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ABSTRACT

We propose a new perspective on adversarial attacks against deep reinforcement
learning agents. Our main contribution is CopyCAT, a targeted attack able to
consistently lure an agent into following an outsider’s policy. It is pre-computed,
therefore fast inferred, and could thus be usable in a real-time scenario. We show
its effectiveness on Atari 2600 games in the novel read-only setting. In this setting,
the adversary cannot directly modify the agent’s state –its representation of the
environment– but can only attack the agent’s observation –its perception of the
environment. Directly modifying the agent’s state would require a write-access
to the agent’s inner workings and we argue that this assumption is too strong in
realistic settings.

1 INTRODUCTION

We are interested in the problem of attacking sequential control systems that use deep neural policies.
In the context of supervised learning, previous work developed methods to attack neural classifiers
by crafting so-called adversarial examples. These are malicious inputs particularly successful at
fooling deep networks with high-dimensional input-data like images. Within the framework of
sequential-decision-making, previous works used these adversarial examples only to break neural
policies. Yet the attacks they build are rarely applicable in a real-time setting as they require to craft a
new adversarial input at each time step. Besides, these methods use the strong assumption of having
a write-access to what we call the agent’s inner state –the actual input of the neural policy built by
the algorithm from the observations–. When taking this assumption, the adversary –the algorithm
attacking the agent– is not placed at the interface between the agent and the environment where the
system is the most vulnerable. We wish to design an attack with a more general purpose than just
shattering a neural policy as well as working in a more realistic setting.

Our main contribution is CopyCAT, an algorithm for taking full-control of neural policies. It produces
a simple attack that is: (1) targeted towards a policy, i.e., it aims at matching a neural policy’s behavior
with the one of an arbitrary policy; (2) only altering observation of the environment rather than
complete agent’s inner state; (3) composed of a finite set of pre-computed state-independent masks.
This way it requires no additional time at inference hence it could be usable in a real-time setting.

We introduce CopyCAT in the white-box scenario, with read-only access to the weights and the
architecture of the neural policy. This is a realistic setting as prior work showed that after training
substitute models, one could transfer an attack computed on these to the inaccessible attacked model
(Papernot et al., 2016). The context is the following: (1) We are given any agent using a neural-
network for decision-making (e.g., the Q-network for value-based agents, the policy network for
actor-critic or imitation learning methods) and a target policy we want the agent to follow. (2) The
only thing one can alter is the observation the agent receives from the environment and not the full
input of the neural controller (the inner state). In other words, we are granted a read-only access
to the agent’s inner workings. In the case of Atari 2600 games, the agents builds its inner state by
stacking the last four observations. Attacking the agent’s inner state means writing in the agent’s
memory of the last observations. (3) The computed attack should be inferred fast enough to be used
in real-time.

We stress the fact that targeting a policy is a more general scheme than untargeted attacks where the
goal is to stop the agent from taking its preferred action (hoping for it to take the worst). It is also
more general than the targeted scheme of previous works where one wants the agent to take its least
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preferred action or to reach a specific state. In our setting, one can either hard-code or train a target
policy. This policy could be minimizing the agent’s true reward but also maximizing the reward for
another task. For instance, this could mean taking full control of an autonomous vehicle, possibly
bringing it to any place of your choice.

We exemplify this approach on the classical benchmark of Atari 2600 games. We show that taking
control of a trained deep RL agent so that its behavior matches a desired policy can be done with
this very simple attack. We believe such an attack reveals the vulnerability of autonomous agents.
As one could lure them into following catastrophic behaviors, autonomous cars, robots or any agent
with high dimensional inputs are exposed to such manipulation. This suggests that it would be worth
studying new defense mechanisms that could be specific to RL agents, but this is out of the scope of
this paper.

