
Explicit Disentanglement of Appearance and
Perspective in Generative Models

Nicki S. Detlefsen ∗
nsde@dtu.dk

Søren Hauberg ∗
sohau@dtu.dk

Abstract
Disentangled representation learning finds compact, independent and easy-to-
interpret factors of the data. Learning such has been shown to require an inductive
bias, which we explicitly encode in a generative model of images. Specifically, we
propose a model with two latent spaces: one that represents spatial transformations
of the input data, and another that represents the transformed data. We find that the
latter naturally captures the intrinsic appearance of the data. To realize the gener-
ative model, we propose a Variationally Inferred Transformational Autoencoder
(VITAE) that incorporates a spatial transformer into a variational autoencoder. We
show how to perform inference in the model efficiently by carefully designing the
encoders and restricting the transformation class to be diffeomorphic. Empirically,
our model separates the visual style from digit type on MNIST, separates shape and
pose in images of human bodies and facial features from facial shape on CelebA.

1 Introduction

Disentangled Representation Learning (DRL) is a fundamental challenge in machine learning that is
currently seeing a renaissance within deep generative models. DRL approaches assume that an AI
agent can benefit from separating out (disentangle) the underlying structure of data into disjointed
parts of its representation. This can furthermore help interpretability of the decisions of the AI agent
and thereby make them more accountable.

Even though there have been attempts to find a single formalized notion of disentanglement [Higgins
et al., 2018], no such theory exists (yet) which is widely accepted. However, the intuition is that a
disentangled representation z should separate different informative factors of variation in the data
[Bengio et al., 2012]. This means that changing a single latent dimension zi should only change a
single interpretable feature in the data space X .

Within the DRL literature, there are two main approaches. The first is to hard-wire disentanglement
into the model, thereby creating an inductive bias. This is well known e.g. in convolutional neural
networks, where the convolution operator creates an inductive bias towards translation in data. The
second approach is to instead learn a representation that is faithful to the underlying data structure,
hoping that this is sufficient to disentangle the representation. However, there is currently little to no
agreement in the literature on how to learn such representations [Locatello et al., 2019].

We consider disentanglement of two explicit groups of factors, the appearance and the perspective.
We here define the appearance as being the factors of data that are left after transforming x by its
perspective. Thus, the appearance is the form or archetype of an object and the perspective represents
the specific realization of that archetype. Practically speaking, the perspective could correspond to
an image rotation that is deemed irrelevant, while the appearance is a representation of the rotated
image, which is then invariant to the perspective. This interpretation of the world goes back to
Plato’s allegory of the cave, from which we also borrow our terminology. This notion of removing
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Figure 1: We disentangle data into appearance and perspective
factors. First, data are encoded based on their perspective (in
this case image A and C are rotated in the same way), which is
then removed from the original input. Hereafter, the transformed
samples can be encoded in the appearance space (image A and B
are both ones), that encodes the factors left in data.
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Figure 2: Our model, VITAE,
disentangles appearance from
perspective. Here we separate
body pose (arm position) from
body shape.

perspective before looking at the appearance is well-studied within supervised learning, e.g. using
spatial transformer nets (STNs) [Jaderberg et al., 2015].

This paper contributes an explicit model for disentanglement of appearance and perspective in
images, called the variational inferred transformational autoencoder (VITAE). As the name suggests,
we focus on variational autoencoders as generative models, but the idea is general (Fig. 1). First
we encode/decode the perspective features in order to extract an appearance that is perspective-
invariant. This is then encoded into a second latent space, where inputs with similar appearance
are encoded similarly. This process generates an inductive bias that disentangles perspective and
appearance. In practice, we develop an architecture that leverages the inference part of the model
to guide the generator towards better disentanglement. We also show that this specific choice of
architecture improves training stability with the right choice of parametrization of perspective factors.
Experimentally, we demonstrate that our model on four datasets: standard disentanglement benchmark
dSprites, disentanglement of style and content on MNIST, pose and shape on images of human bodies
(Fig. 2) and facial features and facial shape on CelebA.

