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ABSTRACT

Despite the success of Generative Adversarial Networks (GANs) in image syn-
thesis, there lacks enough understanding on what networks have learned inside
the deep generative representations and how photo-realistic images are able to
be composed from random noises. In this work, we show that highly-structured
semantic hierarchy emerges as variation factors for synthesizing scenes from the
generative representations in state-of-the-art GAN models, like StyleGAN and
BigGAN. By probing the layer-wise representations with a broad set of semantics
at different abstraction levels, we are able to quantify the causality between the
activations and semantics occurring in the output image. Such a quantification
identifies the human-understandable variation factors learned by GANs to com-
pose scenes. The qualitative and quantitative results suggest that the generative
representations learned by the GANs with layer-wise latent codes are specialized to
synthesize different hierarchical semantics: the early layers tend to determine the
spatial layout and configuration, the middle layers control the categorical objects,
and the later layers finally render the scene attributes as well as color scheme.
Identifying such a set of manipulatable latent variation factors facilitates semantic
scene manipulation1.

1 INTRODUCTION

Success of deep neural networks stems from the representation learning, which identifies the explana-
tory factors underlying the high-dimensional observed data (Bengio et al. (2013)). Prior work has
shown that many concept detectors spontaneously emerge inside the deep representations trained for
classification task. For example, Gonzalez-Garcia et al. (2018) shows that networks for object recog-
nition are able to detect semantic object parts, and Bau et al. (2017) confirms that deep representations
from classifying images learn to detect different categorical concepts at different layers.

Analyzing the deep representations and their emergent structures gives insight into the generalization
ability of deep features (Morcos et al. (2018)) as well as the feature transferability across different
tasks (Yosinski et al. (2014)). But current efforts on interpreting deep representations mainly focus on
discriminative models (Zhou et al. (2015); Gonzalez-Garcia et al. (2018); Zeiler and Fergus (2014);
Agrawal et al. (2014); Bau et al. (2017)). Recent advance of Generative Adversarial Networks (GANs)
(Goodfellow et al. (2014); Karras et al. (2018a;b); Brock et al. (2019)) is capable of transforming
random noises into high-quality images, however, the nature of the learned generative representations
and how a photo-realistic image is being composed over different layers of the generator in GAN
remain much less explored.

It is known that the internal units of Convolutional Neural Networks (CNNs) emerge as object
detectors when trained to categorize scenes (Zhou et al. (2015)). Representing and detecting infor-
mative categorical objects provides an ideal solution for classifying scenes, such as sofa and TV are
representative of living room while bed and lamp are of bedroom. However, synthesizing a scene
demands far more knowledge for the generative models to learn. Specifically, in order to produce
highly-diverse scene images, the deep representations might be required to not only generate every
individual object relevant to a specific scene category, but also decide the underlying room layout as
well as render various scene attributes, e.g., the lighting condition and color scheme. Very recent work

1Source code will be made available. Please see the demo video at this link.
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on interpreting GANs Bau et al. (2019) visualized that the internal filters at intermediate layers are
specialized for generating some certain objects, but studying scene synthesis from object aspect only
is far from fully understanding how GAN is able to compose a photo-realistic image, which contains
multiple variation factors from layout level, category level, to attribute level. The original StyleGAN
work (Karras et al. (2018b)) pointed out that the layer-wise latent codes actually control the synthesis
from coarse to fine, but how these variation factors are composed together and how to quantify such
semantic information are still uncertain. Differently, this work gives a much deeper interpretation
on the hierarchical generative representations in the sense that we match these layer-wise variation
factors with human-understandable scene variations at multiple abstraction levels, including layout,
category (object), attribute, and color scheme.

Starting with the state-of-the-art StyleGAN models (Karras et al. (2018b)) as the example, we reveal
that highly-structured semantic hierarchy emerges from the deep generative representations with
layer-wise stochasticity trained for synthesizing scenes, even without any external supervision. Layer-
wise representations are first probed with a broad set of visual concepts at different abstraction levels.
By quantifying the causality between the layer-wise activations and the semantics occurring in the
output image, we are able to identify the most relevant variation factors across different layers of a
GAN model with layer-wise latent codes: the early layers specify the spatial layout, the middle layers
compose the category-guided objects, and the later layers render the attributes and color scheme
of the entire scene. We further show that identifying such a set of manipulatable latent variation
factors from layouts, objects, to scene attributes and color schemes facilitates the semantic image
manipulation with large diversity. The proposed manipulation technique is further generalized to
other GANs such as BigGAN (Brock et al. (2019)) and ProgressiveGAN (Karras et al. (2018a)).