2 BACKGROUND

In Reinforcement Learning (RL), an agent interacts sequentially with a dynamic environment so as
to learn an optimal control. To do so, the problem is modeled as a Markov Decision Process. It is a
tuple {S,A, P, r, γ} with S the state space, A the action space we consider as finite in the present
work, P the transition kernel defining the dynamics of the environment, r a bounded reward function
and γ ∈ (0, 1) a discount factor. The policy π maps states to distributions over actions: π(·|s). The
(random) discounted return is defined as G =

∑
t≥0 γ

trt. The policy π is trained to maximize the
agent expected discounted return. The function V π(s) = Eπ[G|s0 = s] denotes the value function
of policy π (where Eπ[·] denotes the expectation over all possible trajectories generated by policy
π). We also call µ0 the initial state distribution and ρ(π) = Es∼µ0

[V π(s)] the expected cumulative
reward starting from µ0. Value-based algorithms (Mnih et al., 2015; Hessel et al., 2018) use the value
function, or more frequently the action-value functionQπ(s, a) = Eπ[G|s0 = s, a0 = a], to compute
π. To handle large state spaces, deep RL uses deep neural networks for function approximation. For
instance, value-based deep RL parametrize the action-value function Qω with a neural network of
parameters ω and deep actor-critics (Mnih et al., 2016) directly parametrize their policy πθ with a
neural network of parameters θ. In both cases, the taken action is inferred by a forward-pass in a
neural network.

Adversarial examples were introduced in the context of supervised classification. Given a classifier
C, an input x, a bound ε on a norm ‖.‖, an adversarial example is an input x′ = x + η such
that C(x) 6= C(x′) while ‖x − x′‖ ≤ ε. Fast Gradient Sign Method (FGSM) (Goodfellow et al.,
2015) is a widespread method for generating adversarial examples for the L∞ norm. From a linear
approximation of C, it computes the attack η as:

η = ε · sign(∇xl(θ, x, y)), (1)

with l(θ, x, y) the loss of the classifier and y the true label.

As an adversary, one wishes to maximize the loss l(θ, x+ η, y) w.r.t. η. Presented this way, it is an
untargeted attack. It pushes C towards misclassifying x′ in any other label than y. It can easily be
turned into a targeted attack by, instead of l(θ, x+ η, y), optimizing for −l(θ, x+ η, ytarget) with
ytarget the label the adversary wants C to predict for x′. This attack, optimized for the L∞ norm can
also be turned into an L2 attack by taking:

η = ε · ∇xl(θ, x, y)

‖∇xl(θ, x, y)‖2
. (2)

As shown by Eq. equation 1 and Eq. equation 2, these attacks are computed with one single step of
gradient, hence the term ”fast”. These two attacks can be turned into –more efficient, yet slower–
iterative methods (Carlini & Wagner, 2017; Dong et al., 2018) by taking several successive steps of
gradients. These methods will be referred to as iterative-FGSM.

When using deep networks to compute its policy, an RL agent can be fooled the same way as a
supervised classifier. As a policy can be seen as a mapping S → A, untargeted FGSM (1) can be
applied to a deep RL agent to stop it from taking its preferred action: a∗ = arg maxa∈A π(a|s).
Similarly targeted FGSM can be used to lure the agent into taking a specific action. Yet, this would
mean having to compute a new attack at each time step, which is generally not feasible in a real-time
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setting. Moreover, with this formulation, it needs to directly modify the agent’s inner state, the input
of the neural policy, which is a strong assumption.

3 THE COPYCAT ATTACK

In this work, we propose CopyCAT. It is an attack whose goal is to lure an agent into having a given
behavior, the latter being specified by another policy. CopyCAT’s goal is not only to lure the agent
into taking specific actions but to fully control its behavior. Formally, CopyCAT is composed of a set
of additive masks ∆ = {δi}1≤i≤|A| than can be used to drive a policy π to follow any policy πtarget.
Each additive mask δi is pre-computed to lure π into taking a specific action ai when added to the
current observation regardless of the content of the observation. It is, in this sense, a universal attack.
CopyCAT is an attack on raw observations and, as ∆ is pre-computed, it can be used online in a
real-time setting with no additional computation.

