
Under review as a conference paper at ICLR 2019

NEURAL NETWORK COST LANDSCAPES AS QUANTUM
STATES

Anonymous authors
Paper under double-blind review

ABSTRACT

Quantum computers promise significant advantages over classical computers for
a number of different applications. We show that the complete loss function land-
scape of a neural network can be represented as the quantum state output by a
quantum computer. We demonstrate this explicitly for a binary neural network
and, further, show how a quantum computer can train the network by manipulating
this state using a well-known algorithm known as quantum amplitude amplifica-
tion. We further show that with minor adaptation, this method can also represent
the meta-loss landscape of a number of neural network architectures simultane-
ously. We search this meta-loss landscape with the same method to simultane-
ously train and design a binary neural network.

1 INTRODUCTION

Finding a suitable set of weights for a neural network has become one of the most studied prob-
lems of modern machine learning. It has presented a significant challenge to computer scientists for
whom few successful alternatives to back-propagation are available. It can be difficult to explore
very large search spaces efficiently and, worse, optimization may converge to a local minima far
from global optimum (Choromanska et al., 2015). Understanding the cost function landscape is
also hard, and choosing hyper-parameters and designing neural networks remains mostly a manual
process.
As Moore’s law approaches its end, two new computing paradigms have been explored, neuromor-
phic and quantum computers. Quantum computing is based on quantum bits (or qbits) obeying the
laws of quantum physics as opposed to the classical bits of today that are based on classical physics.
Note that in physics the term classical is used to mean non-quantum and we use this terminology
throughout.
Quantum machine learning aims to find an advantage in applying quantum computing to machine
learning. Current research into quantum machine learning falls into one of two catgeories. Some
quantum algorithms promise a revolution in machine learning in theory, but contain many gaps in
their implementation in practice. In contrast, others are more realistic in their method, but struggle
to justify a place amongst the well-established methods of machine learning.
In this paper, it is shown that a quantum computer can output a quantum state that represents the
entire cost landscape for a given neural network. The method is shown to be versatile and even able
to represent a meta-cost landscape of all possible hyperparameters and parameters. Applying it to
the connectivities and weights of a binary neural network and simulating the quantum algorithm on
a classical computer, we further show that this landscape state can be used for training and meta-
training the binary neural network for a small toy problem using quantum amplitude amplification,
a standard quantum algorithm.

2 RELATED WORK

2.1 BINARY NEURAL NETWORKS

Binary Neural Networks (BNNs) are neural networks with weights and activations restricted to tak-
ing only binary values, usually ±1. The greatest advantage of BNNs is in their deployment as using
binary provides great advantages in compression and inference time, as well as computational effi-
ciency through the use of bitwise operations. On the other hand they are relatively tricky to train as

1

Under review as a conference paper at ICLR 2019

the sign function has a derivative of zero nearly everywhere, the search space is discrete, and alter-
native training methods take significantly longer than non-binarized neural networks. Nonetheless,
BNNs have achieved state-of-the-art performance on smaller datasets such as MNIST and CIFAR10
(Courbariaux et al., 2016) but initially suffered when applied to larger datasets such as ImageNet.
A popular approach to solving this issue has been to relax the binarisation constraints. This has
been achieved by using multiple binary activations (Lin et al., 2017) or by introducing scale factors
(Rastegari et al., 2016), both of which result in improvements in accuracy. On the other hand, it has
been argued that a better training strategy for BNNs is sufficient to achieve high accuracy on large
datasets without compromising on the pure binary nature (Tang et al., 2017). After investigating the
accuracy failures of the previous methods, a number of improvements to the BNN training process
have been suggested such as changing the activation function, lowering the learning rate and using
a different regularization term. These changes helped achieve both high accuracy and high com-
pression rates on ImageNet. Again, this solution is not entirely ideal, as training BNNs is already
relatively slow, and a lower learning rate exacerbates this issue. Between the efficient deployment,
discrete search space, slow training and relatively small problem size (near-term quantum computers
favor problems that require fewer bits), training a binary neural network represents an ideal test case
for a quantum computer.
Finally, BNNs have been suggested as a candidate for efficient hybrid architectures through transfer
learning. The idea is that a BNN pretrained on ImageNet may be used as a feature extractor for
other datasets by retraining a final non-binarised layer. In this way, a hybrid hardware-software ar-
chitecture can implement the binary part using efficient hardware and the non-binary final layer in
software (Leroux et al., 2017).

