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Abstract

The prohibitive energy cost of running high-performance Convolutional Neural
Networks (CNNs) has been limiting their deployment on resource-constrained plat-
forms including mobile and wearable devices. We propose a CNN for energy-aware
dynamic routing, called EnergyNet, that achieves adaptive-complexity inference
based on the inputs, leading to an overall reduction of run time energy cost while
actually improving accuracy. This is achieved by proposing an energy loss that
captures both computational and data movement costs. We combine it with the
accuracy-oriented loss, and learn a dynamic routing policy for skipping certain
layers in the networks that optimizes the hybrid loss. Our empirical results demon-
strate that, compared to the baseline CNNs, EnergyNet can trim down the energy
cost by up to 40% and 65%, during inference on the CIFAR10 and Tiny ImageNet
testing sets, respectively, while maintaining the same testing accuracy. It is fur-
ther encouraging to observe that the energy awareness might serve as a training
regularization that can improve the prediction accuracy: our models can achieve
0.7% higher top-1 testing accuracy than the baseline on CIFAR-10 when saving up
to 27% energy, and 1.0% higher top-5 testing accuracy on Tiny ImageNet when
saving up to 50% energy, respectively.

1 Introduction
While deep learning-powered Internet of Things (IoT) devices promise to dramatically revolutionize
the way we live and work by enhancing our ability to recognize, analyze, and classify the world around
us, this revolution has yet to be unleashed due to many fundamental challenges. Edge devices, such
as smart phones, smart sensors, drones and robots, have limited energy and computation resources
since they are battery-powered and have a small form factor. On the other hand, high-performance
Convolutional Neural Networks (CNNs) come at a cost of prohibitive energy consumption [1]. The
CNNs with the highest accuracy have hundreds of layers and tens of millions of parameters. When
deployed in practice, such networks drain the battery very quickly [2].
Recently, there have been a number of methods proposed to reduce energy cost in CNNs, while
not hampering their predictive power. Most of them aim to reduce the model size or the number of
computations [3, 4, 5, 6, 7, 8, 9, 10, 11, 12]. However, [2] shows that a smaller model size and fewer
operations might not necessarily lead to a lower energy cost. [2] uses energy cost to guide the pruning
process, where the layer with the highest energy cost is pruned first. [13] formulates the CNN training
process as an optimization problem under a certain energy budget constraint. While both methods
[2, 13] show promising results towards pursuing more energy-efficient CNN models, they do not
incorporate energy costs into the training loss function to explicitly learn a more energy-efficient
model. Furthermore, once their model structures are learned from training, it can only be fixed during
the inference time, and there is no room for input-dependent adaptivity.
This paper proposes a new CNN model that combines energy cost with a dynamic routing strategy
to enable adaptive energy-efficient inference. Our proposed model, termed as EnergyNet, is a gated
CNN architecture which employs conditional computing to route the input data through the network
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Figure 1: EnergyNet Structure: each green circle G indicates an RNN gate and each blue square under
G indicates one block of layers in the base model. To reduce the energy cost, the RNN gates generate
routing strategies dynamically for different input images. By sharing the parameters between all
RNN gates, they will have only 0.04% of the energy cost of the base CNN model, which is negligible.
In this specific example, only the first and third blocks get executed.

in an efficient path. Built on a base network (such as ResNet-34 or ResNet-50 [14]), EnergyNet
uses an additional gating network [11] to decide whether the current input should skip certain layers
in the network or not. It optimizes a weighted combination of an accuracy loss and an energy loss
which captures both the computational and memory data movement costs, under which EnergyNet is
trained to find the optimal routing policy to reduce the energy cost of the model without degrading the
prediction accuracy. Our empirical results demonstrate that, compared to the base network without
gating nor dynamic inference, EnergyNet can trim down the energy cost up to 40% and 65%, during
inference on the CIFAR10 and Tiny ImageNet testing sets, respectively, while maintaining almost the
same testing accuracy. Interestingly enough, we find the energy-aware EnergyNet can even achieve
win-win, by simultaneously improving the prediction accuracy and saving energy, potentially due to
its equivalent effect as a training regularization to avoid overfitting. For example, our models achieve
0.7% higher top-1 testing accuracy than the baseline on CIFAR-10 when saving up to 27% energy,
and 1.0% higher top-5 accuracy on Tiny ImageNet when saving up to 50% energy, respectively.