Notations We denote π the attacked policy and πtarget the target policy. At time step t, the policy
π outputs an action at taking the state st as input. The agent state is internally computed from
the past observations and we denote f the observations-to-state function: st = f(ot, o1:t−1) with
o1:t−1 = (o1, o2...ot−1).

Data Collection In order to be pre-computed, CopyCAT needs to gather data from the agent. By
watching the agent interacting with the environment, CopyCAT gathers a dataset D of K episodes
made of observations: D = (okt )

k∈(1:K)
t∈(1,Tk). We recall that the objective in this setting is for CopyCAT

to work with a read-only access to the inner workings of the agent. We thus stress that D is made of
observations rather than states. If CopyCAT is successful, π is going to behave as πtarget and thus may
experience observations out of the distribution represented in D. Yet, as will be shown, CopyCAT
transfers to unseen observations. We hypothesize that, as we build a universal attack, the learned
attack is able to move the whole support of observations in a region of RN where π chooses a precise
action.

Training A natural strategy for building an adversarial example targeted towards label ŷ is the
following. Given a classifier P(y|x) parametrized with a neural network and an input example x, one
computes the adversarial example x̂ = x + δ by maximizing logP(ŷ|x̂) subject to the constraint:
‖δ‖∞ = ‖x− x̂‖∞ ≤ ε. The adversary then performs either one step of gradient (FGSM) or uses an
iterative method (Kurakin et al., 2016) to solve the optimization problem.

Instead, CopyCAT is built for its masks to be working whatever the observation it is applied to. For
each ai ∈ A we build δi, the additional masks luring π into taking action ai, by maximizing over δi:

E
okt∈D

[
log π(ai|f(okt + δi, o

k
1:t−1)) + α ‖δi‖2

]
s.t. ‖δi‖∞ < ε . (3)

We restrict the method to the case where f , the function building the agent’s inner state from the
observations, is differentiable. Eq. 3 is optimized by alternating between gradient steps with adaptive
learning rate (Kingma & Ba, 2014) and projection steps onto the L∞-ball of radius ε. Unlike FGSM,
CopyCAT is a full optimization method. It does not take one single step of gradient.

CopyCAT has two main parameters: ε ∈ R+, a hard constraint on the L∞ norm of the attack and
α ∈ R+, a regularization parameter on the L2 norm of the attack.

Inference Once ∆ is computed, the attack can be used on π to make it follow any policy πtarget.
At each time step t and given past observations, πtarget infers an action atarget

t given the sequence of
observations and the corresponding mask δatarget

t
∈ ∆ is applied to the last observation ot before being

passed to the agent.

4 RELATED WORK

Vulnerabilities of neural classifiers were highlighted by Szegedy et al. (2013) and several methods
were developed to create the so-called adversarial examples, maliciously crafted inputs fooling deep
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networks. In sequential-decision-making, previous works use them to attack deep reinforcement
learning agents. However these attacks are not always realistic. The method from Huang et al.
(2017) uses fast-gradient-sign method (Goodfellow et al., 2015), for the sole purpose of destroying
the agent’s performance. What’s more, it has to craft a new attack at each time step. This implies
backpropagating through the agent’s network, which is not feasible in real-time. Moreover, it modifies
directly the inner state of the agent by writing in its memory, which is a strong assumption to take on
what component of the agent can be altered. The approach of Lin et al. (2017) allows the number of
attacked states to be divided by four, yet it uses the heavy optimization scheme from Carlini & Wagner
(2017) for crafting their adversarial examples. This is, in general, not doable in a real-time setting.
They also take the same strong assumption of having a read & write-access to the agent’s inner
workings. To the best of our knowledge, they are the first to introduce a targeted attack. However, the
setting is restricted to targeting one dangerous state. Pattanaik et al. (2018) proposes a method to
lure the agent into taking its least preferred action in order to reduce its performance but still uses
computationally heavy iterative methods at each time step. Pinto et al. (2017) proposed an adversarial
method for robust training of agents but only considered attacks on the dynamic of the environment,
not on the visual perception of the agent. Zhang et al. (2018) and Ruderman et al. (2018) developed
adversarial environment generation to study agent’s generalization and worst-case scenarios. Those
are different from this present work where we enlighten how an adversary might take control of a
neural policy.