2.2 QUANTUM MACHINE LEARNING

Quantum computers use quantum bits, manipulated with quantum gates in quantum circuits accord-
ing to quantum algorithms. The advantage of quantum computers over classical computers is that
certain quantum algorithms show significantly improved computational complexity compared to the
best known classical algorithms. Such improved scaling, combined with the exponentially growing
computational power of qubits suggests that (large, error-free) quantum computers would be able to
easily handle and process very large amounts of data. Most relevant to this paper is the quantum
search algorithm known as Grover’s algorithm (Grover, 1996), itself a specific case of another al-
gorithm known as quantum amplitude amplification (Brassard et al., 2002). These algorithms can
search for an element of an unstructured dataset of size N in O(

√
N) operations, over the classical

O(N). It is important to keep in mind that these are compared to the best-known classical algo-
rithms, and not that they are better than all possible classical algorithms. A recent paper (Tang,
2018) has challenged the presumed superiority of a quantum recommendation algorithm with a new
classical algorithm inspired by the quantum method that shows similar scaling. In our case, the op-
timality of Grover’s algorithm has been proven (Zalka, 1999) and so the assumption of its inherent
advantage is robust.
Some quantum algorithms are able to efficiently perform k-means clustering (Lloyd et al., 2013)
and solve linear systems of equations (Harrow et al., 2009), among other such achievements (see
Ciliberto et al. (2018) for a review). All of these algorithms require the classical data to be encoded
into an accessible quantum form of RAM known as a qRAM. Although there is some work on how
this might be done (Giovannetti et al., 2008) it is not known to even be possible to construct a qRAM
in an efficient manner for a completely general dataset. To many, this is a significant drawback that
cannot be ignored, and places a heavy burden on the feasibility of these methods.
An alternative approach has been to mimic the progress of classical machine learning by using meth-
ods classically known to work. Many have taken to using classical computers to train parametrized
quantum circuits to perform classification (Stoudenmire & Schwab, 2016a) or to learn generative
models (Dallaire-Demers & Killoran, 2018). Some, but not all, of these circuits mimic neural net-
works in that they are layered and try to utilize non-linearities Killoran et al. (2018). The biggest
issue with this approach is the lack of an efficient algorithm for training quantum circuits and so
current methods are akin to black box optimization. The motivation is that the output of quan-
tum circuits are known to be impossible to efficiently simulate with classical computers and could
therefore provide superior performance on that basis. A slightly different approach to training a per-
ceptron using quantum amplitude amplification has been explored before and its complexity studied
compared to classical methods (Kapoor et al., 2016). Previous work has demonstrated and experi-
mentally implemented the use of quantum hardware to perform binary classification, (Neven et al.,

2

Under review as a conference paper at ICLR 2019

2009) but this is not the same as the method proposed in this paper, as this work is based on a dif-
ferent, more general gate-based form of quantum computation as opposed to the quantum annealing
devices of the former.

3 QUANTUM COMPUTING

Quantum computing follows the structure of classical computing very closely. Quantum bits, or
qubits, are the fundamental unit of quantum information. Their values are manipulated by applying
quantum (logic) gates to them in the form of quantum circuits.
Qubits are challenging to manufacture in practice due to the noise-sensitive nature of quantum prop-
erties. The biggest such device in existence today contains just 72 highly imperfect qubits, but it is
worth noting that progress has advanced at a particularly rapid pace over the past few years and a
number are available for public access on the cloud. In addition, simulating the behaviour of qubits
using classical computers is difficult, requiring exponentially increasing resources as the number
of qubits increases - with an upper limit of 50 (perfect) qubits often cited for the most powerful
supercomputers. Therefore, quantum algorithms are almost always defined in terms of their circuit
implementation, as opposed to the higher level abstraction of classical algorithms.