1.1 RELATED WORK

Deep representations from classifying images. Many attempts have been made to study the internal
representations of CNNs trained for classification tasks. Zhou et al. (2015) analyzed hidden units
by simplifying the input image to see which context region gives the highest response, Simonyan
et al. (2014) applied back-propagation technique to compute the image-specific class saliency map,
Bau et al. (2017) interpreted the hidden representations via the aid of segmentation mask, Alain
and Bengio (2016) trained independent linear probes to analyze the information separability among
different layers. There are also some studies transferring the features of CNNs to verify how learned
representations fit with different datasets or tasks (Yosinski et al. (2014); Agrawal et al. (2014)). In
addition, reversing the feature extraction process by mapping a given representation back to image
space (Zeiler and Fergus (2014); Nguyen et al. (2016); Mahendran and Vedaldi (2015)) also gives
insight into what CNNs actually learn to distinguish different categories. However, these interpretation
techniques developed for classification networks cannot be directly applied for generative models.

Deep representations from synthesizing images. Generative Adversarial Networks (GANs) (Good-
fellow et al. (2014)) advance the image synthesis significantly. Some recent models (Karras et al.
(2018a); Brock et al. (2019); Karras et al. (2018b)) are able to generate photo-realistic faces, objects,
and scenes, making GANs applicable to real-world image editing tasks, such as image manipulation
(Shen et al. (2018); Xiao et al. (2018a); Wang et al. (2018); Yao et al. (2018)), image painting (Bau
et al. (2019); Park et al. (2019)), and image style transfer (Zhu et al. (2017); Choi et al. (2018)).
Despite such a great success, it remains uncertain what GANs have actually learned to produce such
diverse and realistic images. Radford et al. (2016) pointed out the vector arithmetic phenomenon
in the underlying latent space of GAN, however, discovering what kinds of semantics exist inside
a well-trained model and how these semantics are structured to compose high-quality images are
still unsolved. A very recent work (Bau et al. (2019)) analyzed the individual units of the generator
in GAN and found that they learn to synthesize informative visual contents such as objects and
textures spontaneously. Unlike Bau et al. (2019) which focuses on the intermediate filters, our work
quantitatively explores the emergence of multi-level semantics inside the very early latent space.

2 VARIATION FACTORS FOR SCENE SYNTHESIS

2.1 MULTI-LEVEL SCENE SEMANTICS

Imagine an artist drawing a picture of living room. The very first step, before drawing every single
object, is to choose a perspective and set up the layout of the room. After the spatial structure is
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Figure 1: Multiple levels of semantics extracted from two synthesized scenes.
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Figure 2: Method for identifying the emergent variation factors in generative representation. By deploying a
broad set of off-the-shelf image classifiers as scoring functions, F (·), we are able to assign a synthesized image
with semantic scores corresponding to each candidate variation factor. For a particular concept, we learn a
decision boundary in the latent space by considering it as a binary classification task. Then we move the sampled
latent code towards the boundary to see how the semantic varies in the synthesis, and use a re-scoring technique
to quantitatively verify the emergence of the target concept.

decided, the next step is to add objects that typically occur in a living room, such as sofa and TV.
Finally, the artist will refine the details of the picture with specified decoration styles, e.g., warm or
cold, natural lighting or indoor lighting. The above process reflects how a human interprets a scene to
draw it. As a comparison, generative models such as GANs follow a completely end-to-end training
for synthesizing scenes, without any prior knowledge about the drawing techniques and relevant
concepts. Even so, the trained GANs are able to produce photo-realistic scenes, which makes us
wonder if the GANs have mastered any human-understandable drawing knowledge as well as the
variation factors of scenes spontaneously.

Therefore, in this work we aim at interpreting how GANs learn to synthesize a photo-realistic scene
image from scratch. To align the synthesized scenes with human perception, we use off-the-shelf
classifiers to extract semantics from the output image. As shown in Fig.1, given a scene image,
semantics at multiple abstraction levels are extracted, including layout, object (category), and attribute.
These concepts are treated as candidates and we propose a quantification technique in Sec.2.2 to
identify which variation factor has been encoded into the well-learned generative representation. We
surprisingly find that GAN synthesizes a scene in a manner highly consistent with human. Over
the convolutional layers, GAN manages to compose these multi-level abstractions hierarchically. In
particular, GAN constructs the spatial layout at early stage, synthesizes category-specified objects at
middle stage, and renders the scene attribute (e.g., color scheme) at later stage. We will describe the
method we use to quantify the emergent variation factors as follows.

