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ABSTRACT

In this paper, we formulate hypothesis verification as a reinforcement learning
problem. Specifically, we aim to build an agent that, given a hypothesis about the
dynamics of the world can take actions to generate observations which can help
predict whether the hypothesis is true or false. Our first observation is that agents
trained end-to-end with the reward fail to learn to solve this problem. In order to
train the agents, we exploit the underlying structure in the majority of hypotheses –
they can be formulated as triplets (pre-condition, action sequence, post-condition).
Once the agents have been pretrained to verify hypotheses with this structure, they
can be fine-tuned to verify more general hypotheses. Our work takes a step towards
a “scientist agent” that develops an understanding of the world by generating and
testing hypotheses about its environment.

1 INTRODUCTION

In fields of natural sciences (physics, biology etc.), we follow scientific methods – building and
testing hypotheses to develop an understanding of the world. Many classical approaches to artificial
intelligence attempted to mirror this process (Brachman & Levesque, 2004; Davis & Marcus, 2015),
building (symbolic) knowledge representations about the world that allow the making and testing
of hypotheses. However, this process bears little resemblance to the way in which current machine
learning (ML) systems learn. Both traditional IID and interactive learning settings use a single user-
specified objective function that codifies a high-level task, but places no constraint on the underlying
knowledge formed about the environment. In standard ML approaches, particularly those based on
deep learning, any representation of the world is embedded in the weights of the model, and there is
no explicit mechanism for formulating or testing hypotheses.

In this paper we take a modest step towards combining the classical approaches with the successes
of modern ML to build a “scientist agent”. When fully realized, such agent would be able to both
make and test hypotheses about its environment. In this work we focus on the latter. Unlike standard
supervised problems, there is no standard formulation, and no benchmarks or environments for
hypothesis verification in interactive environments. A key contribution of our paper is framing the
problem of hypothesis verification and presenting a feasible formulation for it. Specifically, we
build an agent that, given a hypothesis about the dynamics of the world, can take actions to verify
if the hypothesis is true or not. We formulate hypothesis verification as joint learning of: (a) an
action policy that generates observations which are relevant to verification of hypotheses and; (b) a
prediction function which uses the observations to predict whether the hypothesis is true or false.

We first show that even in simple environments, agents trained end-to-end using deep reinforcement
learning methods cannot learn policies that can generate observations to verify the hypothesis. To
remedy this, we exploit the underlying structure of hypotheses – they can often be formulated as
a triplet of a pre-condition, an action sequence, and a post-condition that is causally related to the
pre-condition and actions. Using this common structure, we are able to seed our action policy to learn
behaviors which alter the truth of the pre-condition and post-condition. We show that this policy can
be fine-tuned to learn how to verify more general hypotheses that do not necessarily fit into the triplet
structure. Thus our approach allows combining the explicit hypothesis testing of classical AI with the
use of scalable statistical ML.

See videos and more at: https://sites.google.com/view/scientistagent

1

https://sites.google.com/view/scientistagent


Under review as a conference paper at ICLR 2020

2 RELATED WORK

Knowledge representation and reasoning (KRR) (Brachman & Levesque, 2004) is a central theme
of traditional AI. Commonsense reasoning (Davis, 1990; Davis & Marcus, 2015; Liu & Singh, 2004)
approaches, e.g. CYC (Lenat, 1995), codify everyday knowledge into a schema that permits inference
and question answering. However, the underlying operations are logic-based and occur purely within
the structured representation, having no mechanism for interaction with an external environment.
Expert systems (Giarratano & Riley, 1998) instead focus on narrow domains of knowledge, but are
similarly self-contained. Logic-based planning methods (Fikes & Nilsson, 1971; Colaco & Sridharan,
2015) generate abstract plans that could be regarded as action sequences for an agent. By contrast,
our approach is statistical in nature, relying on Reinforcement Learning (RL) to guide the agent.

Our approach builds on the recent interest (Mao et al., 2019; Garcez et al., 2012) in neural-symbolic
approaches that combine neural networks with symbolic representations. In particular, some recent
works (Zhang & Stone, 2015; Lu et al., 2018) have attempted to combine RL with KRR, for tasks
such as navigation and dialogue. These take the world dynamics learned by RL and make them
usable in declarative form within the knowledge base, which is then used to improve the underlying
RL policy. In contrast, in our approach, the role of RL is to verify a formal statement about the
environment. Our work also shares some similarity with Konidaris et al. (2018), where ML methods
are used to learn mappings from environment states to representations a planner can use.

Cognitive Development: Empirical research on early learning (Gopnik, 2012; Kushnir & Gopnik,
2005) has shown that infants build an understanding of the world around them in ways that parallel
the scientific process: constantly formulating hypotheses about how some physical aspect of the
world might work and then proving or disproving them through deliberate play. Through this process
the child builds up an abstract consistent causal understanding of the world. Violations of this
understanding elicit surprise that can be measured by researchers (Spelke et al., 1992).

Automated Knowledge Base completion: This work is also related to knowledge base completion
(Fader et al., 2011; Bordes et al., 2013; Suchanek et al., 2007), and especially as formulated in (Riedel
et al., 2013). Instead of using other facts in the knowledge base or a text corpus to predict edges
in the KB, here the agent needs to act in an environment and observe the results of those actions.
This recalls (Mitchell et al., 2018), where the system verifies facts it has previously hypothesized by
searching for corroboration in the corpus.

Automation of the scientific process has been attempted in several domains. Robotic exploration of
chemical reactivity has been demonstrated (Granda et al., 2018) using ML techniques. (King et al.,
2009) developed a robot scientist that explored geonomics hypotheses about yeast and experimentally
tested them using laboratory automation. In biochemistry (Vanlier et al., 2014) used Bayesian methods
for optimal experiment design. More generally, the Automated Statistician project (Steinruecken
et al., 2019) uses a Bayesian approach to reason about different hypotheses for explaining the data,
with the aims of creating interpretable knowledge.