2 Related work

Disentangled representations learning (DRL) have long been a goal in data analysis. Early work
on non-negative matrix factorization [Lee and Seung, 1999] and bilinear models [Tenenbaum and
Freeman, 2000] showed how images can be composed into semantic “parts” that can be glued together
to form the final image. Similarly, EigenFaces [Turk and Pentland, 1991] have often been used to
factor out lighting conditions from the representation [Shakunaga and Shigenari, 2001], thereby
discovering some of the physics that govern the world of which the data is a glimpse. This is central
in the long-standing argument that for an AI agent to understand and reason about the world, it must
disentangle the explanatory factors of variation in data [Lake et al., 2016]. As such, DRL can be seen
as a poor man’s approximation to discovering the underlying causal factors of the data.

Independent components are, perhaps, the most stringent formalization of “disentanglement”. The
seminal independent component analysis (ICA) [Comon, 1994] factors the signal into statistically
independent components. It has been shown that the independent components of natural images are
edge filters [Bell and Sejnowski, 1997] that can be linked to the receptive fields in the human brain
[Olshausen and Field, 1996]. Similar findings have been made for both video and audio [van Hateren
and Ruderman, 1998, Lewicki, 2002]. DRL, thus, allows us to understand both the data and ourselves.
Since independent factors are the optimal compression, ICA finds the most compact representation,
implying that the predictive model can achieve maximal capacity from its parameters. This gives DLR
a predictive perspective, and can be taken as a hint that a well-trained model might be disentangled. In
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the linear case, independent components have many successful realizations [Hyvärinen and Oja, 2000],
but in the general non-linear case, the problem is not identifiable [Hyvärinen et al., 2018].

Deep DRL was initiated by Bengio et al. [2012] who sparked the current interest in the topic. One
of the current state-of-the-art methods for doing disentangled representation learning is the β-VAE
[Higgins et al., 2017], that modifies the variational autoencoder (VAE) [Kingma and Welling, 2013,
Rezende et al., 2014] to learn a more disentangled representation. β-VAE enforces more weight on the
KL-divergence in the VAE loss, thereby optimizing towards latent factors that should be axis aligned
i.e. disentangled. Newer models like β-TCVAE [Chen et al., 2018] and DIP-VAE [Kumar et al.,
2017] extend β-VAE by decomposing the KL-divergences into multiple terms, and only increase the
weight on terms that analytically disentangles the models. InfoGAN [Chen et al., 2016] extends the
latent code z of the standard GAN model [Goodfellow et al., 2014] with an extra latent code c and
then penalize low mutual information between generated samples G(c, z) and c. DC-IGN [Kulkarni
et al., 2015] forces the latent codes to be disentangled by only feeding in batches of data that vary in
one way (e.g. pose, light) while only having small disjoint parts of the latent code active.

Shape statistics is the key inspiration for our work. The shape of an object was first formalized by
Kendall [1989] as being what is left of an object when translation, rotation and scale are factored
out. That is, the intrinsic shape of an object should not depend on viewpoint. This idea dates, at least,
back to D’Arcy Thompson [1917] who pioneered the understanding of the development of biological
forms. In Kendall’s formalism, the rigid transformations (translation, rotation and scale) are viewed
as group actions to be factored out of the representation, such that the remainder is shape. Higgins
et al. [2018] follow the same idea by defining disentanglement as a factoring of the representation
into group actions. Our work can be seen as a realization of this principle within a deep generative
model. When an object is represented by a set of landmarks, e.g. in the form of discrete points along
its contour, then Kendall’s shape space is a Riemannian manifold that exactly captures all variability
among the landmarks except translation, rotation, and scale of the object. When the object is not
represented by landmarks, then similar mathematical results are not available. Our work shows how
the same idea can be realized for general image data, and for a much wider range of transformations
than the rigid ones. Learned-Miller [2006] proposed a related linear model that generate new data by
transforming a prototype, which is estimated by joint alignment.