2.2 IDENTIFYING THE EMERGENT VARIATION FACTORS

Among the multi-level candidate concepts described in Sec.2.1, not all of them are meaningful to
a particular scene synthesis model. For instance, “indoor lighting” will never happen in outdoor
scenes such as bridge and tower. Accordingly, we come up with a method to quantitatively identify
the variation factors that emerge inside the learned generative representation. Fig.2 illustrates the
identification process which consists of two steps, i.e., probing and verification.

Probing latent space. The generator of GAN, G(·), typically learns the mapping from latent space
Z to image space X . Latent vectors z ∈ Z can be considered as the generative representation learned
by GAN. To study the emergence of variation factors inside Z , we need to first extract semantic
information from z, which is not trivial. To solve this problem, we employ synthesized image,
x = G(z), as an intermediate step and use a broad set of off-the-shelf image classifiers to help assign
semantic scores for each sampled latent code z. Taking “indoor lighting” as an example, the scene
attribute classifier is able to output the probability on how an input image looks like having indoor
lighting, which we use as semantic score. Recall that we divide scene representation into layout,
category, and attribute levels, we introduce layout estimator, scene category recognizer, and attribute
classifier to predict semantic scores from these abstraction levels respectively, forming a hierarchical
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semantic space S. After establishing the one-on-one mapping from latent space Z to sematic space
S, we search the decision boundary for each concept by treating it as a bi-classification problem, as
shown in Fig.2. Here, taking “indoor lighting” as an instance, the boundary separates the latent space
Z to two sets, i.e., present or absent of indoor lighting.

Verifying manipulatable variation factors. After probing the latent space with a broad set of
candidate concepts, we still need to figure out which ones are most relevant to the generative model
acting as the variation factors. The key issue is how to define “relevance”, or say, how to verify
whether the learned representation has already encoded a particular variation factor. We argue that if
the target concept is manipulatable from latent space perspective (e.g., change the indoor lighting
status of the synthesized image via simply varying the latent code), the GAN model is able to capture
such variation factors during the training process.

As mentioned above, we have already got separation boundaries for each candidate. Let {ni}Ci=1
denote the normal vectors of these boundaries, where C is the total number of candidates. For a
certain boundary, if we move a latent code z along its normal direction (positive), the semantic score
should also increase correspondingly. Therefore, we propose to re-score the varied latent code to
quantify how a variation factor is relevant to the target model for analysis. As shown in Fig.2, this
process can be formulated as

∆si =
1

K

K∑
k=1

max
(
Fi

(
G(zk + λni)

)
− Fi

(
G(zk)

)
, 0
)
, (1)

where 1
K

∑K
k=1 stands for the average of K samples to make the metric more accurate. λ is a fixed

moving step. To make this metric comparable among all candidates, all normal vectors {ni}Ci=1 are
normalized to fixed norm 1 and λ is set as 2. With this re-scoring technique, we can easily rank the
score ∆si among all C concepts to retrieve the most relevant latent variation factors.

3 EXPERIMENTAL RESULTS

In the generation process, the deep representation at each layer (especially for StyleGAN and
BigGAN) is actually directly derived from the projected latent code. Therefore, we consider the
latent code as the ”generative representation”, which may be slightly different from the conventional
definition in the classification networks. We conduct a detailed empirical analysis on the variation
factors identified across the layers of the generators in GANs. We show that the hierarchy of variation
factors emerges in the deep generative representations as a result of synthesizing scenes. Sec.3.1
contains the layer-wise analysis on the state-of-the-art StyleGAN model (Karras et al. (2018b)),
quantitatively and qualitatively verifying that the multi-level variation factors are encoded in the
latent space. In Sec.3.2 we explore the question on how GANs represent categorical information such
as bedroom v.s. living room. We reveal that GAN synthesizes the shared objects at some intermediate
layers. By controlling their activations only, we can easily overwrite the category of the output image,
e.g. turning bedroom into living room, while preserve its original layout and high-level attributes
such as indoor lighting. Sec.3.3 further shows that our approach can faithfully identify the most
relevant attributes associated with a particular scene, facilitating semantic scene manipulation.

Experimental Setting. The main experiment is conducted on StyleGAN (Karras et al. (2018b)), but
we also extend our analysis to PGGAN (Karras et al. (2018a)) and BigGAN (Brock et al. (2019)).
Most models are trained to synthesize scene images within a particular scene category, but we also
train a mixed StyleGAN model on a collection of images including bedroom, living room, and dining
room to better understand how GAN encodes the categorical information and their associated objects.
We use off-the-shelf image classifiers to assign synthesized scenes with semantic scores, including
a layout estimator (Zhang et al. (2019)), a scene category recognizer (Zhou et al. (2017)), and an
attribute classifier (Zhou et al. (2017)). We further extract color scheme of a scene image through
its hue histogram in HSV space. More details of the GAN models, the image classifiers, and the
semantic boundary search process can be found in Appendix.