Embodied Question and Answering: The problem studied in this paper is closely related to the
embodied visual question-answering problem in (Das et al., 2018). Indeed, our basic formulation
is a particular case of the most general formulation of embodied QA, as the agent is rewarded for
successfully answering questions about the environment that require interaction. However, the form
of the questions is different than those considered in (Das et al., 2018), as they may require drawing a
conclusion about the dynamics of the environment, rather than a static property. Even the questions
about static properties we are interested in have a different flavor, as they encode rules, rather than
statements about the current configuration. Our approach is built around hypothesis-conclusion
structure special to these questions.

There is also a large body of work on (non-embodied) visual QA (Kafle & Kanan, 2017; Wu et al.,
2016a) and text-based QA (Rajpurkar et al., 2018). From this, most relevant to our work is (Wu et al.,
2016b) who use a structured knowledge base to augment standard statistical QA techniques.

Language grounding: Our approach requires us to solve the language grounding problem, albeit in
a simplified form due to templated language/limited vocabulary. Most other works such as (Chaplot
et al., 2018; Anderson et al., 2018; Tellex et al., 2011) are focused on instruction following in known
or unknown environments.
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Learning to experiment: Recent works have studied training agents to interact with an environment
to draw conclusions about its dynamics (Denil et al., 2016) or elucidate its causal structure (Dasgupta
et al., 2019). Our work is similar to these (especially (Denil et al., 2016) which uses reinforcement
learning on sequences of observations) in that the agent gets reward for answering questions that
require experimentation with the environment. However, in those works, the “question” in each
environment is the same; and thus while learning to interact led to higher answer accuracy, random
experimental policies could still find correct answers. On the other hand, in this work, the space of
questions possible for any given environment is combinatorial, and random experimentation (and
indeed vanilla reinforcement learning) is insufficient to answer questions.

3 PROBLEM

3.1 THE HYPOTHESIS VERIFICATION PROBLEM

Here we formally introduce the problem of hypothesis verification as a Partially Observable Markov
Decision Process (POMDP).

The agent is spawned in an environment W ∈ W defined by the “rules” of the particular instance W
out of all possible worldsW . For instance, in a crafting world, W will be defined as a set or rules
for what items can be crafting from which other items, and this ruleset will be different from other
environments inW
Given the environment W , the agent is given a hypothesis to test h which relates to the rules of
the world instance. By construction, h is either true or false. The agent can take actions a ∈ A
(for example, move left, move right, craft, etc), including two special actions ansT and ansF . The
goal of the agent is to correctly identify the hypothesis h as true or false and take the corresponding
answering action. At the end of the episode, the agent is told whether the h was true or false.

In our experiments, we set the probability of h being true at 0.5, and construct the environments
such that it is not obvious from time t = 0 whether the hypothesis is true or not. The agent must
therefore learn a hypothesis conditioned policy π(s, h) : (S,H)→ A, such that the agent has enough
information to know whether h is true.

Because we also have access to the ground truth for whether the hypothesis is true, we can
train a network with supervised learning to predict true and false. Our prediction network
f(st, st−1, ...st−N , h) : (SN ,H) → hpred takes in the last N observed observations of the en-
vironment and the hypothesis and predicts whether or not the hypothesis is true. The special ans
action replaces the earlier ansT and ansF , and the prediction network is used to decide whether the
agent answer true or false.

This addition of a supervised component is not strictly necessary for the definition of the problem.
However, this framing allows for the use of supervised learning for the actual ground truth prediction,
which is known to be an easier problem than the indirect optimization of RL. Empirically, this change
makes the problem much more tractable.

Now, to train the policy network π, we can now define a reward function to allow for standard RL
training of the policy. In essence, we give the agent a positive reward at the end of an episode if it
correctly guesses the correct truth value of the hypothesis h.

Rans =

{
+C a = ans & hpred = hgt
−C a = ans & hpred 6= hgt
0 otherwise

where C ∈ R+ is some constant reward value and hgt is the ground truth value of the hypothesis.

Note that any particular choice of W forms an MDP if it were to be played repeatedly; but with the
dynamics depending on the ruleset, the state is not fully observed, and naive RL is not applicable. As
is standard in these situations, we use models that take as input a sequence of observations.

This dual optimization of policy and hypothesis prediction makes hypothesis verification a quite
challenging problem! In order to be able to tell whether a hypothesis is true or not, we need to take the
correct sequence of actions related to the hypothesis. But in order to know that a particular sequence
of actions was the right one to do, we need to be able to correctly predict the hypothesis to know that
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we should have a positive reward for that sequence. Guessing with no information gives average 0
reward, and until it learns good predictor it has no signal to guide the policy to do the right thing. We
find that a RL baseline finds it almost impossible to solve the task as it can neither learn the right
policy nor the right predictor to verify the hypothesis.

3.2 ENVIRONMENTS

We create three games in order to test the problem of hypothesis verification: Color Switch, Pushblock,
and Crafting. See Figure 1. Each instantiation of an environment comes with a hypothesis for the
agent to verify. The hypotheses are generated along with the environment using a set of templates
associated to the game (see Appendix A). For each spawn of the environment, the locations of the
agent, all items and entities, the given hypothesis to verify, as well as the underlying logic of the
world is randomized. This prevents the agent from learning the truth of the hypothesis by simply
guessing without interacting with the world.

In the Color Switch environment, the agent is placed in a world with one or more color switches
which are randomly either “on” or “off” and a door which is either open or closed. The agent is
able to move and toggle the switch positions. One of the switches in the environment, when in the
correct position (can be either on or off) will cause the door to open. The other switch has no effect.
Hypotheses in this environment relate to the color and position of switches and how that opens or
closes the door.

In the Pushblock environment, the agent is placed in a world with a block which can be pushed by
the agent, and a door. The agent can move and push on the block. The door opens when the block is
in a particular part of the grid: “up” – top two rows, “down” – bottom two rows, “left” – leftmost two
rows, “right” – rightmost two rows. The hypotheses in this environment related to the position of the
pushblock and how that affects the door.