5 ATARI EXPERIMENTS

We wish to build an attack targeted towards the policy πtarget. At a time step t, the attack is said to
be successful if π under attack indeed chooses the targeted action selected by πtarget. When π is not
attacked, the attack success rate corresponds to the agreement rate between π and πtarget, measuring
how often the policies agree along an unattacked trajectory of π.

Note that we only deal with trained policies and no learning of neural policies is involved. In other
words, π and πtarget are trained and frozen policies.

What we really want to test is the ability of CopyCAT to lure π into having a specific behavior. For
this reason, measuring the attack success rate is not enough. Having a high success rate does not
necessarily mean the macroscopic behavior of the attacked agent matches the desired one as will be
shown further in this section.

Cumulative reward as a proxy for behavior We design the following setup. The agent has a
policy π trained with DQN (Mnih et al., 2015). The policy πtarget is trained with Rainbow (Hessel
et al., 2018). We select Atari games (Bellemare et al., 2013) with a clear difference in terms of
performance between the two algorithms (where Rainbow obtains higher average cumulative reward
than DQN). This way, in addition to measuring the attack success rate, we can compare the cumulative
reward obtained by π under attack ρ(π) to ρ(πtarget) as a proxy of how well π’s behavior is matching
the behavior induced by πtarget. In this setup, if the attacked policy indeed gets cumulative rewards as
high as the ones obtained by πtarget, it will mean that we do not simply turned some actions into other
actions we targeted, but that the whole behavior induced by π under attack matches the one induced
by πtarget. This idea that, in reinforcement learning, cumulative reward is the right way to monitor
an agent’s behavior has been used and developed by the inverse reinforcement learning literature.
Authors from Ng et al. (2000) argued that the value of a policy, i.e. its cumulative reward, is the
most compact, robust and transferable description of its induced behavior. We argue that measuring
cumulative reward is thus a reasonable proxy for monitoring the behavior of π under attack. At this
point, we would like to carefully defuse a possible misunderstanding. Our goal is not to show that
DQN’s performance can be improved by being attacked. We simply want to show that its behavior
can be fully manipulated by an opponent and we use the obtained cumulative reward as a proxy for
the behavior under attack.

Baseline We set the objective of building a real-time targeted attack. We thus need to compare our
algorithm to baselines applicable ot this scenario. The fastest state-of-the-art method can be seen as a
variation of Huang et al. (2017). It applies targeted FGSM at each time step t to compute a new attack.
It first infers the action atarget and then back-propagates through the attacked network to compute their
attack. CopyCAT only infers atarget and then applies the corresponding pre-computed mask. Both

4



Under review as a conference paper at ICLR 2020

methods can thus be considered usable in real-time yet CopyCAT is still faster at inference. We set the
objective of attacking only observations rather than complete states so we do not need a write-access
to the agent’s inner workings. DQN stacks four consecutive frames to build its inner state. We thus
compare CopyCAT to a version of the method from Huang et al. (2017) where the gradient inducing
the FGSM attack is only computed w.r.t the last observation, so it produces an attack comparable
to CopyCAT, i.e., on a single observation. The gradient from Eq. 1: ∇st l(θ, st, atarget) becomes
∇ot l(θ, f(ot, o1:t−1), atarget). To keep the comparison fair, atarget is always computed with the exact
same policy πtarget as in CopyCAT.