3.1 EMERGING SEMANTIC HIERARCHY

Humans typically interpret a scene in a hierarchy of semantics, from its layout, underlying objects, to
the detailed attributes and the color scheme. This section will show that GAN composes a scene over
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Figure 3: (a) Four levels of visual abstractions emerge at different layers of StyleGAN. Vertical axis shows the
normalized perturbation score ∆si. (b) User study on how different layers correspond to variation factors from
different abstraction levels. (c) Layer-wise manipulation result. The first column is the original synthesized
images, and the other columns are the manipulated images at layers from four different stages respectively. Blue
boxes highlight the results from varying the latent code at the most proper layers for the target concept.
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(a) (b)

Wood Cluttered spaceGlossy

Figure 4: (a) Independent attribute manipulation results on high layers. The middle row are the source images.
We are able to both decrease (top row) and increase (bottom row) the variation factors in the images. (b) Joint
manipulation results, where the layout is manipulated at early layers, the categorical objects are manipulated at
middle layers, while indoor lighting attribute is manipulated at later layers. The first column indicates the source
images, the middle three columns are the independently manipulated images.

the layers in a similar way with human perception. To enable analysis on layout and category, we
take the mixed StyleGAN model trained on indoor scenes as the target model. StyleGAN (Karras
et al. (2018b)) learns a more disentangled latent spaceW on top of the conventional latent space
Z . Besides, StyleGAN feeds the latent code w ∈ W to each convolutional layer with different
transformations instead of only feeding it to the first layer. Specifically, for `-th layer, w is linearly
transformed to layer-wise transformed latent code y(`) with y(`) = A(`)w + b(`), where A(`), b(`)

are the weight and bias for style transformation respectively. We thus perform layer-wise analysis by
studying y(`) instead of z in Eq.(1).

To quantify the importance of each layer with respect to each variation factor, we use the re-scoring
technique to identify the causality between the layer-wise generative representation y(`) and the
semantic emergence. The normalized score in Fig.3(a) shows that the layers of the generator in GAN
are specialized to compose semantics in a hierarchical manner: the bottom layers determine the layout,
the lower layers and upper layers control category-level and attribute-level variations respectively,
while color scheme is mostly rendered at the top. This is consistent with human perception.

To visually inspect the identified variation factors, we move latent vector along the boundaries at
different layers to show how the synthesis varies correspondingly. For example, given a boundary in
regard to room layout, we vary the latent code towards the normal direction at bottom, lower, upper,
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Living Room Bedroom Dining Room

Figure 5: Objects are transformed by GAN to represent different scene categories. On the top shows that the
object segmentation mask varies when manipulating a living room to bedroom, and further to dining room. On
the bottom visualizes the object mapping that appears during category transition, where pixels are counted only
from object level instead of instance level. GAN is able to learn shared objects as well as the transformation of
objects with similar appearance when trained to synthesize scene images from more than one category.

and top layers respectively. Fig.3(c) shows the qualitative results for several concepts. We see that
the emerged variation factors follow a highly-structured semantic hierarchy, e.g., layout can be best
controlled at early stage while color scheme can only be changed at final stage. Besides, varying
latent code at the inappropriate layers may also change the image content, but the changing might be
inconsistent with the desired output. For example, in the second row, modulating the code at bottom
layers for category only leads to a random change in the scene viewpoint.

To better evaluate the manipulability across layers, we conduct a user study. We first generate 500
samples and manipulate them with respect to several concepts on different layers. For each concept,
20 users are asked to choose the most appropriate layers for manipulation. Fig.3(b) shows the user
study results, where most people think bottom layers best align with layout, lower layers control
scene category, etc. This is consistent with our observations in Fig.3(a) and (c). It suggests that
hierarchical variation factors emerge inside the generative representation for synthesizing scenes. and
that our re-scoring method indeed helps identify the variation factors from a broad set of semantics.

Identifying the semantic hierarchy and the variation factors across layers facilitates semantic scene
manipulation. We can simply push the latent code toward the boundary of the desired attribute at the
appropriate layer. Fig.4(a) shows that we can change the decoration style (crude to glossy), the mate-
rial of furniture (cloth to wood), or even the cleanliness (tidy to cluttered) respectively. Furthermore,
we can jointly manipulate the hierarchical variation factors. In Fig.4(b) we simultaneously change
the room layout (rotating viewpoint) at early layers, scene category (converting bedroom to living
room) at middle layers, and scene attribute (increasing indoor lighting) at later layers.