Finally, in the Crafting environment, the agent is placed in a world with crafting rules similar to that
of the popular Minecraft game. The agent is spawned along with a number of crafting items, and
a crafting location. The agent is able to move, pick up items into its inventory and use the crafting
location using special crafting actions. There is some true “recipe” which produces some new item in
the agent’s inventory.

Items are randomly generated in a 5 by 5 grid. The world observation is given by a 1-hot vector
of each possible item in the world at each grid location and another 1-hot vector for each item
and whether it is in the agent’s inventory. The hypothesis is encoded as sequence of tokens. As
we describe in Section 3.1, the (sparse) reward function for these environments is C = 10 if the
agent takes the special ans action and correctly verifies the hypothesis as true or false, and −10 if it
incorrectly guesses.

Color Switch Pushblock Crafting

if the blue switch is on the 
the door will open

the door state is 
independent of the 
pushblock being left

to create a torch you must 
have a stick and go to 
craftingtable and craft

Figure 1: Examples of the Color Switch, Pushblock and Crafting hypothesis verification environments

3.3 HYPOTHESIS CONSTRUCTION

In the following sections, we discuss different types of hypotheses about the environment in order of
increasing complexity.
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3.3.1 TRIPLET HYPOTHESES

In the first case, we consider hypotheses that have the following “triplet” form.

(pre-condition, action sequence) =⇒ post-condition

The idea here is that we want to explicitly form the hypothesis as a logical statement. When the
pre-condition is true, and the action sequence is performed, the post-condition will be true.

To generate our triplet hypotheses, we: (1) randomly select a pre-condition template from a set list;
(2) randomly select an action template; (3) randomly select a post-condition template; and (4) fill in
any entities in the final template

So for example, for the Color Switch environment we might draw “if the COLOR switch is
ON_OFF_SWITCHSTATE, NULL, the door will open” and then draw “blue” for COLOR and
“on” for ON_OFF_SWITCHSTATE, giving us the final template: “if the blue switch is on the door
will open.”

In Appendix A, we show the possible templates for each of the triplets and the possible values for all
of the entities for our three environments.

3.3.2 GENERAL TEMPLATE CONSTRUCTION

In the more general case, instead of drawing a template from the triplet form, we instead draw a
single template for the hypothesis and fill in the values. For instance, in pushblock we might draw:
“the door can only be opened when the pushblock is PUSHBLOCK_POSITION”
and then draw “left” for PUSHBLOCK_POSITION. These templates are more general than the
triplet ones in that they need not hold to the strict triplet form, and we have no explicit labels for
pre-condition, action sequence and post-condition.

3.3.3 SPECIAL CASE TEMPLATES

Finally, we also can draw some more difficult and general hypothesis templates. Some of these
cannot be neatly fit into a triplet format by rewording, and some may not fully describe the rules of
the world. Some examples of these harder templates are: (1) Negating effects (e.g. door is not open);
(2) Negating conditions (e.g. switch is not on); and Independence (e.g. door independent of blue
switch). See Appendix A for all of the possible templates for an environment and further details.

4 METHODOLOGY

4.1 RL BASELINE

The conceptually simplest approach to solving the problem is to give an RL agent a sequence of
N observations of the form (oi, h), where h is the hypothesis about the environment, and oi is the
observation. As long as N is large enough, a standard RL algorithm has the capacity to solve the
problem.

Thus, we design our policy network π(s, h) to decide the action. We also use the simplification
described in Section 3.1 and create another network to predict the hypothesis ground truth value
trained using supervised learning. The specifics of the networks are further described in Section 4.3
and hyper-parameters are described in the Appendix.

4.2 TRIPLET POLICY PRETRAINING

Rather than try to rely on general RL methods, we use the special structure of many hypotheses. As
we discussed in Section 3.3.1, many hypotheses naturally take the form of a triplet: (pre-condition,
action sequence, post-condition). While not all hypotheses fit into this format, the hope is that
the policy we learn is close enough to ground truth, that we can later generalize to other kinds of
hypotheses.

We can use this to construct a reward function. We know that to verify these kinds of statements, we
need to take actions which alter the truth of the pre-condition and post-condition. If we modify the
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pre-condition and take the action, if the statement is true, the post-condition should toggle from false
to true in the environment. Similarly, if post-condition changes but the pre-condition did not change,
we know that the statement must be false.

Thus we construct the following reward function to encourage our agents to toggle the pre-conditions
and post-conditions:

Rpre =

{
+C a = ans & pre changed in last N frames
0 otherwise

Rppost =

{
+C a = ans & post+pre changed in last N frames
0 otherwise

It encourages the policy to change the pre-condition and post-conditions (via pre-condition) in the
last N frames of the video, so that a predictor looking at the last N frames of observations will be
able to deduce the truth value of the hypothesis.

Once we have trained the policy function with this proxy reward, we can then train the prediction
network and even finetune our policy network on the final reward.

4.3 NETWORK ARCHITECTURE

Although other works such as Chaplot et al. (2018) have investigated language-conditioned RL
(usually in the form of instruction following), our hypothesis conditioned problem proved to be quite
challenging, and required some novelty in network architectures.

For the policy networks, standard architectures were not effective for our problem. The key seems to
be that it is difficult to condition action on language without explicit interaction between the language
and non-language components. In particular, of all of the network architectures we experimented with,
an explicit attention network using the language as the key input was by far the most effective. The
hypothesis is fed into a seq2vec model and used as the key to the a dot-product attention mechanism.
The state of the network (the grid locations of the items in the world and the inventory of the agent)
after being fed through a one layer networks is fed as input to N parallel MLPs. The output of the
MLPs are fed as the values into the attention mechanism. The output of the module is then fed into
the final hidden layer of the actor-critic network.

For the prediction network, we use the popular transformer architecture Vaswani et al. (2017). Our
prediction network encodes both the hypothesis and past observations (after they are passed through
a one layer network) using transformer encoders. These sequences are then combined using a
transformer to generate a final hidden state as output which is then fed to a final prediction layer and
sigmoid function to get our binary prediction.

