spectral Norm GAN (SN-GAN) (Miy-
ato et al., 2018) combined with the self-modulated batch normalization (Chen et al., 2018). The
number of blocks of layers in both G and D is 4. The dimension of the latent code/representation
z is d = 128. We use an Adam optimizer (Kingma & Ba, 2014) with the constant learning rate of
5e−4. D is updated in T2 = 3 iterations for every update of G. In the first and the second training
stages, the mini-batch size is 128 and 32, respectively. The latter is smaller, since we have to enu-
merate 16 masked images at 16 locations of a 4×4 grid for each original training image. That is, our
image masking for generating positive and negative images is performed by placing a 16× 16 patch
centered at the 4× 4 grid locations in the original image, where the patch brightness is equal to the
average of image pixels. We empirically observe convergence of the first and second training stages
of our full approach after T1 = 50000 and T3 = 20000 iterations, respectively. In all experiments,
we set γ = 1, β = 1, δ = 1, λ = 0.2, ρ = 0.5 as they are empirically found to give the best perfor-
mance. It is worth noting that beyond generating data for self-supervision and metric learning, we
do not employ the recently popular data-augmentation techniques in training (e.g., image jittering,
random crop, etc.).

Ablations: We define the following simpler variants of our approach for testing how its individual
components affect performance. The variants include:

• GAN: the Spectral Norm GAN (SN-GAN) (Miyato et al., 2018) with self-modulated batch
normalization (Chen et al., 2018), as shown in Fig. 1 within the red dashed line.
• GAN + BCE: extends training of the GAN with the reconstruction loss.
• GAN + BCE + ROT: extends training of the GAN + BCE with the rotation prediction loss.
• GAN + BCE + ROT + METRIC: Our full model that extends the GAN + BCE + ROT with

the triplet loss.

Ablation study and comparison with the state of the art: Table. 1 presents results of our ablations
and a comparison with the state-of-the-art methods on Mini-Imagenet and Tiered-Imagenet, in 1-
shot and 5-shot testing. For fair comparison, we follow the standard algorithm for assigning labels
to query images in the 1-shot and 5-shot testing, as used in (Snell et al., 2017).

From Table. 1, our reconstruction loss plays a crucial role, since it improves performance of GAN
+ BCE by nearly 9% relative to that of GAN. Importantly, our ablation GAN + BCE already out-
performs all related work by a large margin. This suggests that using a simple reconstruction loss
improves training of the vanilla GAN. Adding the rotation loss further improves performance of
GAN + BCE + ROT by 1%. Finally, the proposed triplet loss in GAN + BCE + ROT + METRIC
gives an additional performance gain of 3%, and the state-of-the-art results. Interestingly, in one-
shot setting, our full approach GAN + BCE + ROT + METRIC also outperforms the recent fully
supervised approach of ProtoNets (Snell et al., 2017) trained on the labeled training set.

Qualitative Results: Fig. 4 illustrates our masking procedure for generating negative images in
the triplets for metric learning. In each row, the images are organized from left to right by their
estimated distance to the original (unmasked) image in the descending order, where the rightmost
image is the closest. From Fig. 4, our metric learning ensures that the image representation captures
important object parts, so when such parts are missing in the masked images their distances to the
original image are greater than distances of other masked images missing less-important parts.

5 CONCLUSION

We have addressed unsupervised few-shot object recognition, where all training images are un-
labeled and do not share classes with test images. A new GAN-like deep architecture has been
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Table 1: Unsupervised few-shot recognition results on Mini-Imagenet and Tiered-Imagenet. We
also compare with a recent fully-supervised method trained with ground-truth training labels for
few-shot recognition.

Mini-Imagenet, 5-way Tiered-Imagenet, 5-way
Unsupervised Methods 1-shot 5-shot 1-shot 5-shot

BiGAN kNN
(Donahue et al., 2016) 25.56 ± 1.08 31.10 ± 0.63 - -
AAL-ProtoNets
(Antoniou & Storkey, 2019) 37.67 ± 0.39 40.29 ± 0.68 - -
UMTRA + AutoAugment
(Khodadadeh et al., 2018) 39.93 50.73 - -
DeepCluster CACTUs
-ProtoNets (Hsu et al., 2018) 39.18 ± 0.71 53.36 ± 0.70 - -

GAN only 34.84 ± 0.68 44.73 ± 0.67 35.57 ± 0.69 49.16 ± 0.70
GAN + BCE 43.51 ± 0.77 57.94 ± 0.76 43.82 ± 0.76 59.22 ± 0.75
GAN + BCE + ROT 44.43 ± 0.78 58.96 ± 0.72 44.80 ± 0.75 61.94 ± 0.75
GAN + BCE + ROT + METRIC 47.40 ± 0.78 61.63 ± 0.72 47.48 ± 0.78 64.39 ± 0.74

Fully-supervised Method:
ProtoNets (Snell et al., 2017) 46.56 ± 0.76 62.29 ± 0.71 46.52 ± 0.72 66.15 ± 0.74

Figure 4: Our image masking with rectangular patches for Mini-Imagenet. In every row, the images
are organized from left to right in the descending order by their estimated distance to the original
(unmasked) image.

proposed for unsupervised learning of an image representation which respects image similarity in
terms of shared latent object parts. We have made two contributions by extending the vanilla GAN
with reconstruction loss and by integrating deep metric learning with the standard adversarial and
self-supervision learning. Our results demonstrate that our approach generalizes will to unseen
classes, outperforming the sate of the art by more than 8% in both 1-shot and 5-shot recognition
tasks on the benchmark Mini-Imagenet dataset. We have reported the first results of unsupervised
few-shot recognition on the Tiered-Imagenet dataset. Our ablations have evaluated that solely our
first contribution leads to superior performance relative to that of closely related approaches, and that
the addition of the second contribution further improves our 1-shot and 5-shot recognition by 3%.
We also outperform a recent fully-supervised approach to few-shot learning that uses the common
episodic training on the same datasets.
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