2 Proposed EnergyNet Model
Overview: EnergyNet implements an effective dynamic routing algorithm using a set of gating
networks, which shares similar ideas with [11], as depicted in Figure 1. Each gating network
associates with a block of layers in the EnergyNet. Given an input image, the gating networks decide
if the corresponding block should be skipped or not. The input to each block is first sent to the gating
network G, whose output is either 0 or 1. If it is 0, the block will be skipped; otherwise, it will process
the input normally as in the base model. If the input and output of the block have different dimensions,
then we can perform a linear projection using a shortcut connection to match the dimensions as in
[14]. The core innovation in EnergyNet is the adoption of a new energy-aware loss function for
learning the gating (skipping) policy, whose details we defer to the next subsection.
In our implementation, we adopt the recurrent gates (RNNGates) as in [11] (see Figure 2).
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Fig. 3: Gate designs. (a) FFGate-I contains two 3x3 convolutional layers and has roughly
19% of the computation of the residual block. (b) FFGate-II is composed of one convolu-
tional layer with stride of 2 and has about 12.5% of the computation of residual blocks.
(c) RNNGate contains a one-layer LSTM with both input and hidden unit size of 10. The
cost of the RNNGate is negligible at 0.04% of the cost of the residual blocks.

map of the gates and then linearly project the feature to the input size of 10. We adopt a
single layer Long Short Term Memory [14] (LSTM) with hidden unit size of 10. At each
gate, we project the LSTM output to a one-dimensional vector to compute the final gate
decision. Compared to the cost of computing residual blocks, the cost of this recurrent
gate design is negligible (roughly 0.04% of the computation of residual blocks).

In our later experiments, we find that the recurrent gate dominates the feed-forward
gates in both prediction accuracy and computation cost. We also evaluated simpler
feed-forward gate designs without convolution layers and while these matched the
computation cost of the recurrent gates the prediction accuracy suffered. We conjecture
that the recurrent gate design better captures the cross-layer dependencies.

3.2 Skipping Policy Learning with Hybrid RL

During inference the most likely action is taken from the probability distribution encoded
by each gate: the layer is skipped or executed. This inherently discrete and therefore
non-differentiable decision process creates unique challenges for how we train SkipNets.
A natural approximation, similar to that used in Highway Networks [27], would be to
use differentiable soft-max decisions during training and then revert to hard decisions
during inference. While this approach enables gradient based training, it results in poor
prediction accuracy (Sec. 4.3) as the network parameters are not optimized for the
subsequent hard-gating during inference. We therefore explore the use of reinforcement
learning to learn the model parameters for the non-differentiable decision process.

Because SkipNets make a sequence of discrete decisions, one at each gated layer,
we frame the task of estimating the gating function in the context of policy optimization
through reinforcement learning. We define the skipping policy:

�(xi, i) = P(G i(xi) = gi) (3)

as a function from the input xi to the probability distribution over the gate action gi

to execute (gi = 1) or skip (gi = 0) layer i. We define a sample sequence of gating
decisions drawn from the skipping policy starting with input x as:

g = [g1, . . . , gN ] � �F�
, (4)

Figure 2: Gating networks in EnergyNet are RNNs
that share weights (RNNGates). The RNNGates in-
curs a negligible overhead.

It is composed of a global average pooling
followed by a linear projection that reduces
the features to a 10-dimensional vector. A
Long Short Term Memory (LSTM) [15] net-
work that contains a single layer of dimen-
sion 10 is applied to generate a binary scalar.
As mentioned in [11], this RNNGate design
incurs a negligible overhead compared to its
feed-forward counterpart (0.04% vs. 12.5%
of the computation of the residual blocks
when the baseline architecture is a ResNet).
In order to further reduce the energy cost due
to loading parameters into the memory, all RNNGates in the EnergyNet share the same weights.
Energy-aware Learning for Dynamic Routing: The dynamic routing in EnergyNet is learned by
minimizing an energy cost together with the accuracy loss. In particular, the learning goal in the
EnergyNet is defined as:

min
W,G

L(W,G) + αE(W,G) (1)