In Figure 5, we provide ablation analysis for both of our neural network architectures. See Appendix C
for more network details and hyperparameters and network diagrams.

5 EXPERIMENTS

First, we train using our policy networks using our pretraining proxy functions from Section 4.2. We
find that pretraining with just the pre-condition reward leads to better results for the Color Switch
environment, and use both rewards for the other two environments. Figure 2 shows these results.

Next, we train our network on the final prediction reward and train our prediction networks. We train
two different versions of this. For one, we only train the prediction network and keep our policy
network fixed. For the other, we train both the prediction network and finetune the policy network.

During this final training stage, we relax our triplet-form constraint and train on both the triplet-
templated hypotheses we saw during pretraining as well as new hypothesis templates not seen during
pretraining. We sample seen versus new templates with equal probability. See Section 3.3 and
Appendix A for examples of the kinds of hypotheses we see during this phase of training. Note that
this includes hypotheses which break the triplet format.
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Figure 2: Pre-condition Post-condition reward pretraining on our verification environments

Figure 3: Final accuracy on both triplet and non-triplet hypotheses on Color Switch (left) and
Pushblock (right)

Figure 3 and left of Figure 4 show our final hypothesis verification results. We show the max out of
five for each of the methods shown. We also break down the final hypothesis prediction accuracy
for our methods in Table 1, and show its success on the triplet hypotheses (which our methods were
pretrained on) and non-triplet hypotheses (which they were not).

RL baseline We can first see clearly that the RL baselines fail. This is due to the unlikelihood of
taking the right actions to verify correctly and therefore train the prediction net properly. Because
the average reward for answering is 0 if you cannot predict correctly, the agent does not even bother
answering the question much of the time (which is why this baseline gets less than 50%, it does not
bother guessing in most games).

Other baselines We also include two other simple baselines “no act” and “random act.” The no
act baseline simply takes the ans action at t = 0 and the prediction network attempts to predict the
hypothesis with just the first observation. This fails because the agent needs to take actions in the
environment to be able to predict the hypothesis accurately. For random act, we simply make the
policy to take random actions. This similarly fails as random actions are extremely unlikely to behave
in a way that allows for the verification of the hypothesis.

5.1 TRIPLET POLICIES CAN SUCCEED AND GENERALIZE

On the other hand, we see that RL is able to train on the triplet tasks after pre-training. While it is not
surprising that densifying the reward in this way makes the RL easier, in our view, it is important
that it is true, as it paves the way towards hypothesis verifying agents. That is: we are interested in
scalable methods that can use statistical ML to interact with a complex environment. Given the more
general success of deep RL, that the problem becomes approachable with reasonable reward shaping
gives us hope we will be able to get beyond the regime of classical AI methods.

Morever, in Pushblock and Color Switch, even with the policy learned from the triplet pre/post
reward, the agent is able to generalize and perform well on templates not seen in the pre-training
phase as we can see in Table 1. This includes generalizing to difficult templates such as negations
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when you are at craftingtable and 
you have stick and you do craft so 
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Figure 4: Final accuracy on both triplet and non-triplet hypotheses on Crafting (left) and a visualiza-
tion of the finetuned policy (right)

and “independence” hypotheses. Note that the prediction network that verifies the hypotheses given
the trajectory from the policy still needs to fine-tune on the new templates.

It’s worth noting that although we can do well using finetuning using a few random seeds, these
methods are high variance. In the appendix we show and discuss this more clearly. In Figure 7
we show the variances of these methods which show that the variance on our method is high. In
Appendix E we propose a training methodology that sorts out the bad random seeds by using the
triplet hypotheses as a validation set. And in Appendix J we show that these results are consistent
when we increase the number of random seeds to 25.

5.2 TRIPLET POLICIES CAN ADAPT

On the crafting task, to do well on the unseen templates, the policy also needs to be fine-tuned. In our
view, the fact that this fine-tuning can succeed is more important than the generalization in the simpler
tasks, as it demonstrates a path towards agents that can verify complex statements by establishing a
curriculum of simpler ones.

In the right of Figure 4, we show a visualization of a sample run of the finetuned policy and predictor
on crafting. We see that the policy does what we expect, picks up the correct item and moves to the
crafting table to craft. It crafts a different item than it expected (bed instead of torch) and it answers
false. Looking at the prediction net over time, we see that it at first predicts false then true before it
does the craft action. Once it has crafted the bed, however, it answers correctly.

Table 1: Hypothesis Prediction, broken down by triplet (pre-trained) and non-triplet (not seen in
pre-training)

Method Overall Triplet Accuracy New Template Accuracy

Color Switch Fixed Policy 89.6% 94.3% 88.7%
Finetuned Policy 89.3% 92.3% 86.3%

Pushblock Fixed Policy 88.1% 89.7% 86.5%
Finetuned Policy 85.1% 85.2% 85.4%

Crafting Fixed Policy 79.3% 91.4% 69.9%
Finetuned Policy 95.9% 96.7% 95.1%

We conduct additional experiments in the Appendix. In Appendix G, we tease further analyse the
problem by experimenting with an oracle hypothesis predictor. In Appendix F we experiment with
different pretraining functions. In appendix Appendix H we look at training baselines for longer. And
In Appendix I, we look at whether giving the baselines more past frames N improves performance.

In Figure 5 we see the results of our network architecture ablation. As we can see, our new policy
architecture described in Section 4.3 clearly outperforms a standard MLP policy network on the
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Figure 5: (left) policy network ablation (right) prediction network ablation.

language-condition pretraining task. We also see that the transformer architecture outperforms the
LSTM and MLP model on the final task when we hold the policy network constant.