3.1 QUBITS

Qubits are the unit of quantum information and are fundamentally different to classical bits. Whilst
classical bits are completely described as being in one of two states, either 0 or 1, the state of a
qubit cannot be fully described by just a single number. It can be in the 0 state, the 1 state or a
quantum superposition of both. Mathematically the state of a qubit is a two dimensional vector with
complex elements and a unit norm. We can write a general form for this vector as (α βeiφ)T ≡
α |0〉 + βeiφ |1〉 with |α|2 + |β|2 = 1, |0〉 ≡ (1 0)

T , |1〉 ≡ (0 1)
T
. Here α and β are the

probability amplitudes of the zero state |0〉 and the one state |1〉 respectively. Qubits cannot be
simply read out as classical bits are, but are instead measured. Measurement is a unique feature
of quantum mechanics. If the qubit given above is measured, it will be found in the zero state
with probability |α|2, outputting a value of 0, and the one state with probability |β|2 outputting a
value of 1. Therefore measurement of a qubit state always produces a binary outcome, no matter
the actual state itself. Measurement is fundamentally indeterministic, probabilistic and irreversible.
Upon measurement, the original state is lost along with the values of α and β as the qubit collapses
to the state |0〉 or |1〉 corresponding to the measurement outcome. As a result, the values α and β
cannot be obtained without repeated measurements of many identical copies of the state. Here φ is
a phase that does not affect measurement outcome, but can be manipulated with quantum gates and
play a role in quantum algorithms. Part of the power of quantum computing is the ability to harness
superposition to parallelize certain computations and processes.
An important feature of qubits is the way in which they are combined. N qubits are collectively
described by a complex vector of unit norm in a similar way as the above, but the length of this
vector is given by 2N . It is this exponential scaling that makes even modest numbers of qubits
unfeasible to simulate on a classical computer.

3.2 QUANTUM GATES

In both classical and quantum computing, gates manipulate the states of bits and qubits. As complex
vectors, qubit states are transformed into one another by applying complex matrices called operators
or simply, quantum gates. This transformation follows the rules of linear algebra and a state |ψ〉
is transformed into a different state |φ〉 by a gate U according to the matrix transformation |φ〉 =
U |ψ〉. In order to maintain the stringent requirement of a unit norm, these matrices are restricted
to being unitary. A unitary matrix is defined as any square matrix who’s inverse is its complex
conjugate transpose. Unitarity implies that every quantum gate is reversible, in a manner similar to
reversible computing. This fundamental difference in the kinds of operations that can be performed
on qubits compared to classical bits is part of the power of quantum computing, but can make
analogies to classical computing difficult. Many quantum operations have no classical analogue
and conversely, certain simple classical operations (e.g copying the state of a general qubit) are
impossible in quantum computing.

3

Under review as a conference paper at ICLR 2019

COMMON GATES

Just as in classical computing, small sets of quantum gates are universal in that they can be combined
to generate any other. It transpires that a small set of quantum gates are sufficient to our work and
we choose to list them here, both in terms of their actions and their matrix forms.
The X (NOT) gate flips the state of a qubit from |1〉 to |0〉 and vice versa. For qubits in superposition,
it swaps the amplitudes of the |1〉 and |0〉 states. Its matrix form is

X =

(
0 1
1 0

)
The Z gate has no classical analogue and takes the matrix form

Z =

(
1 0
0 −1

)
It transforms an arbitrary state α |0〉+β |1〉 into the state α |0〉−β |1〉. The probability amplitude of
the |1〉 component has changed sign, but the probabilities associated with measurement outcome, as
squares of the probability amplitudes, remain unchanged. Note that this still represents a completely
different state.
The Hadamard (H) gate also has no classical analogue. It is used to transform qubits from their
initial state |0〉 into the state 1√

2
|0〉 + 1√

2
|1〉 - an equal quantum superposition of 0 and 1. As a

matrix it is

H =
1√
2

(
1 1
1 −1

)
The controlled-not (CNOT) gate can be thought of as a generalisation of the classical XOR gate. It
performs a NOT gate on a target qubit if a control qubit is in the state |1〉. We write this as

CNOT =

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


Note that controlled gates can be extended both to arbitrary gates (e.g. CZ) and to arbitrary numbers
of control qubits (e.g. CCCNOT).