3.2 WHAT MAKES A SCENE?

As mentioned above, GAN models for synthesizing scenes are capable of encoding hierarchical
semantics inside the generative representation, i.e., from layout, category, to scene attribute and color
scheme. One of the most noticeable properties is that the middle layers of GAN actually synthesize
different objects for different scene categories. It raises the question on what makes a scene as
living room rather than bedroom. Thus we further dive into the encoding of categorical information
in GANs, to quantify how GAN interprets a scene category as well as how the scene category is
transformed from object perspective.

We employ the StyleGAN model trained on the mixture of bedroom, living room, and dining room,
and then search the semantic boundary between each two categories. To extract the objects from
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Figure 6: Comparison of the top scene attributes identified in the generative representations learned by StyleGAN
models for synthesizing different scenes. Vertical axis shows the perturbation score ∆si.
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Figure 7: Manipulation results on StyleGAN models trained for synthesizing different scenes. For each triple,
on top shows the target attribute, the first image is the source image, the other two images are generated by
increasing the manipulation magnitude. Please see the demo video for continuous manipulation via this link.

the synthesized images, we apply a semantic segmentation model (Xiao et al. (2018b)), which can
segment 150 objects (tv, sofa, etc) and stuff (ceiling, floor, etc). Specifically, we first randomly
synthesize 500 living room images, and then vary the corresponding latent codes towards the “living
room-bedroom” boundary and “bedroom-dining room” boundary in turn. We segment the images
before and after manipulation to get the segmentation masks, as shown in Fig.5. After tracking label
mapping for each pixel via the image coordinate during the manipulation process, we are able to
compute the statistics on how objects are transformed along with category changing.

Fig.5 shows the objects mapping in the category transformation process. We can see that (1) When
image is manipulated among different categories, most of the stuff classes (e.g., ceiling and floor)
remain the same, but some objects are mapped into other classes. For example, sofa in living room is
mapped to pillow and bed in bedroom, and bed in bedroom is further mapped to table and chair in
dining room. This phenomenon happens because sofa, bed, dining table and chair are distinguishable
objects for living room, bedroom, and dining room respectively. (2) Some objects are sharable
between different scene categories, and the GAN model is able to spot such property and learn to
generate these shared objects across different classes. For example, the lamp in living room (on
the left boundary of the image) still remains after the image is converted to bedroom. (3) With the
ability to learn object mapping as well as share objects across different classes, we are able to turn
an unconditional GAN into a GAN that can control category. Typically, to make GAN produce
images from different categories, class labels have to be fed into the generator to learn a categorical
embedding, like BigGAN (Brock et al. (2019)). Our result suggests an alternative approach.

3.3 DIVERSE ATTRIBUTE MANIPULATION

The emergence of variation factors for scene synthesis depends on the training data. Here we apply
our method to a collection of StyleGAN models, to capture a wide range of manipulatable attributes
out of the 102 scene attributes we use. Each styleGAN in the collection is trained to synthesize scene
images from a certain category, including both outdoor (bridge, church, tower) and indoor scenes
(living room, kitchen).
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Figure 9: (a) Some variation factors identified from PGGAN (bedroom). (b) Layer-wise analysis on BigGAN
from attribute level.

Fig.6 shows the top-10 relevant semantics to each model. We can see that “sunny” has high scores
on all outdoor categories, while “lighting” has high scores on all indoor categories. Furthermore,
“boating” is identified for bridge model, “touring” for church and tower, “reading” for living room,
“eating” for kitchen, and “socializing” for restaurant. These results are highly consistent with human
perception, suggesting the effectiveness of the proposed quantification method. Fig.7 further shows
manipulation results with respect to the scene attributes identified by our approach. We realistically
manipulate the synthesized image with desired semantics. More results can be found in Appendix.

4 DISCUSSION AND CONCLUSION

Disentanglement of Semantics. Some variation factors we detect in the generative representation
are more disentangled with each other than other semantics. Compared to the perceptual path length
and linear separability described in Karras et al. (2018b) and the cosine similarity proposed in Shen
et al. (2019), our work offers a new metric for disentanglement analysis. In particular, we move the
latent code along one semantic direction and then check how the semantic scores of other factors
change accordingly. As shown in Fig.8(a), when we modify the spatial layout, all scene attributes are
barely affected, suggesting that GAN learns to disentangle layout-level semantic from attribute-level.
However, there are also some scene attributes (from same abstraction level) entangling with each
other. Taking Fig.8(c) as an example, when modulating “indoor lighting”, “natural lighting” also
varies. This is also aligned with human perception, further demonstrating the effectiveness of our
proposed quantification metric.