6 DISCUSSION

In this work, we propose a tractable formulation of the problem of training agents that can interact
with an environment to test hypotheses about it. We show that generic RL techniques struggle
with the problem, but by using its structure, we are able to develop a method that works in simple
environments. Specifically, we use the fact that many hypotheses can be broken into triples of the
form of (pre-condition, action sequence, post-condition); but we also show that once pre-trained
using this factorization, agents can be fine-tuned to verifying more general hypotheses.
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A TEMPLATES

A.1 WORLD AND HYPOTHESIS CONSTRUCTION

Returning again to our notation from Section 3.1, the environment at each spawn needs to construct
a world W out of all possibleW , and a hypothesis h that is either true or false in the world. W in
particular describes the rules about how the environment works (i.e. which switch opens the door)
which in our case can precisely be describe by a hypothesis. So given a true hypothesis, we can
exactly describe the rules of the world. Therefore, in order to create an instance of a possible WinW ,
we can instead draw a true hypothesis about the world at random. From the hypothesis, we can
then construct the rules the determine how objects in the world behave. Note that there are couple
exceptions to this for our harder hypotheses, where the hypothesis can be true but only partially
describes all the rules of W . For these cases, we draw yet another template which is consistent with
the hypothesis and use that to construct the rules, such as deciding which color switch really opens
the door.

Because we have to randomly give either a true or false hypothesis, we also need to be able to generate
a false hypothesis for the world. So for every instance, we also draw a random false hypothesis. Now,
given a true and false hypothesis, we can fully generate the world and all the items that appear in
either statement. So for instance, if the true hypothesis mentions a green switch and the false one
mentions a blue switch, we generate both a green and blue switch. Then, we can set the rules such
that the right thing happens. So in this example, switching the green switch opens the door and the
blue switch does nothing.

The final step is then to randomly choose either the true or false statement as the “visible” hypothesis
which is passed to our agent to verify. Because we generate the world and spawn the items before we
make this choice, we ensure that we do not accidentally give away the truth of the hypothesis based
on what items spawned.

Our process for generating a new spawn of environment can thus be summarized as follows:

1. We randomly generate a true hypothesis
2. We randomly generate a false hypothesis
3. We construct a ruleset from the true hypothesis
4. We spawn the agent and the items in the world described in both the true and false hypothesis
5. We randomly choose either the true or false hypothesis as the “visible” hypothesis that the

agent must verify

Color Switch:

Pre-condition:
if the COLOR switch is ON_OFF_SWITCHSTATE
when the COLOR switch is in the ON_OFF_SWITCHSTATE position
the COLOR switch is ON_OFF_SWITCHSTATE

Action:
""

Post-condition:
then the door is open
the door is passable
and we see the door is open
the door will open

Finetune templates:
the door can only be opened by switching the COLOR switch to ON_OFF_SWITCHSTATE
when we see the COLOR switch is ON_OFF_SWITCHSTATE the door must be open
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if the COLOR switch turns ON_OFF_SWITCHSTATE the door opens
when we see the door open it must be that the COLOR switch is in the ON_OFF_SWITCHSTATE position
those who want to open the door must first switch the COLOR switch ON_OFF_SWITCHSTATE
no password just make the COLOR switch be ON_OFF_SWITCHSTATE to open the door
COLOR switch ON_OFF_SWITCHSTATE implies door is open
only the COLOR switch being ON_OFF_SWITCHSTATE opens the door
the door is open because COLOR switch is in the ON_OFF_SWITCHSTATE position
COLOR switch ON_OFF_SWITCHSTATE equals open door
the COLOR switch opens the door but only when it is ON_OFF_SWITCHSTATE
door is open must mean that COLOR switch is ON_OFF_SWITCHSTATE an ON_OFF_SWITCHSTATE means the door is
open but only if it is COLOR
COLOR controls the door and it opens when it is ON_OFF_SWITCHSTATE
ON_OFF_SWITCHSTATE is the correct position of the COLOR switch and it opens the door
the switch that causes the door to be open when it is ON_OFF_SWITCHSTATE is COLOR
if you see COLOR switch then the door is open
the door is independent of the COLOR switch
if the door is not open then the COLOR switch must be ON_OFF_SWITCHSTATE
if the COLOR switch is not ON_OFF_SWITCHSTATE then the door is open
to make the door not open the COLOR switch must be not ON_OFF_SWITCHSTATE
whether the door is open is completely independent of the COLOR switch
the COLOR switch is what controls the door
a not ON_OFF_SWITCHSTATE COLOR switch opens the door

Template Values
COLOR:
blue
red
green
black

ON_OFF_SWITCHSTATE:
on
off

Pushblock

Pre-condition:
whenever the pushblock is in the PUSHBLOCK_POSITION
if the pushblock is at the PUSHBLOCK_POSITION
the pushblock is at the PUSHBLOCK_POSITION

Action:
""

Post-condition:
then the door is open
the door is passable
and we see the door is open
the door will open

SP_FULL_TRAIN:
PUSHBLOCK_POSITION is the correct position for the pushblock for the door to open
if the door is open it must be that the pushblock is at the PUSHBLOCK_POSITION
when the door is open it is because the pushblock is in the PUSHBLOCK_POSITION
when the pushblock is at the PUSHBLOCK_POSITION the door is open
pushblock PUSHBLOCK_POSITION means door open
the door can only be opened when the pushblock is PUSHBLOCK_POSITION
if the pushblock is PUSHBLOCK_POSITION it means the door is open
PUSHBLOCK_POSITION pushblock opens the door
open door implies pushblock PUSHBLOCK_POSITION
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open door means pushblock PUSHBLOCK_POSITION
door opens when PUSHBLOCK_POSITION is where the pushblock is
PUSHBLOCK_POSITION is the correct position for the pushblock to open the door
the door when the pushblock is PUSHBLOCK_POSITION is open
PUSHBLOCK_POSITION position of the pushblock causes the door to open
door only opens on PUSHBLOCK_POSITION pushblock
door can only open with pushblock being PUSHBLOCK_POSITION
the pushblock being at the PUSHBLOCK_POSITION is completely independent of the door
the pushblock being PUSHBLOCK_POSITION is independent of the door being open
the door state is independent of pushblock PUSHBLOCK_POSITION
PUSHBLOCK_POSITION pushblock and door are independent