FGSM-L∞ has the same parameter ε as CopyCAT, bounding the L∞ norm of the attack. CopyCAT
has an additional regularization parameter α allowing the attack to have, for a same ε, a lower energy
and thus be less detectable. We will compare CopyCAT to the attack from Huang et al. (2017)
showing how behaviors of π under attacks match πtarget when these attacks are of equal energy.

Full optimization-based attacks would not be inferred fast enough to be used in a sequential decision
making problem at each time step.

Experimental setup We always turn the sticky actions on, which make the problem stochastic
(Machado et al., 2018). An attacked observation is always clipped to the valid image range, 0 to
255. For Atari games, DQN uses as its inner state a stack of four observations: f(oi, o1:i−1) =
[oi, ..., oi−3]. For learning the masks of ∆, we gather trajectories generated by π in order to fill D
with 10k observations. We use a batch size of 8 and the Adam optimizer (Kingma & Ba, 2014) with
a learning rate of 0.05. Each point of each plot is the average result over 5 policy π seeds and 80 runs
for each seed. Only one seed is used for πtarget to keep comparison in terms of cumulative reward fair.

Attack energy As CopyCAT has an extra parameter α, we test its influence on the L2 norm of the
produced attack. For a given ε, FGSM-L∞ computes an attack η of maximal energy. As given by
Eq. 1, its L2 norm is ‖η‖2 =

√
Nε2 with N the input dimension. For a given ε, CopyCAT produces

|A| masks. We show in Fig. 1 the largest L2 norm of the |A| masks for a varying α (plain curves)
and compare it to the norm of the FGSM-L∞ attack (dashed lines). We want to stress that the attacks
are agnostic to the training algorithm so the results are easily transferred to other agents using neural
policies trained with another algorithm.

Figure 1: Influence of parameters ε and α on the maximal L2 norm of ∆: maxi ‖δi‖2. On the left,
attacks are computed on HERO. On the right, they are computed on Space Invaders.

As can be seen on Fig. 1, for a given ε and for the range of tested α, the attack produced by CopyCAT
has lower energy than FGSM-L∞. This is especially significant for higher values of ε, e.g higher
than 0.05.

Influence of parameters over the resulting behavior We wish to show how the agent behaves
under attack. As explained before, this analysis is twofold. First, we study results in terms of attack
success rate –rate of action chosen by π matching atarget when shown attacked observations– as done
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in supervised learning. Second, we study the behavior matching through the cumulative rewards
under attack ρ(π).

What we wish to verify in the following experiment is CopyCAT’s ability to lure an agent into
following a specific behavior. If the attack success rate is high (close to 1), we know that, on a
supervised-learning perspective, our attack is successful: it lures the agent into taking specific actions.
If, in addition, the average cumulative reward obtained by the agent under attack reaches ρ(πtarget) it
means that the attack is really successful in terms of behavior. We recall that we attack a policy with
a target policy reaching higher average cumulative reward.

Figure 2: Influence of parameters ε and α on the average behavior of the agent playing Space Invaders
under CopyCAT attack . On the left, the attack success rate. On the right, the average cumulative
reward.

Figure 3: Influence of parameters ε and α on the average behavior of the agent playing HERO under
CopyCAT attack . On the left, the attack success rate. On the right, the average cumulative reward.

We show on Fig. 2 and 3 (two different games) the attack success rate (left) and the cumulative
reward (right) for CopyCAT (plain curves) for different values of the parameters α and ε, as well
as for unattacked π (green dashed line) and πtarget (black dashed lines). We observe a gap between
having a high success rate and forcing the behavior of π to match the one of πtarget. There seems to
exist a threshold corresponding to the minimal success rate required for the behaviors to match. For
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example, as seen on the left, CopyCAT with ε = 5 and α < 10−5 (green curve) is enough to get a
85% success rate on the attack. However, as seen on the right, it is not enough to get the behavior of
π under attack to match the one of the target policy as the reward obtained under attack never reaches
ρ(πtarget).