Application to Other GANs. We further apply our method for two other GAN structures, i.e.,
PGGAN (Karras et al. (2018a)) and BigGAN (Brock et al. (2019)). These two models are trained
on LSUN dataset (Yu et al. (2015)) and Places dataset (Zhou et al. (2017)) respectively. Compared
to StyleGAN, PGGAN feeds the latent vector only to the very first convolutional layer and hence
does not support layer-wise analysis. But the proposed re-scoring method can still be applied to help
identify manipulatable semantics, as shown in Fig.9(a). BigGAN is the state-of-the-art conditional
GAN model that concatenates the latent vector with a class-guided embedding code before feeding it
to the generator, and it also allows layer-wise analysis like StyleGAN. Fig.9(b) gives analysis results
on BigGAN from attribute level, where we can tell that scene attribute can be best modified at upper
layers compared to lower layers or all layers. Meanwhile, the quantitative curve shows consistent
result with the discovery on StyleGAN as in Fig.3(a). These results demonstrate the generalization
ability of our approach as well as the emergence of manipulatable factors in other GANs.

In this paper, we show the emergence of highly-structured variation factors inside the deep generative
representations learned by GANs with layer-wise stochasticity. In particular, the GAN model
spontaneously learns to set up layout at early layers, generate categorical objects at middle layers,
and render scene attribute and color scheme at later layers when trained to synthesize scenes. A
re-scoring method is proposed to quantitatively identify the manipulatable semantic concepts within
a well-trained model, enabling photo-realistic scene manipulation.
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APPENDIX

Sec.A introduces the implementation details, including the GAN models used in this work, the
off-the-shelf classifiers used for semantic score prediction, and the process of semantic identification.
Sec.B contains the ablation study for showing why the proposed re-scoring technique is essential for
identifying variation factors in GAN. Sec.C discusses the limitation of our method as well as some
future directions. Sec.D contains more semantic scene manipulation results for a wide range of scene
categories and concepts. Sec.E shows the details model structures of StyleGAN and BigGAN, both of
which employ layer-wise latent codes. Sec.F provides the ablation study on layer-wise manipulation
from different abstraction levels.

A IMPLEMENTATION DETAILS

A.1 GAN MODELS

We conduct experiments on three state-of-the-art generative models, including PGGAN (Karras
et al. (2018a)), StyleGAN (Karras et al. (2018b)), and BigGAN (Brock et al. (2019)). Among them,
PGGAN and StyleGAN are trained on LSUN dataset (Yu et al. (2015)) while BigGAN is trained
on Places dataset (Zhou et al. (2017)). LSUN dataset consists of 7 indoor scene categories and
3 outdoor scene categories, and Places dataset contains 10 million images across 434 categories.
For PGGAN model, we use the officially released models2, each of which is trained to synthesize
scene within a particular category of LSUN dataset. For StyleGAN, only one model related to
scene synthesis (i.e., bedroom) is released3. For a more thorough analysis, we use the official
implementation4 to train some additional models on other scene categories, including both indoor
scenes (living room, kitchen, restaurant) and out door scenes (bridge, church, tower). We also train a
mixed model on the combination of images from bedroom, living room, and dining room with same
implementation. This model is specifically used for categorical analysis. For each StyleGAN model,
Tab.1 shows the category, the number of training samples, as well as the corresponding Fréchet
inception distances (FID) (Heusel et al. (2017)) which can reflect the synthesis quality to some extent.
For BigGAN, we use the author’s officially unofficial PyTorch BigGAN implementation5 to train
a conditional generative model by taking category label as constraint. The resolution of the scene
images synthesized by all of the above models is 256× 256.

Table 1: Description of the StyleGAN models trained on different categories.

Scene Category Indoor / Outdoor Training Samples FID (lower is better)

bedroom (official) Indoor 3M 2.65
living room Indoor 1.3M 5.16

kitchen Indoor 1M 5.06
restaurant Indoor 626K 4.03

bridge Outdoor 819K 6.42
church Outdoor 126K 4.82
tower Outdoor 708K 5.99
Mixed Indoor 500K each 3.74

A.2 SEMANTIC CLASSIFIERS

To extract semantic from synthesized images, we employ some off-the-shelf image classifiers to
assign these images with semantic scores from multiple abstraction levels, including layout, category,
scene attribute, and color scheme. Specifically, we use (1) a layout estimator (Zhang et al. (2019)),
which is able to predict the spatial structure of a indoor place, (2) a scene category classifier (Zhou
et al. (2017)), which is able to classify a scene image to 365 categories, and (3) an attribute predictor

2These PGGAN models can be found at https://drive.google.com/open?id=15hvzxt_
XxuokSmj0uO4xxMTMWVc0cIMU.