Pushblock values:
PUSHBLOCK_POSITION:
left
right
top
bottom

Crafting

Pre-condition:
when you are at LOCATION and you have CRAFTING_ITEM
you are at LOCATION and have in your inventory CRAFTING_ITEM
whenever you have a CRAFTING_ITEM and are at LOCATION

Action:
and you do CRAFTING_ACTION
then you CRAFTING_ACTION

Post-condition:
you now have CREATED_ITEM in your inventory
then CREATED_ITEM is created
and this creates CREATED_ITEM
so CREATED_ITEM is created and put in your inventory
then CREATED_ITEM is made

Finetune Templates:
to create a CREATED_ITEM you must have CRAFTING_ITEM and go to LOCATION and do the action CRAFT-
ING_ACTION
CREATED_ITEM can be created by doing CRAFTING_ACTION at LOCATION when CRAFTING_ITEM is in inventory
whenever you do CRAFTING_ACTION and have CRAFTING_ITEM at LOCATION a CREATED_ITEM is made
you have CRAFTING_ITEM and go to LOCATION and CRAFTING_ACTION and CREATED_ITEM will be created
whoever does CRAFTING_ACTION at LOCATION with CRAFTING_ITEM gets CREATED_ITEM
if you have CRAFTING_ITEM at LOCATION and you CRAFTING_ACTION you get CREATED_ITEM
if you do CRAFTING_ACTION at LOCATION with CRAFTING_ITEM you make CREATED_ITEM
whenever you have CRAFTING_ITEM at LOCATION and do CRAFTING_ACTION then you make a CREATED_ITEM
having CRAFTING_ITEM in your inventory being at LOCATION and doing CRAFTING_ACTION creates CRE-
ATED_ITEM
CREATED_ITEM can be made with CRAFTING_ITEM when you do CRAFTING_ACTION at LOCATION
CRAFTING_ITEM plus LOCATION plus CRAFTING_ACTION equals CREATED_ITEM
create a CREATED_ITEM by being at LOCATION with CRAFTING_ITEM and doing CRAFTING_ACTION
CRAFTING_ACTION at LOCATION creates CREATED_ITEM but only if you have a CRAFTING_ITEM
if you want to make a CREATED_ITEM then go to LOCATION with CRAFTING_ITEM and do CRAFTING_ACTION
CRAFTING_ITEM in inventory at LOCATION makes CREATED_ITEM if you do CRAFTING_ACTION
CREATED_ITEM when CRAFTING_ITEM at LOCATION and do CRAFTING_ACTION
if you are at LOCATION and do CRAFTING_ACTION you make CREATED_ITEM
if you are anywhere and do CRAFTING_ACTION with CRAFTING_ITEM you make a CREATED_ITEM
having CRAFTING_ITEM at LOCATION and doing CRAFTING_ACTION does not make a CREATED_ITEM
CREATED_ITEM is created by being at LOCATION and doing CRAFTING_ACTION
make a CREATED_ITEM by having a CRAFTING_ITEM and doing CRAFTING_ACTION
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you have CRAFTING_ITEM and go to LOCATION and CRAFTING_ACTION and CREATED_ITEM will not be created
LOCATION plus CRAFTING_ACTION creates a CREATED_ITEM
with a CRAFTING_ITEM you can make a CREATED_ITEM by doing CRAFTING_ACTION

Template Values:
CRAFTING_ITEM :
iron
wood
stick
pickaxe
coal

CREATED_ITEM:
torch
bed

LOCATION:
craftingtable
CRAFTING_ACTION:
craft
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B LEARNING DETAILS AND HYPERPARAMETERS

One detail of the prediction network is that we need to keep a memory of past state sequences,
hypotheses and ground truths so we can actually train our prediction network. We do this by simply
keeping track of the lastN times our agent answered a question, and keeping these in a FIFO memory.
When we update our prediction network, we randomly sample from this pool. This also necessitates
a 100k step break in period to collect enough examples.

In our policy finetuning experiments, we also stabilize our dual optimization problem by trading of
optimization of the policy network and the prediction network. We must also start with the prediction
network so that the reward for answering correctly is meaningful.

Table 2: Pretraining Hyperparameters

Parameter Value

Algorithm PPO (Schulman et al., 2017)
Timesteps per batch 2048
Clip param 0.2
Entropy coeff 0.1
Number of parallel processes 8
Optimizer epochs per iteration 4
Optimizer step size 2.5e−4

Optimizer batch size 32
Discount γ 0.99
GAE λ 0.95
learning rate schedule constant
Optimizer ADAM Kingma & Ba (2014)
Past Frame Window Size 5

Table 3: Finetuning Hyperparameters

Parameter Value

Algorithm PPO (Schulman et al., 2017)
Timesteps per batch 2048
Entropy coeff 0.1
Number of parallel processes 8
Optimizer epochs per iteration 4
Optimizer step size 1e−5

Optimizer batch size 32
Discount γ 0.99
GAE λ 0.95
learning rate schedule constant
Optimizer SGD
Past Frame Window Size 5

Basis of RL implementations was from Kostrikov (2018)
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Table 4: Prediction Hyperparameters

Parameter Value

Timesteps per batch 2048
Optimizer step size 1e−3

Optimizer batch size 128
learning rate schedule constant
Optimizer ADAM Kingma & Ba (2014)
Memory Burn-in 100000
Memory Size 200
Alternate Training Window 10000000

17



Under review as a conference paper at ICLR 2020

C NETWORK DETAILS AND HYPERPARAMETERS

C.1 RELATED WORK

Other works such as Chaplot et al. (2018) have incorporated gated mechanisms between language
and perception. Manchin et al. (2019) employs self-attention mechanism within convolutional layers
and Choi et al. (2017) also employs a self-attention mechanism in a DQN. Neither work incorporates
language and the architectures are quite different from each other.

Figure 6 shows the policy and transformer architectures.
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Figure 6: Network architecture for our policy network (left) and prediction network (right)

C.2 IMPLEMENTATION AND HYPERPARAMETERS

We take much of our implementation of transformers from Rush (2018).

