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Abstract

Limited capture range, and the requirement to provide high quality initialization for
optimization-based 2D/3D image registration methods, can significantly degrade
the performance of 3D image reconstruction and motion compensation pipelines.
Challenging clinical imaging scenarios, which contain significant subject motion
such as fetal in-utero imaging, complicate the 3D image and volume reconstruction
process. In this paper we present a learning based image registration method using
Convolutional Neural Networks (CNNs) to predicting 3D rigid transformations
of arbitrarily oriented 2D image slices, with respect to a learned canonical atlas
co-ordinate system. Only image slice intensity information is used to perform
registration and canonical alignment. We extensively evaluate the effectiveness of
our approach quantitatively on simulated Magnetic Resonance Imaging (MRI), fetal
brain imagery with synthetic motion and further demonstrate qualitative results on
real fetal MRI data where our method is integrated into a full reconstruction and
motion compensation pipeline. Furthermore, we utilise Monte Carlo Dropout for
the purpose of establishing a prediction confidence metric.

1 Introduction
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Figure 1: Sequential scan slices from a
sagittal image stack of a fetus with extreme
motion, it can be observed that the fetus has
rotated its head 90◦, causing slice #14 to be
a coronal view.

Reconstructing a 3D volume from misaligned and mo-
tion corrupted 2D images is a challenging task. The pro-
cess involves labor intensive pre-processing steps, such
as manual landmark matching, exhibiting both inter and
intra-observer variance. Traditional automatic intensity-
based slice-to-volume reconstruction methods [2] in-
volve solving the inverse problem of super-resolution
from slice acquisitions, yi = DiBiSiMix+ ni; i =
1, 2, . . . , N . However, arbitrary subject motion (e.g.
Fig 1) can invalidate slice alignment assumptions that
are based on the scanner co-ordinate system, and man-
ual intervention may be necessary. Manual correction of slice-to-volume registration often becomes
unfeasible in practice due to the magnitude of image data involved.

The optimization methods employed in this domain typically do not guarantee a globally optimal
registration solution from arbitrarily seeded slice alignment. The function that maps each 2D slice to
its correct anatomical position in 3D space may be subject to local minima and the requirement for
small initial misalignment typically improves result quality. Previous work have attempted to make
this optimization robust by introducing appropriate objective functions and outlier rejection strategies
based on robust statistics [2, 5]. Despite these efforts, good reconstruction quality still depends on
having good initial alignment of adjacent and intersecting slices.
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2 Method

As shown in [3], to fully evaluate and assess the performance of 2D/3D registration via a learning
based approach, we incorporated it into a full 3D reconstruction pipeline featuring three modular
components; (1) Approximate Organ Localization, (2) Canonical Slice Orientation Estimation, and
(3) Intensity-Based 3D Volume Reconstruction. Organ localization (1) is concerned with localization
of a learned RoI. This can be achieved through automatic methods or rough manual segmentation.
For 3D Volume Reconstruction (3) we use a modified iterative SVR method [4], which additionally
allows for compensation of any remaining small misalignments between single slices, caused by
prediction inaccuracies. Here, we focus on (2) Canonical Slice Orientation Estimation, denoted as
SVRnet [3].
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Figure 2: Slice Generation

The motion of a rigid body in 3D has six
Degrees of Freedom (6 DoF), three param-
eters for translation (Tx, Ty, Tz) and three
for rotation (Rx, Ry, Rz). To model the
movement of each slice in 3D space, we
divide the parameters into two categories;
in-plane transformation Tx, Ty and Rz and
out-of-plane transformation Tz , Rx and Ry

(see Fig. 2(d-j)). If each DoF is allowed
ten interval delineation, this would result in
106 slices per organ volume. Automatic seg-
mentation methods define the RoI on a slice
by slice basis throughout the 3D volume.
The desired RoI (e.g., segmented brain) is

masked and center aligned within each slice. This vastly decreases the valid range for in-plane motion
parameters Tx and Ty . Similar to [6], we reduce the number of slices required to create training and
validation data sets by simplifying the sample space, such that it is constrained by the parameters:
Tz , Rx, Ry and Rz . We can further discount a portion of slices that yield little or no content at the
extremities of the Tz range, in the considered volume. We generate the training dataset by sampling
2D slices within a 3D reconstructed brain volume in regular intervals throughout each DoF. For
validation, random sampling is performed to mimic the natural continuous movement of the fetus.