Transformations are at the core of our method, and these leverage the architecture of spatial
transformer nets (STNs) [Jaderberg et al., 2015]. While these work well within supervised learning,
[Lin and Lucey, 2016, Annunziata et al., 2018, Detlefsen et al., 2018] there has been limited uptake
within generative models. Lin et al. [2018] combine a GAN with an STN to compose a foreground
(e.g a furniture) into a background such that it look neutral. The AIR model [Eslami et al., 2016]
combines STNs with a VAE for object rendering, but do not seek disentangled representations. In
supervised learning, data augmentation is often used to make a classifier partially invariant to select
transformations [Baird, 1992, Hauberg et al., 2016].

3 Method

Our goal is to extend a variational autoencoder (VAE) [Kingma and Welling, 2013, Rezende et al.,
2014] such that it can disentangle appearance and perspective in data. A standard VAE assumes that
data is generated by a set of latent variables following a standard Gaussian prior,

p(x) =

∫
p(x|z)p(z)dz

p(z) = N (0, Id), p(x|z) = N (x|µp(z),σ2
p(z)) or P (x|z) = B(x|µp(z)).

(1)

Data x is then generated by first sampling a latent variable z and then sample x from the conditional
p(x|z) (often called the decoder). To make the model flexible enough to capture complex data
distributions, µp and σ2

p are modeled as deep neural nets. The marginal likelihood is then intractable
and a variational approximation q to p(z|x) is needed,

p(z|x) ≈ q(z|x) = N (z|µq(x),σ2
q (x)), (2)

where µq(x) and σ2
q (x) are deep neural networks, see Fig. 3(a).

When training VAEs, we therefore simultaneously train a generative model pθ(x|z)pθ(z) and an
inference model qφ(z|x) (often called the encoder). This is done by maximizing a variational lower
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(a) VAE (b) Unconditional VITAE (c) Conditional VITAE

Figure 3: Architectures of standard VAE and our proposed U-VITAE and C-VITAE models. Here q
denotes encoders, p denotes decoders, T γ denotes a ST-layer with transformation parameters γ. The
dotted box indicates the generative model.

bound to the likelihood p(x) called the evidence lower bound (ELBO)

log p(x) ≥ Eqφ(z|x)
[
log

pθ(x, z)

qφ(z|x)

]
= Eqφ(z|x) [log pθ(x|z)]︸ ︷︷ ︸

data fitting term

−KL(qφ(z|x)||pθ(z))︸ ︷︷ ︸
regulazation term

. (3)

The first term measures the reconstruction error between x and pθ(x|z) and the second measures
the KL-divergence between the encoder qφ(z|x) and the prior p(z). Eq. 3 can be optimized using
the reparametrization trick [Kingma and Welling, 2013]. Several improvements to VAEs have been
proposed [Burda et al., 2015, Kingma et al., 2016], but our focus is on the standard model.

3.1 Incorporating an inductive bias

To incorporate an inductive bias that is able to disentangle appearance from perspective, we change
the underlying generative model to rely on two latent factors zA and zP ,

p(x) =

∫∫
p(x|zA, zP )p(zA)p(zP )dzAdzP , (4)

where we assume that zA and zP both follow standard Gaussian priors. Similar to a VAE, we also
model the generators as deep neural networks. To generate new data x, we combine the appearance
and perspective factors using the following 3-step procedure that uses a spatial transformer (ST) layer
[Jaderberg et al., 2015] (dotted box in Fig. 3(b)):

1. Sample zA and zP from p(z) = N (0, Id).

2. Decode both samples x̃ ∼ p(x|zA), γ ∼ p(x|zP ).

3. Transform x̃ with parameters γ using a spatial transformer layer: x = Tγ(x̃).

This process is illustrated by the dotted box in Fig. 3(b).