Table 5: Policy Network Hyperparameters

Parameter Value

Seq2Vec Model Bag-of-Words
Word Embedding Size 32
Hidden Size 32
MLP Num Hidden Layers 2
Number of MLP Modules 16
Transfer Layer tanh
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Table 6: MLP Baseline Policy Network Hyperparameters

Parameter Value

Seq2Vec Model Bag-of-Words
Word Embedding Size 32
Hidden Size 32
MLP Num Hidden Layers 2
Transfer Layer tanh

Table 7: Transformer Network Hyperparameters

Parameter Value

Word Embedding Size 32
Hidden Size 32
Transfer Layer ReLU
Transformer N 3

Table 8: Baseline Prediction Network Hyperparameters

Parameter Value

Seq2Vec Model LSTM
LSTM Num Layers 1
Word Embedding Size 32
Hidden Size 32
MLP Num Hidden Layers 2
Transfer Layer tanh

19



Under review as a conference paper at ICLR 2020

D ADDITIONAL FIGURES

Figure 7: Final accuracy on both triplet and non-triplet hypotheses on Color Switch Pushblock and
Crafting with variance plotted
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E STAGED RANDOM SEED VALIDATION

In this experiment, we perform a two-stage procedure for evaluating our results. The idea is that we
use one set of hypotheses to determine which random seeds are successful and then show results on
the larger set of hypotheses.

In the first stage, we train and our methods on only the triplet templates (the same ones used during
pre-training). We then choose only the seeds that performed well (in these figures we show results for
keeping seeds with at least 80% prediction accuracy and with at least 90% accuracy. If a method has
no seeds performing high enough, we choose the top 5 for that experiment.) We show results on 25
random seeds. We preserve all training and network hyper-parameters.

Figure 8: Hypothesis accuracy on only the triplet hypotheses for the Color Switch, Pushblock, and
Crafting environments. Shown with the max seeds and the variance bands with 25 random seeds.

In Figure 8 we show the first stage of training. We only train these with the triplet templates also seen
during pre-training. We give the baseline more time to train to make up for the extra time the other
methods got during pretraining. We can see that for all three environments the pretrained methods
have at least one good seed for both finetuning and fixed policies. For crafting, we can get a better
max seed with finetuning. However, especially in crafting, the variance is quite high, with many
seeds doing poorly. The baselines do poorly overall except for a couple seeds in pushblock. This is
the simplest environment, so it makes sense that this would be the one where the baseline RL might
be able to find a policy. The max of this still slightly underperforms the pre-trained policies.

In Figure 9 and Figure 10, we show the results in the second stage of training. As we discussed,
this stage includes the more difficult, non-triplet templates not seen during pre-training and not seen
during the first stage of training when we selected the top seeds. We can see that with the pruning of
bad seeds, the variance bands for the pre-train methods is much smaller and more clearly outperforms
the baselines. We again see that we are able to get the best results from the finetuning on crafting. As
with stage 1, we see that the RL only baseline is able to do reasonably well on pushblock, but still not
as good as our pre-training methods. We show results for cutoffs at 80% and 90% to make sure we
were robust to the choice of cutoff, and we can see very little difference between them.
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Figure 9: Hypothesis accuracy on both triplet and non-triplet hypotheses for the Color Switch,
Pushblock, and Crafting environments. Shown with the max seeds and the variance bands. We use a
80% accuracy as a cutoff for this figure.

Figure 11 shows the 90% cutoff experiment again with the mean instead of the max plotted.

22



Under review as a conference paper at ICLR 2020

Figure 10: Hypothesis accuracy on both triplet and non-triplet hypotheses for the Color Switch,
Pushblock, and Crafting environments. Shown with the max seeds and the variance bands. We use a
90% accuracy as a cutoff for this figure.
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Figure 11: Hypothesis accuracy on both triplet and non-triplet hypotheses for the Color Switch,
Pushblock, and Crafting environments. Shown with the means and the variance bands. We use a 90%
accuracy as a cutoff for this figure.
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F INTRINSIC PRE-TRAINING EXPERIMENTS

In this experiment, we show results on our hypotheses verification problem using different forms of
“intrinsic motivation” pre-training. We show results for 4 different pretraining schemes:

1. Change any item state in the world. Receive reward at end.

2. Change any item referenced in the hypothesis. Receive reward at end.

3. Change any item state in the world. Receive reward instantaneously.

4. Change any item referenced in the hypothesis. Receive reward instantaneously.

Reward at the end means that it operates similar to our hypothesis pre-training. Specifically, the agent
get reward only at the end of the episode when it has taken a stop action. At that step it gets a +C
reward if it changed within the last N frames. For these rewards, we choose C = 10.

Instantaneous reward is what it sounds like. When the object state is changed, the reward is instantly
received by the agent. We chose C = 1 for colorswitch and pushblock and C = 5 for crafting.

We interpret “item” to mean any object that is not the agent. So this includes crafting items, switches,
pushblocks, etc. We show results on 25 random seeds. We preserve all training and network
hyper-parameters.

Figure 12: Pretraining Reward for ColorSwitch for intrinsic motivation. Showing mean and variance
bands on 25 random seeds.

Figure 13: Pretraining Reward for Pushblock for intrinsic motivation. Showing mean and variance
bands on 25 random seeds.

In Figure 15 we show the final accuracies on the hypothesis verification task using the pretrained
intrinsic rewards. As before, only the hypothesis predictor and not the policy is trained at this step. In
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Figure 14: Pretraining Reward for Crafting for intrinsic motivation. Showing mean and variance
bands on 25 random seeds.

Figure 15: Final hypothesis accuracies using intrinsic pre-training. Without finetuning of policy.
Showing max results and variance bounds on 25 seeds.

Figure 16 we show the same results where we finetune the policy as well. All training and network
parameters are kept the same from earlier experiments.