Overall, we observe on Fig. 2-right and Fig. 3-right that with ε high enough ε ≥ 0.04 and α < 10−6,
CopyCAT is able to consistently lure the agent into following the behaviour induced by πtarget.

Comparison to Huang et al. (2017) We compare CopyCAT to the targeted version of FGSM on a
setup where the gradient is computed only on the last observation. As in the last paragraph, we study
both the attack success rate and the average cumulative reward under attack. We ask the question:
is CopyCAT able to lure the agent into following the targeted behavior? Is it better at this task than
FGSM in the real-time and read-only setting?

Figure 4: CopyCAT against FGSM for policy targeted attacks in HERO. On the left, the attack
success rate. On the right, the average cumulative reward under attack.

Figure 5: CopyCAT against FGSM for policy targeted attacks in Air Raid. On the left, the attack
success rate. On the right, the average cumulative reward under attack.

We show on Fig. 4 and 5 (two different games) the success rate of CopyCAT and FGSM (y-axis, left)
and the average cumulative reward under attack (y-axis, right). These values are plotted (i) against the
L2 norm of the attack for FGSM and (ii) against the largest L2 norm of the masks: maxi ‖δi‖2 for
CopyCAT. We only plot the standard deviation on the attack success rate because it corresponds to
the intrinsic noise of CopyCAT. We do not plot it for cumulative reward for the reason that one seed
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of πtarget has a great variance (with the sticky actions) and matching πtarget, even perfectly, implies
matching the variance of its cumulative rewards. The same phenomenon can be observed on Fig. 2
and 3: CopyCAT is not itself unstable (left figures, when α decreases or ε increases, the rate of
successful attacks consistently increases). Yet the cumulative reward is noisier, as the behavior of π is
now matching with a high-variance policy. As observed on Fig. 4-left and Fig. 5-left, FGSM is able to
turn a potentially significant part of the taken actions into the targeted actions (maximal success rate
around 75% on Space Invaders). However, it is never able to make π’s behavior match with πtarget’s
behavior as seen on Fig. 4-right and Fig. 5-right. The average cumulative reward obtained by π under
FGSM attack never reaches the one of πtarget. On the contrary, CopyCAT is able to successfully lure
π into following the desired macroscopic behavior. First, it turns more than 99% of the taken actions
into the targeted actions. Second, it makes ρ(π) under attack reach ρ(πtarget). Moreover, it does so
using only a finite set of masks while the baselines compute a new attack at each time step. An
example of CopyCAT is shown on Fig. 6. The patch δi aiming at action ”no-op” (i.e. do nothing) is
applied to an agent playing Space Invaders. The patch itself can be seen on the right (gray represents
a zero pixel, black negative and white positive). On the left, the unattacked observation. In the middle,
the attacked observation. Below the images, the action taken by the same policy π when shown the
different situations in an online setting.

Figure 6: DQN playing Space Invaders. On the left, the unattacked current observation. In the middle,
a mask of CopyCAT is applied to lure the agent into taking the ”no-op” action. Parameters used are:
ε = 3 · 10−2, α = 1.3 · 10−5. The L2 norm of the corresponding mask (shown on the right) is 0.78.
For this same ε, FGSM-L∞ would produce an attack of L2 norm: 2.52

6 CONCLUSION

In this work, we built and showed the effectiveness of CopyCAT, a simple algorithm designed to
attack neural policies in order to manipulate them. We showed its ability to lure a policy into having a
desired behavior with a finite set of additive masks, usable in a real-time setting while being applied
only on observations of the environment. We demonstrated the effectiveness of these universal masks
in Atari games. As this work shows that one can easily manipulate a policy’s behavior, a natural
direction of work is to develop robust algorithms, either able to keep their normal behaviors when
attacked or to detect attacks to treat them appropriately. Notice however that in a sequential-decision-
making setting, detecting an attack is not enough as the agent cannot necessarily stop the process
when detecting an attack and may have to keep outputting actions for incoming observations. It is thus
an exciting direction of work to develop algorithm that are able to maintain their behavior under such
manipulating attacks. Another interesting direction of work in order to build real-life attacks is to test
targeted attacks on neural policies in the black-box scenario, with no access to network’s weights
and architecture. However, targeted adversarial examples are harder to compute than untargeted
ones and we may experience more difficulties in reinforcement learning than supervised learning.
Indeed, learned representations are known to be less interpretable and the variability between different
random seeds to be higher than in supervised learning. Different policies trained with the same
algorithm may thus lead to S → A mappings with very different decision boundaries. Transferring
targeted examples may not be easy and would probably require to train imitation models to obtain
mappings similar to π in order to compute transferable adversarial examples.