We also introduce a novel labelling system where the rotation and translation components of the
labels are combined together. Any three non co-linear points in a 3D Euclidean space form a plane,
while their order defines the orientation. We therefore call them Anchor Points (see Fig. 2(a-c)).
Three Anchor Points can be defined anywhere on the 2D slice, as long as they are not identical or
co-linear and the relative in-plane locations are consistent throughout all slices in the data set. For
simplicity, we defined the three Anchor Points, which represent the pose of each slice, to be located
at the center and the bottom left and right corners. The loss function of the network is therefore:
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(1)

Gal et al. [1] recently showed that dropout layers in Neural Networks can be interpreted as a Bayesian
approximation to probabilistic models. We leverage this technique to take epistemic uncertainty into
consideration, in order to gauge alignment prediction confidence in real-world test cases, as quality of
3D reconstruction depends on precision of slice alignment. Each slice is passed through the network
N times, where the mean of all N predictions is the final pose and the variance of all N predictions
is the uncertainty. This is calculated on the SE(3) manifold using [7].

3 Experiments and Results

We test SVRnet on a case, which our clinical partners dismissed as impossible to reconstruct. Both,
extensive manual and automatic reconstruction attempts have failed for this case. With no ground
truth to compare to, reconstruction quality can only be validated qualitatively. Fig. 3a, b and c show
the raw scan stacks, and the degree of motion corruption. In a case like this, excessive motion can
cause ambiguity. Fig. 1 shows a sequential sagittal stack of slices where the fetus has turned its head
almost 90◦, causing a coronal slice to be in a scan stack that is assumed sagittal. This unexpected slice
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does not fit in the stack, and is normally rejected by robust statistics implemented in SVR algorithms.
Rejecting too many slices will cause a lack of scan data, while accepting too many slices will cause a
corrupt reconstruction volume as seen in Fig. 3d. Fig. 3d shows a SVR-based reconstruction attempt,
using [4], without SVRnet initialization.
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Figure 3: Reconstruction attempt of a heavily motion-corrupted
fetal brain scan at approx. 20 weeks GA.

Fig. 3e shows Gaussian average
of all slices that are predicted and
realigned to atlas space by SVR-
net. This was further refined with
four iterations of Slice to Volume
Registration (SVR) [4], with slice
location initialized by SVRnet in
Fig. 3e. It can be seen that recon-
structed volume is now in canon-
ical atlas space, similar to the
training atlas Fig. 3f.

The decision of whether or not to
include a slice in subsequent re-
construction depends on the pre-

diction confidence and the robustness of the chosen reconstruction algorithm for (3). Prediction
confidence can be thresholded and if the reconstruction algorithm is very robust, like [4], we can make
multiple predictions per slice and let the reconstruction algorithm handle further outlier rejection,
which allows for a greater margin of error (see Fig. 3). Fig 4 shows prediction confidence of various
test slices. As SVRnet is trained on the middle 60% of the fetal brain volume, slices closer to the edge
(Fig 4f-h) have a high variance (high uncertainty). Fig 4e shows a corrupt slice due to signal dropout,
the variance of this slice is also high. Slices with a high variance should be marked for rejection.
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Figure 4: Monte Carlo predictions of a unitless Geodesic distance
variance metric for each slice. (a)-(d) represent confident predictions.
(e)-(h) represent less confident predictions which are discarded for
subsequent volume reconstruction.

Here, we have shown that
SVRnet is able to predict
slice transformations rela-
tive to a canonical atlas co-
ordinate system, using only
the intensity information in
the image. This allows mo-
tion compensation for highly
motion corrupted scans, e.g.,
MRI scans of very young fe-
tuses. It allows the incorporation of any images that have been acquired during examination, thus
relaxing the requirement for temporal scan-plane proximity and widening the capture range. Our
work also leverages the computational framework to do statistics on SE(3) Lie groups, performing
Bayesian Inference and Monte Carlo dropout sampling for outlier rejection.
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