Unconditional VITAE inference. As the marginal likelihood (4) is intractable, we use variational
inference. A natural choice is to approximate each latent group of factors zA, zP independently of
the other i.e.

p(zP |x) ≈ qP (zP |x) and p(zA|x) ≈ qA(zA|x). (5)

The combined inference and generative model is illustrated in Fig. 3(b). For comparison, a VAE
model is shown in Fig. 3(a). It can easily be shown that the ELBO for this model is merely a VAE
with a KL-term for each latent space (see supplements).
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Conditional VITAE inference. This inference model does not mimic the generative process of the
model, which may be suboptimal. Intuitively, we expect the encoder to approximately perform the
inverse operation of the decoder, i.e. z ≈ encoder(decoder(z)) ≈ decoder−1(decoder(z)). Since
the proposed encoder (5) does not include an ST-layer, it may be difficult to train an encoder to
approximately invert the decoder. To accommodate this, we first include an ST-layer in the encoder
for the appearance factors. Secondly, we explicitly enforce that the predicted transformation in the
encoder T γe is the inverse of that of the decoder T γd , i.e. T γe = (T γd)−1 (more on invertibility in
Sec. 3.2). The inference of appearance is now dependent on the perspective factor zP , i.e.

p(zP |x) ≈ qP (zP |x) and p(zA|x) ≈ qA(zA|x, zP ). (6)
These changes to the inference architecture are illustrated in Fig. 3(c). It can easily be shown that the
ELBO for this model is given by
log p(x) ≥ EqA,qP [log(p(x|zA, zP )]−DKL(qP (zP |x)||p(zP ))−EqP [DKL(qA(zA|x)||p(zA))].

(7)
which resembles the standard ELBO with a additional term (derivation in supplementary material),
corresponding to the second latent space. We will call both models variational inferred transfor-
mational autoencoders (VITAE) and we will denote the first model (5) as unconditional/U-VITAE
and the second model (6) as conditional/C-VITAE. The naming comes from Eq. 5 and 6, where zA
is respectively unconditioned and conditioned on zP . Experiments will show that the conditional
architecture is essential for inference (Sec. 4.2).

3.2 Transformation classes

Until now, we have assumed that there exists a class of transformations T that cap-
tures the perspective factors in data. Clearly, the choice of T depends on the true
factors underlying the data, but in many cases an affine transformation should suffice.

Figure 4: Random deformation field of
an affine transformation (top) compared
to a CPAB (bottom). We clearly see
that CPAB transformations offers a mush
more flexible and rich class of diffiomor-
phic transformations.

Tγ(x) = Ax+ b =

[
γ11 γ12 γ13
γ21 γ22 γ14

] [x
y
1

]
. (8)

However, the C-VITAE model requires access to the in-
verse transformation T −1. The inverse of Eq. 8 is given
by T −1γ (x) = A−1x − b, which only exist if A has a
non-zero determinant.

One, easily verified, approach to secure invertibility is to
parametrize the transformation by two scale factors sx, sy ,
one rotation angle α, one shear parameter m and two
translation parameters tx, ty:

Tγ(x) =
[
cos(α) − sin(α)
sin(α) cos(α)

] [
1 m
0 1

] [
sx 0
0 sy

]
+

[
tx
ty

]
.

(9)
In this case the inverse is trivially

T −1(sx,sy,γ,m,tx,ty)
(x) = T( 1

sx
, 1
sy
,−γ,−m,−tx,−ty)(x),

(10)
where the scale factors must be strictly positive.

An easier and more elegant approach is to leverage the
matrix exponential. That is, instead of parametrizing the
transformation in Eq. 8, we instead parametrize the veloc-
ity of the transformation

Tγ(x) = expm

([
γ11 γ12 γ13
γ21 γ22 γ14
0 0 0

])[
x
y
1

]
. (11)

The inverse2 is then T −1γ = T−γ . Then T in Eq. 11 is a C∞-diffiomorphism (i.e. a differentiable
invertible map with a differentiable inverse) [Duistermaat and Kolk, 2000]. Experiments show that
diffeomorphic transformations stabilize training and yield tighter ELBOs (see supplements).