8



Under review as a conference paper at ICLR 2020

REFERENCES

Marc G Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The arcade learning environ-
ment: An evaluation platform for general agents. Journal of Artificial Intelligence Research, 47:
253–279, 2013.
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A ADDITIONAL FIGURES

In order to keep the core paper not too long, we only showed a subset of the results in Sec. 5, they are
all provided here. The explanations and interpretations can be found in Sec. 5. Left: HERO. Center:
Space Invaders. Right: Air Raid.
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B ADDITIONAL EXPERIMENTS

In this appendix, we provide additional experiments to study further various aspects of the proposed
approach.

B.1 ATTACKING UNTRAINED DQN

In Sec. 5, the attacked agent was a trained DQN agent, while the target policy was a trained Rainbow
agent. If these agents have clearly different behaviors, one could argue that they were initially trained
to solve the same task (Rainbow achieving better results). To further assess CopyCAT’s ability to lure
a policy into following another policy, we therefore attack an untrained DQN, with random weights,
to follow the policy πtarget (still obtained from a trained Rainbow agent). Left: HERO. Center: Space
Invaders. Right: Air Raid.

Figure 7: Untrained DQN attacked by CopyCAT to follow Rainbow’s policy.

We see that in this case, FGSM is able to lure π into following πtarget at least as well as CopyCAT.
This shows that it is easier to fool an untrained network than a trained one. As expected, trained
networks are more robust to adversarial examples. CopyCAT is also able to lure the agent into
following πtarget.

B.2 TOWARDS BLACK-BOX TARGETED ATTACKS

Papernot et al. (2016) observed the transferability of adversarial examples between different models.
Thanks to this transferability, one is able to attack a model without having access to its weights. By
learning attacks on proxy models, one can build black-box adversarial examples. However Kos &
Song (2017) enlightened the difficulty for the state-of-the-art methods to build targeted adversarial
examples in this black-box setting. Starting from the intuition that universal attacks may transfer
better between models, we enhanced CopyCAT for it to work in the black-box setting.

We consider a setting where the adversary (i) is given a set of proxy models {π1, ..., πn} trained with
the same algorithm as π, (ii) can also query the attacked model π, but (iii) has no access to its weights.
In the black-box setting, CopyCAT is divided into two steps: (1) training multiple additional masks
and (2) selecting the highest performing ones.

Training The ensemble-based method from Kos & Song (2017) computes its additional mask by
attacking the classifier given by the mean predictions of the proxy models. We instead consider that
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our attack should be efficient against any convex combination of the proxy models’ predictions. For
each action ai, we compute the mask δi by maximizing over 100 epochs on the dataset D:

E
okt∈D

(α1...αp)∼∆

[
log

∑
1≤p≤n

αpπp(ai|f(okt + δi, o
k
1:t−1)) + α ‖δi‖2

]
s.t. ‖δi‖∞ < ε . (4)

with ∆ the uniform distribution over the n-simplex.

For each action, 100 masks are computed this way. These masks are just computed with different
random seeds.

Selection We then compute a competition accuracy for each of these random seeds. This accuracy
is computed by querying π on states built as follows. We take four consecutive observations in D,
apply 3 masks randomly selected among the previously computed masks on the first 3 observations;
the mask δi that is actually being tested is applied on the last observation. The attack is considered
successful if π outputs the action ai corresponding to δi. For each action, the mask with the highest
competition accuracy among the 100 computed masks is selected.