3The StyleGAN model can be found at https://drive.google.com/drive/folders/
1MASQyN5m0voPcx7-9K0r5gObhvvPups7.

4The implementation of StyleGAN can be found at https://github.com/NVlabs/stylegan.
5The implementation of BigGAN can be found at https://github.com/ajbrock/

BigGAN-PyTorch.
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PositiveNegative PositiveNegative

Figure 10: The definition of layout for indoor scenes. Green lines represent for the outline prediction from the
layout estimator. The dashed line indicates the horizontal center, and the red point is the center point of the
intersection line of two walls. The relative position between the vertical line and the center point is used to split
the dataset. For example, image on the left is treated as positive sample, while the one on the right is treated as
negative sample.

Layout Category Cloud

Negative
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Positive
Samples

Sunny FoliageCluttered space Color Scheme

Figure 11: Samples for training decision boundary with respect to layout, scene category, and various scene
attributes.

(Zhou et al. (2017)), which is capable of predicting 102 pre-defined scene attributes (e.g., sunny
and dirty). We also extract color scheme of a scene image through its hue histogram in HSV space.
Among them, the category classifier and attribute predictor can directly output the probability of how
likely an image belongs to a certain category or how likely an image has a particular attribute. As for
the layout estimator, it only detects the outline structure of a indoor place, shown as the green line in
Fig.10.

A.3 SEMANTIC PROBING AND VERIFICATION

Given a well-trained GAN model for analysis, we first generate a collection of synthesized scene
images by randomly sampling N latent codes. To ensure capturing all the potential variation factors,
we set N = 500, 000. We then use the aforementioned image classifiers to assign semantic scores for
each visual concept. It is worth noting that we use the relative position between image horizontal
center and the intersection line of two walls to quantify layout, as shown in Fig.10. After that, for
each candidate, we select 2, 000 images with the highest response as positive samples, and another
2, 000 with the lowest response as negative ones. Fig.11 shows some examples, where living room
and bedroom are treated as positive and negative for scene category respectively. We then train a
linear SVM by treating it as a bi-classification problem (i.e., data is the sampled latent code while
label is binary indicating whether the target semantic appears in the corresponding synthesis or not) to
get a linear decision boundary. Finally, we re-generate K = 1, 000 samples for semantic verification
as described in Sec.2.2.

B ABLATION STUDY ON RE-SCORING TECHNIQUE

Before performing the proposed re-scoring technique, we have two more steps, which are (1) assigning
semantic scores for synthesized samples, and (2) training SVM classifiers to search semantic boundary.
We would like to verify the essentiality of the re-scoring technique in identifying manipulatable
semantics. We conduct ablation study on the StyleGAN model trained for synthesizing bedrooms. As
shown in Fig.12, the left figure sorts the scene attributes by how many samples are labeled as positive
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Figure 12: Ablation study on the proposed re-scoring technique with StyleGAN model for bedroom synthesis.

ones, the middle figure sorts by the accuracy of the trained SVM classifiers, while the right figure
sorts by our proposed quantification metric.

In left figure, “no horizon”, “man-made”, and “enclosed area” are attributes with highest percentage.
However, all these three attributes are default properties of bedroom and thus not manipulatable. On
the contrary, with the re-scoring technique for verification, our method successfully filters out these
invariable candidates and reveals more meaningful semantics, like “wood” and “indoor lighting”. In
addition, our method also manages to identify some less frequent but actually manipulatable scene
attributes, such as “cluttered space”.

In middle figure, almost all attributes get similar scores, making them indistinguishable. Actually,
even the worst SVM classifier (i.e., “railroad”) achieves 72.3% accuracy. That is because even
some variation factors are not encoded in the latent representation (or say, not manipulatable), the
corresponding attribute classifier still assign synthesized images with different scores. Training SVM
on these inaccurate data can also result in a separation boundary, even it is not expected as the target
concept. Therefore, only relying on the SVM classifier is not enough to detect relevant variation
factors. By contrast, our method pays more attention to the score modulation after varying the latent
code, which is not biased by the initial response of attribute classifier or the performance of SVM. As
a result, we are able to thoroughly yet precisely detect the variation factors in the latent space from a
broad candidate set.

C LIMITATION AND FUTURE WORK

Despite the success of our proposed re-scoring technique in quantitatively identifying the hierarchi-
cal manipulatable latent variation factors in the deep generative representations, there are several
limitations for future improvement.