2Follows from Tγ and T−γ being commuting matrices.
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Often we will not have prior knowledge regarding which transformation classes are suitable for
disentangling the data. A natural way forward is then to apply a highly flexible class of transformations
that are treated as “black-box”. Inspired by Detlefsen et al. [2018], we also consider transformations
Tγ using the highly expressive diffiomorphic transformations CPAB from Freifeld et al. [2015].
These can be viewed as an extension to Eq. 11: instead of having a single affine transformation
parametrized by its velocity, the image domain is divided into smaller cells, each having their own
affine velocity. The collection of local affine velocities can be efficiently parametrized and integrated,
giving a fast and flexible diffeomorphic transformation, see Fig. 4 for a comparison between an affine
transformation and a CPAB transformation. For details, see Freifeld et al. [2015].

We note, that our transformer architecture are similar to the work of Lorenz et al. [2019] and Xing et al.
[2019] in that they also tries to achieve disentanglement through spatial transformations. However,
our work differ in the choice of transformation. This is key, as the theory of Higgins et al. [2018]
strongly relies on disentanglement through group actions. This places hard constrains on which
spatial transformations are allowed: they have to form a smooth group. Both thin-plate-spline
transformations considered in Lorenz et al. [2019] and displacement fields considered in Xing et al.
[2019] are not invertible and hence do not correspond to proper group actions. Since diffiomorphic
transformations form a smooth group, this choice is paramount to realize the theory of Higgins et al.
[2018].

4 Experimental results and discussion

For all experiments, we train a standard VAE, a β-VAE [Higgins et al., 2017], a β-TCVAE [Chen
et al., 2018], a DIP-VAE-II [Kumar et al., 2017] and our developed VITAE model. We model
the encoders and decoders as multilayer perceptron networks (MLPs). For a fair comparison,
the number of trainable parameters is approximately the same in all models. The models were
implemented in Pytorch [Paszke et al., 2017] and the code is available at https://github.com/
SkafteNicki/unsuper/.

Evaluation metric. Measuring disentanglement still seems to be an unsolved problem, but the work
of Locatello et al. [2019] found that most proposed disentanglement metrics are highly correlated.
We have chosen to focus on the DIC-metric from Eastwood and Williams [2019], since this metric
has seen some uptake in the research community. This metric measures how will the generative
factors can be predicted from latent factors. For the MNIST and SMPL datasets, the generative
factors are discrete instead of continuous, so we change the standard linear regression network to a
kNN-classification algorithm. We denote this metric Dscore in the results.

4.1 Disentanglement on shapes

We initially test our models on the dSprites dataset [Matthey et al., 2017], which is a well established
disentanglement benchmarking dataset to evaluate the performance of disentanglement algorithms.
The results can be seen in Table 1. We find that our proposed C-VITAE model perform best, followed

Figure 5: Reconstructions (left images) and manipulation of latent codes (right images) on MNIST
for the three different models: VAE (a), β-VAE (b) and C-VITAE (c). The right images are generated
by varying one latent dimension in all models, while keeping the rest fixed. For the C-VITAE model,
we have shown this for both the appearance and perspective spaces.
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dSprite MNIST SMPL
ELBO log p(x) Dscore ELBO log p(x) Dscore ELBO log p(x) Dscore

VAE -47.05 -49.32 0.05 -169 -172 0.579 −8.62× 103 −8.62× 103 0.485
β-VAE -79.45 -81.38 0.18 -150 -152 0.653 −8.62× 103 −8.60× 103 0.525
β-TCVAE -66.48 -68.12 0.30 -141 -144 0.679 −8.62× 103 −8.56× 103 0.651
DIP-VAE-II -46.32 -48.92 0.12 -140 -155 0.733 −8.62× 103 −8.54× 103 0.743
U-VITAE -55.25 -57.29 0.22 -142 -143 0.782 −8.62× 103 −8.55× 103 0.673
C-VITAE -68.26 -70.49 0.38 -139 -141 0.884 −8.62× 103 −8.52× 103 0.943

Table 1: Quantitative results on three datasets. For each dataset we report the ELBO, test set log
likelihood and disentanglement score Dscore. Bold marks best results.

by the β-TCVAE model in terms of disentanglement. The experiments clearly shows the effect on
performance of the improved inference structure of C-VITAE compared to U-VITAE. It can be shown
that the conditional architecture of C-VITAE, minimizes the mutual information between zA and zP ,
leading to better disentanglement of the two latent spaces. To get the U-VITAE architecture to work
similarly would require a auxiliary loss term added to the ELBO.