Inference The selected masks are then used online as in the white-box setting.

Results We provide preliminary results for the considered black-box setting. Four proxy models of
DQN are used to attack π. Again, it is attacked to make it follow the policy πtarget given by Rainbow.
The results can be found in Fig. 8. Each dot is an attack tested over 80 new episodes. Y-axis is the
mean success rate (middle) or the cumulative reward (right). X-axis is the maximal norm of the
attack. The figure on the left gives the value of α (on the y-axis) corresponding to each color.

Figure 8: CopyCAT attacking DQN on Air Raid, in the black-box setting to make it match Rainbow’s
policy.

We can observe that the proposed black-box attack is effective, even if less efficient than its white-box
counterpart. The proposed black-box CopyCAT could certainly be improved, and we let this for
future work.

B.3 MORE REALISTIC IMAGES

Reinforcement learning led to great improvements for games or robots manipulation (Levine et al.,
2016) but is not able yet to tackle realistic-image environments. While this paper is focused on
weaknesses of reinforcement learning agents, the relevance of the proposed method would be
diminished if one could not compute universal adversarial examples on realistic datasets. We
thus present this proof-of-concept, showing the existence of universal adversarial examples on
ImageNet (Deng et al., 2009). Note that Brown et al. (2017) already showed the existence of universal
attacks but considers a patch covering a part of the image rather than an additional mask.

We computed a universal attack on VGG16 (Simonyan & Zisserman, 2014), targeted towards the
label “tiger shark”, the same way CopyCAT does. It is trained on a small training set (10 batches
of size 8), and tested on a random subset of ImageNet validation dataset. The network is taken
from Keras pretrained models (Chollet et al., 2015) and attacked in a white-box setting. The same
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procedure as CopyCAT is used. 1000 images are randomly selected in the validation set. Only 80
are used for training and the rest is used for testing. The attack is trained with the same loss, same
learning rate and same batch size as CopyCAT, for 200 epochs. The (rescaled) computed attack is
shown in Fig. 9. Examples of attacked images from the test set are visible on Fig. 10.

Figure 9: The rescaled attack for the target class “tiger shark”.

Figure 10: Top: images from the test set, unseen during the training of the attack. Down: attacked
images: (image + attack). Below each image, the label predicted by VGG16.

After 200 epochs, the train accuracy is 90% and the test accuracy 88.44%. This proof-of-concept
experiment validates the existence of universal adversarial examples on realistic images and shows
that CopyCAT’s scope is not reduced to Atari-like environments. More generally, the existence of
adversarial examples have been shown to be a property of high-dimensional manifolds (Goodfellow
et al., 2015). Going towards more realistic images, hence higher dimensional images, should on the
opposite, allow CopyCAT to more easily find universal adversarial examples.
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B.4 ADDITIONAL BASELINE: ITERATIVE FGSM

Though iterative methods would not be useable in a real-time setting, we compare CopyCAT to
iterative-FGSM in order to understand strengths and weaknesses of CopyCAT.

Iterative-FGSM is ran with 10 steps of normalized gradient. Iterative-FGSM-L∞ performs equiv-
alently as CopyCAT on the three tested games. It would outperform it with more gradient steps.
Iterative-FGSM-L2 outperforms CopyCAT yet on HERO and Space Invaders, its performance de-
creases when increasing ε. We can see this phenomena as taking too big a step size in an optimization
method.

Left: HERO. Center: Space Invaders. Right: Air Raid.

Figure 11: DQN attacked by CopyCAT to follow Rainbow’s policy. Comparison to FGSM and
iterative-FGSM.

Again, one could argue that state-of-the-art methods like the one proposed in Carlini & Wagner
(2017) would outperform CopyCAT . However this method requires a complete optimization at each
time step and would not be useable in a real-time fashion.
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