First, the layout classifier can only detect the layout structure of indoor scenes. But for a more general
analysis on both indoor and outdoor scene categories, there lacks of an unified definition of the spatial
layout. For example, our framework cannot change the layout of outdoor church images. In future
work, we will leverage the computational photography tools that recover the 3D camera pose of
the image, thus we can extract more universal viewpoint representation for the synthesized images.
Second, our proposed re-scoring technique relies on the performances of the off-the-shelf classifiers.
For some of the attributes, the classifiers are not so accurate, which leads to poor manipulation
boundary. This problem could be addressed with more powerful discriminative models. Third, for
simplicity we only use the linear SVM for semantic boundary search. This limits our framework
from interpreting the latent semantic subspace with more complex and nonlinear structure.

D MANIPULATION OF SYNTHESIZED SCENES

Our proposed method can not only identify hierarchical variation factors from learned generative
representation, but futher facilitate semantic scene manipulation. Fig.13 shows the manipulation
results from layout level and category level. Fig.14 and Fig.15 show the manipulation results from
attribute level on indoor scenes and outdoor scenes respectively. Fig.16 shows the joint manipulation
by modulating the latent code along the direction of desired semantics at the most appropriate layer.
All experiments are conducted on StyleGAN model.
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Figure 13: Layout and category manipulation results.
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Figure 14: Manipulating the attributes of indoor scenes at different scores (low to high).
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Figure 15: Manipulating the attributes of outdoor scenes at different scores (low to high).
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Figure 16: Independent and joint manipulation results.
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Figure 17: Generator architectures of StyleGAN (Karras et al. (2018b)) and BigGAN (Brock et al. (2019)), both
of which introduces layer-wise stochasticity (i.e., latent codes are fed into all convolutional layers instead of
only the first layer). Note that the diagrams are borrowed from the original papers.

E GENERATOR STRUCTURES

This work conducts experiments on state-of-the-art deep generative models for high-resolution scene
synthesis, including StyleGAN (Karras et al. (2018b)), BigGAN (Brock et al. (2019)), and PGGAN
(Karras et al. (2018a)). Among them, PGGAN employs the conventional generator structure where
the latent code is only fed into the very first layer. Differently, StyleGAN and BigGAN introduces
layer-wise stochasticity by feeding latent codes to all convolutional layers as shown in Fig.17. It is
worth mentioning that more and more latest GAN models inherit the design of using layer-wise latent
codes to achieve better generation quality, such as SinGAN (Shaham et al. (2019)) and HoloGAN
(Nguyen-Phuoc et al. (2019)). And our layer-wise analysis sheds light on why it is effective.

In StyleGAN model that is trained to produce 256 × 256 scene images, there are totally 14 con-
volutional layers. According to our experimental results, layout, category, attribute, color scheme
correspond to bottom, lower, upper, and top layers respectively, which are actually [0, 2), [2, 6),
[6, 12) and [12, 14) layers. As for BigGAN model with 256 × 256 resolution, there are total 12
convolutional layers. As the category information is already encoded in the “class” code as shown
in Fig.17, we only separate the layers to two groups, which are lower (bottom 6 layers) and upper
(top 6 layers). Since our layout model can only be applied to indoor scenes yet the BigGAN model
is trained on Places dataset which contains both indoor and outdoor categories, we only analyze
BigGAN from attribute level as shown in Fig.9(b). Both visualization results and quantitative curve
suggest that attribute-level semantics are better controlled by upper layers of BigGAN. For example,
when manipulating “vegetation” attribute at lower layers or all layers, the spatial information varies
unexpectedly, while manipulating at upper layers gives desired output.
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Figure 18: Comparison results between manipulating latent codes at only upper (attribute-relevant) layers and
manipulating latent codes at all layers with respect to indoor lighting on StyleGAN.

Layout Category Indoor lighting Color Scheme

Figure 19: Manipulation at the bottom layers in 4 different directions, including layout, category, indoor lighting,
and color scheme on StyleGAN.

F ABLATION STUDY ON LAYER-WISE MANIPULATION

To further validate the emergence of semantic hierarchy, we make ablation study on layer-wise
manipulation with StyleGAN model.

First, we select “indoor lighting” as the target semantic, and vary the latent code only on upper
(attribute-relevant) layers v.s. on all layers. We can easily tell from Fig.18 that when manipulation
“indoor lighting” at all layers, the objects inside the room are also changed. By contrast, manipulating
latent codes only at attribute-relevant layers can satisfyingly increase the indoor lighting without
affecting other factors.

Second, we select bottom layers as the target layers, and select boundaries from all four abstraction
levels for manipulation. As shown in Fig.19, no matter what level of semantics we choose, as long
as the latent code is modified at bottom (layout-relevant) layers, only layout instead of all other
semantics varies.

These two experiments further verify our discovery about the emergence of semantic hierarchy.
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