4.2 Disentanglement of MNIST images

Secondly, we test our model on the MNIST dataset [LeCun et al., 1998]. To make the task more
difficult, we artificially augment the dataset by first randomly rotating each image by an angle
uniformly chosen in the interval [−20◦, 20◦] and secondly translating the images by t = [x, y], where
x, y is uniformly chosen from the interval [-3, 3]. For VITAE, we model the perspective with an
affine diffiomorphic transformation (Eq. 11).

The quantitative results can be seen in Table 1. We clearly see that C-VITAE outperforms the
alternatives on all measures. We overall observes that better disentanglement, seems to give better
distribution fitting. Qualitatively, Fig. 5 shows the effect of manipulating the latent codes alongside
test reconstructions for VAE, β-VAE and C-VITAE. Due to space constraints, the results from
β-TCVAE and DIP-VAE-II can found in the supplementary material. The plots were generated by
following the protocol from Higgins et al. [2017]: one latent factor is linearly increased from -3 to 3,
while the rest is kept fixed. In the VAE (Fig. 5(a)), this changes both the appearance (going from a 7
to a 1) and the perspective (going from rotated slightly left to rotated right). We see no meaningful
disentanglement of latent factors. In the β-VAE model (Fig. 5(b)), we observe some disentanglement,
since only the appearance changes with the latent factor. However this disentanglement comes at
the cost of poor reconstructions. This trade-off is directly linked to the emphasized regularization in
the β-VAE. We note that the value β = 4.0 proposed in the original paper [Higgins et al., 2017] is
insufficiently low for our experiments to observe any disentanglement, and we use β = 8.0 based
on qualitative evaluation of results. For β-TCVAE and DIP-VAE-II we observe nearly the same
amount of qualitative disentanglement as β-VAE, however these models achieve less blurred samples
and reconstructions. This is probably due to the two models decomposition of the KL-term, only
increasing the parts that actually contributes to disentanglement. Finally, for our developed VITAE
model (Fig. 5(c)), we clearly see that when we change the latent code in the appearance space (top
row), we only change the content of the generated images, while manipulating the latent code in the
perspective space (bottom row) only changes the perspective i.e. image orientation.

Interestingly, we observe that there exists more than one prototype of a 1 in the appearance space
of VITAE, going from slightly bent to straightened out. By our definition of disentanglement, that
everything left after transforming the image is appearance, there is nothing wrong with this. This
is simply a consequence of using an affine transformation that cannot model this kind of local
deformation. Choosing a more flexible transformation class could factor out this kind of perspective.
The supplements contain generated samples from the different models.

4.3 Disentanglement of body shape and pose

We now consider synthetic image data of human bodies generated by the Skinned Multi-Person Linear
Model (SMPL) [Loper et al., 2015] which are explicitly factored into shape and pose. We generate
10,000 bodies (8,000 for training, 2,000 for testing), by first continuously sampling body shape (going
from thin to thick) and then uniformly sampling a body pose from four categories ((arms up, tight),
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(arms up, wide), (arms down, tight), (arms down, wide)). Fig. 2 shows examples of generated images.
Since change in body shape approximately amounts to a local shape deformation, we model the
perspective factors using the aforementioned "black-box" diffiomorphic CPAB transformations (Sec.
3.2). The remaining appearance factor should then reflect body pose.