Here, α is a weighting coefficient of the energy loss, and W and G denote the parameters of the
base model and the gating network, respectively. Also, L(W,G) denotes the prediction loss, and
E(W,G) denotes the energy cost of the CNN model associated with W and G, which is calculated
by accumulating the energy cost of the layers that are not skipped. In order to compute the energy
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cost of each layer, we adopt the following energy model:

E =

N∑
i=1

#acci × ei +#MAC × eMAC (2)

where ei and eMAC denote the energy costs of accessing the i-th memory hierarchy and one multiply-
and-accumulate (MAC) operation [16], respectively, while #MAC and #acci denote the total number
of MAC operations and accesses to the i-th memory hierarchy, respectively. Note that state-of-the-art
CNN accelerators commonly employ such a hierarchical memory architecture for minimizing the
dominant memory access and data movement costs. In this work, we consider the most commonly
used design of three memory hierarchies including the main memory, the cache memory, and local
register files [16], and employ a state-of-the-art simulation tool called "SCALE-Sim" [17] to calculate
the number of memory accesses #acci and the total number of MACs #MAC .

3 Experiments
Summary: We show that EnergyNet saves more energy than the baseline ResNet after training
on CIFAR10 and Tiny ImageNet [18]. In particular, compared to the baseline ResNet, EnergyNet
saves up to 40% and 65% energy cost without degrading the prediction accuracy, when processing
CIFAR10 and TinyImageNet images, respectively. More encouragingly, our models can achieve 0.7%
higher top-1 testing accuracy than the baseline on CIFAR-10 when saving up to 27% energy, and
1.0% higher top-5 testing accuracy on Tiny ImageNet when saving up to 50% energy, respectively.
Architectures and Training Details: We use the ResNet-38 and ResNet-50 in [14] as the baseline
models for constructing and evaluating EnergyNet models on CIFAR-10 and Tiny ImageNet, with
the resulting models denoted as EnergyNet-38 and EnergyNet-50, respectively. The training process
contains three steps. In step I, we set the weighting coefficient α to a small value (e.g., 0.1), which
helps the model converge to the baseline accuracy first. In step II, we increase α to a larger value
(e.g., 0.9) and retrain the model obtained from step I. For step III , it is only triggered if the model
sees an accuracy loss larger than a threshold (default 0.1%) from step II: we then set α to a small
value (e.g., 0.1) again to retrain the resulting model from step II for restoring the accuracy. Such a
three-step strategy proves to help stabilize training and gain better performance.
Discussion: We use energy savings as a metric to quantify the resulting energy efficiency improve-
ment of EnergyNet. The energy savings is defined as Es/Etotal, where Etotal and Es are the energy
cost of the baseline model and the skipped layers due to EnergyNet. From Figure 3, we can conclude
that EnergyNet achieves the goal of reducing energy cost while preserving or even improving the
prediction accuracy. In particular, the accuracy of EnergyNet-38 and EnergyNet-50 will not drop
when the energy savings is as high as 40% and 65%, respectively. To confirm that these experimental
results are not just a coincidence, we performed 20 trials of experiments using EnergyNet-38 and
observed that the confidence interval with a 95% confidence level for the mean of the prediction
accuracy and the energy savings are [92.47%, 92.58%] and [39.55%, 40.52%], respectively, verifying
the reproducibility of EnergyNet’s prediction accuracy and resulting energy savings.
We observe that EnergyNet can achieve a higher accuracy than the original ResNet model. We
conjecture that this is because EnergyNet can overcome overfitting when performing the dynamic
routing for energy savings. Further EnergyNet can aggressively reduce energy cost by about 4×,
over both the ResNet-38 and ResNet-50 baselines, at the cost of 3% and 4% testing accuracy losses ,
respectively.

Figure 3: Top-1 accuracy (Acc) vs. energy savings for EnergyNet-38 (left) and Top-5 accuracy (Acc)
vs. energy savings for EnergyNet-50 (right).
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