We can see that the best results come from the crafting pre-training intrinsics. This makes a lot of
sense because changing the state for crafting includes picking up objects and crafting objects, which
is what the agent needs to do to verify the hypothesis. On colorswitch, we are able to get reasonable
results, at least for the fixed policy. Again, changing the state corresponds to flipping switches which
is also useful for verify colorswitch hypotheses. For pushbloc, nothing performed better than chance.
Here, merely changing the state of the object isn’t enough to verify anything. To verify pushblock
hypotheses, the state of the pushblock (it’s position) needs to be changed in a specific way: pushed
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Figure 16: Final hypothesis accuracies using intrinsic pre-training. With finetuning of policy. Showing
max results and variance bounds on 25 seeds.

into or out of the correct position. The intrinsic change reward does not necessarily cause this, so this
did not appear to be sufficient in this case.
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G ORACLE HYPOTHESIS PREDICTION

In this experiment, we disentangle the problem somewhat for analysis by running experiments with
an “oracle” hypothesis predictor on the Crafting environment. Specifically, in these experiments, we
assume that we have an oracle that, given the last N states of the world, if it is possible to infer the
truth state of the hypothesis given that sequence of states, the oracle returns the ground truth of the
hypothesis. This should allow us to analyize the upper bounds of this problem and see what the hard
part of our problem is.

First, we train a RL agent with access to the oracle. So the RL agent must learn its action policy, but
when it takes the answer action, it uses the oracle to predict the hypothesis. Therefore, if the actions
it has taken can verify the hypothesis, it will automatically answer correctly and get the reward. We
show results on 25 random seeds and preserve the hyper-parameters from other experiments.

We show the result of this in Figure 17. We see that the RL is quickly, although not instantly, able to
converge to perfect performance. From this we should summize that if we know how to predict the
hypothesis already, it’s quite easy to get the reward - we just have to learn to do the patterns necessary
to make the oracle prediction possible. The RL baseline without pretraining without the oracle was
not able to converge to a good solution. This suggests perhaps that the problem is how to get a good
hypothesis predictor in the first place to let us then learn the right policy.

Toward that end, we analyize our trained algorithms to see whether the actions they take are capable
of verifying the hypothesis. We show the values for the top accuracy model. We use the same models
and seeds whose results we show in Table 1 and Figure 4.

Table 9: Oracle Evaluation of Learned Policies

Method Oracle % can answer Theoretic Upper Bound

Pretrained without Policy Finetuning 75.00 87.50
Pretrained with Finetuning 98.90 99.45
RL Baseline 3.00 51.50
No Act Baseline 0 50.00
Random Act Baseline 0.7 50.35

Table 9 shows these results. What we see is that indeed, the actions taken by the baselines are not
able to verify the hypothesis. The Baseline RL policy only allows the oracle predictor to predict the
hypothesis 3% of the time, giving us a upper bound of 51.5% on hypothesis accuracy. Random action
is even worse, only leading to the right state sequence 0.7% of the time. No action (the agent that just
tries to answer right away) as expected is never able to get the right sequence. For the pre-trainined
methods we see that we are able to get to the right states most of the time. The finetuned policy
gets the right states almost 100% of the time. With the fixed policy from pretraining, the oracle can
answer 75% of the time, meaning that by guessing you could theoretically get to about 88%.

These experiments suggest that as we expected, the hard part of this problem is simultanously learning
the policy and prediction is the difficult part. Once you have the best possible hypothesis prediction,
RL can quite easily find the correct policy.
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Figure 17: Results on training RL with oracle predictor on crafting environment. Showing mean and
variance on 25 random seeds.
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H LONGER TRAINING BASELINES

Because the pre-trained methods had the benefit of more training frames, we run the baselines for
more frames to see whether additional training helps the comparison. We keep all the training
parameters the same.

In Figure 18 we show the baseline methods on the original 5 seeds trained for the equivalent 1.5e8
steps. In Figure 19 we show 20 additional seeds trained for longer, although not quite to the 1.5e8
steps.

On the original seeds, training for longer has no effect. However, when we train with many more
seeds, we find that for pushblock, we are able to find a random seeds that can get to about 75%
accuracy. This is the simplest environment, so it makes sense that this would be the one where the
baseline RL might be able to find a policy. The max of this still slightly underperforms the pre-trained
policies.

Figure 18: Final hypothesis accuracies of baselines when trained longer. Showing max and variance
bands on original 5 seeds.
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Figure 19: Final hypothesis accuracies of baselines when trained longer. Showing max and variance
bands on 25 seeds.
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I MORE STATE MEMORY BASELINES

In this experiment, we see if the RL baseline gets any benefit from increasing N , the number of
past states it keeps in its observation. We show results for N = 10, 20, 50, 100 keeping all other
parameters the same.

Figure 20: Final hypothesis accuracies of baselines using longer state memory parameterN . Showing
max and variance. Result on 25 seeds.

We can see that increasing the value of N does not appear to have any effect on the baselines. N = 5
is likely sufficient to see the change in the state of the environment and to allow the agent to know to
stop and answer the question.
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J ADDITIONAL RANDOM SEEDS

In this experiment, we show the results from previous experiments, but increase the number of random
seeds from the original 5 to 25. When we did this, we also ran 25 random seeds for pretraining, so
each results encorporating finetuning came from a different pretraining seed. Results are in Figure 21.

Figure 21: Final hypothesis accuracies of all methods trained with 25 random seeds. Showing max
and variance.

Adding more random seeds, we find essentially the same story as with 5 seeds. Finetuned from
pretrain is able to get the best single results, but tends to be very high variance. Non-finetuned from
pre-train does generally well on everything, except underperformance on crafting (especially on the
new templates). And the baselines do still not do well.

One difference worth noting that in Figure 19, we find that training the RL baseline for longer and
given more random seeds, it is able to get one good random seed on pushblock. As we noted there,
this is the simplest environment, so it makes sense that this would be the one where the baseline RL
might be able to find a policy.

For additional clarity, we show these same plots again in Figure 22 with the mean plotted instead of
max. This shows the high variance a bit clearer but does not show that we are able to get some good
seeds. Appendix E provides a possible solution to this problem by selecting the good random seeds
based on a smaller set of hypotheses.
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Figure 22: Final hypothesis accuracies of all methods trained with 25 random seeds. Showing mean
and variance.
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