Quantitative evaluation. We again refer to Table 1 that shows ELBO, test set log-likelihood and
disentanglement score for all models. As before, C-VITAE is both better at modelling the data
distribution and achieves a higher disentanglement score. The explanation is that for a standard
VAE model (or β-VAE and its variants for that sake) to learn a complex body shape deformation
model, it requires a high capacity network. However, the VITAE architecture gives the autoencoder a
short-cut to learning these transformations that only requires optimizing a few parameters. We are not
guaranteed that the model will learn anything meaningful or that it actually uses this short-cut, but
experimental evidence points in that direction. A similar argument holds in the case of MNIST, where
a standard MLP may struggle to learn rotation of digits, but the ST-layer in the VITAE architecture
provides a short-cut. Furthermore, we found the training of VITAE to be more stable than other
models.

VAE

𝛽𝛽-VAE

VITAE

𝛽𝛽-TCVAE

DIP-VAE
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A
pp

ea
ra

nc
e

Figure 6: Disentanglement of body shape and body pose on SMPL-generated bodies for three
different models. The images are generated by varying one latent dimension, while keeping the rest
fixed. For the C-VITAE model we have shown this for both the appearance and perspective spaces,
since this is the only model where we quantitatively observe disentanglement.

Qualitative evaluation. Again, we manipulate the latent codes to visualize their effect (Fig. 6). This
time, we here show the result for β-TCVAE, DIP-VAE-II and VITAE. The results from standard VAE
and β-VAE can be found in supplementary material. For both β-TCVAE and DIP-VAE-II we do not
observe disentanglement of body pose and shape, since the decoded images both change arm position
(from up to down) and body shape. We note that for both β-VAE, β-TCVAE and DIP-VAE-II we
did a grid search for their respective hyper parameters. For these three models, we observe that the
choice of hyper parameters (scaling of KL term) can have detrimental impact of reconstructions and
generated samples. Due to lack of space, test set reconstructions and generated samples can be found
in the supplementary material. For VITAE we observe some disentanglement of body pose and shape,
as variation in appearance space mostly changes the positions of the arms, while the variations in the
perspective space mostly changes body shape. The fact that we cannot achieve full disentanglement
of this SMPL dataset indicates the difficulty of the task.
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4.4 Disentanglement on CelebA

Finally, we qualitatively evaluated our proposed model on the CelebA dataset [Liu et al., 2015]. Since
this is a " real life " dataset we do not have access to generative factors and we can therefore only
qualitatively evaluate the model. We again model the perspective factors using the aforementioned
CPAB transformations, which we assume can model the facial shape. The results can be seen in
Fig. 7, which shows latent traversals of both the perspective and appearance factors, and how they
influence the generated images. We do observe some interpolation artifacts that are common for
architectures using spatial transformers.

(a) Changing zP,1 corresponds to facial size.

(b) Changing zP,2 corresponds to facial displacement.

(c) Changing zA,2 corresponds to hair color.

Figure 7: Traversal in latent space shows, that our model can disentangle complex factors such as
facial size, facial position and hair color.

5 Summary

In this paper, we have shown how to explicitly disentangle appearance from perspective in a
variational autoencoder [Kingma and Welling, 2013, Rezende et al., 2014]. This is achieved by
incorporating a spatial transformer layer [Jaderberg et al., 2015] into both encoder and decoder in
a coupled manner. The concepts of appearance and perspective are broad as is evident from our
experimental results in human body images, where they correspond to pose and shape, respectively.
By choosing the class of transformations in accordance with prior knowledge it becomes an effective
tool for controlling the inductive bias needed for disentangled representation learning. On both
MNIST and body images our method quantitatively and qualitatively outperforms general purpose
disentanglement models [Higgins et al., 2017, Chen et al., 2018, Kumar et al., 2017]. We find it
unsurprisingly that in situations where some prior knowledge about the generative factors is known,
encoding these in the into the model give better result than ignoring such information.

Our results support the hypothesis [Higgins et al., 2018] that inductive biases are necessary for
learning disentangled representations, and our model is a step in the direction of getting fully
disentangled generative models. We envision that the VITAE model should be combined with other
models, by first using the VITAE model to separate appearance and perspective, and then training
a second model only on the appearance. This will factor out one latent factor at a time, leaving a
hierachy of disentangled factors.
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