4 METHOD

The main advantage of qubits over classical bits is their ability to be placed and processed in quantum
superpositions of states. The key to our method is to use superposition to parallelize the processing
of weights in a way not possible classically. Our scheme proceeds as follows:

General Scheme
Step 1: The weights are represented in some way by the quantum state of a set of qubits. Setting
those qubits into a state that represents an equal superposition of every possible set of weights allows
them to define the domain.
Step 2: We then build a quantum circuit analogue of the neural network UQNN that takes in a given
set of weights (encoded within qubits as above) and an empty register, and outputs onto the register
the corresponding accuracy according to the chosen neural network i.e UQNN (w, 0) = (w, accw).
Step 3: Since UQNN is a quantum circuit, inputting weights in superposition form allows them to
be processed in parallel. Thus by using the domain-defining qubits as the weights input to UQNN
the output will be a superposition correlating all possible weights to their corresponding accuracies.
This is what we refer to as the landscape state. We can write this as

1√
W

∑
w∈W

(w,Ow)

where W is the set of all possible weights, W is its size and Ow the accuracy of the neural network
given the set of weights w. This is a single quantum state representing the entire landscape of
the neural network by correlating every possible set of weights with its resultant accuracy. In the
language of quantum physics the weights and the accuracies are entangled.

4

Under review as a conference paper at ICLR 2019

Figure 1: The structure of the BNN we are training. It has a total of eight binary weights.

This method can be adapted in many ways. For example, if just a single weight is set it to superpo-
sition and the rest kept to a given value, then the output is the cost landscape of just that one weight
conditional on the value of the others. We are not limited to only setting weights in superposition.
We note that a meta-neural network with the presence/absence of the connections within the neural
network themselves represented by binary parameters can also be created. These meta-parameters
can also be encoded in qubits, formed into a quantum circuit and set to superposition. If we set
both the weights and the connection meta-parameters to superposition then the output state of the
quantum circuit contains an entire meta-cost landscape of every possible weight with every possible
connectivity of a neural network simultaneously correlated with the respective accuracy.

4.1 EXAMPLE: TRAINING A BINARY NEURAL NETWORK

We demonstrate our method by generating the landscape state for a small binary neural network
on simple toy problems and use it to train the network. The advantage of binary neural networks
is that each weight can be naturally represented by just one qubit and so are therefore a suitable
demonstration given the fundamentally small number of qubits that can be simulated on a non-
quantum device.

4.2 PROBLEM STATEMENT

We construct two toy problems, both of which are a binary classification on three binary features
xi ∈ {−1, 1} of eight data points corresponding to every 23 arrangement of those features.
In problem 1, the label is given by the function

y(x1, x2, x3) = sign(x3x1 + x2) (1)

and for problem 2 the label is given by

y(x1, x2, x3) = sign(x1 + x2 + x3) (2)

In both cases we define the sign function as:

sign(x) =

{
1, if x ≥ 0.

−1, otherwise.

We choose to implement the BNN given in figure 1 meaning that we are aiming to find eight binary
weights.

4.3 CONSTRUCTING THE QUANTUM BINARY NEURAL NETWORK (QBNN)

To construct a quantum circuit equivalent to the BNN, henceforth known as the Quantum Binary
Neural Network (QBNN), every operation in the implementation of a BNN must be mapped to a
quantum equivalent. Below we detail each of these and their quantum implementation.

Representing Numerical Values

Representing numerical values with qubits is already well established in the literature (Stoudenmire
& Schwab, 2016b). Other parts of our construction are, however, incompatible with non-binary
input and so we restrict ourselves to the simple case of a binary data input. In this case, the qubit
states |1〉 and |0〉 represent the values +1,−1 respectively. In a quantum circuit, all qubits begin in
the |0〉 state and need only an application of a single NOT gate to be set to |1〉 where appropriate.

5

Under review as a conference paper at ICLR 2019

Figure 2: A quantum circuit (right) corresponding to the neuron (left). Quantum circuits are read from left to
right just like classical computing circuits. The first group of operations on the weights are initialising them
into a superposition of all their values using Hadamard gates (red). The first group of operations on the inputs
are encoding the features onto the qubits (blue). They are either blank (if the input values are already -1) or
NOT gates if the desired input values are 1. The following three quantum operations are the anti-CNOT gates
that weight each input according to its corresponding weight (green). The final set of operations (purple) are
a combination of multi-qubit, controlled and anti-controlled NOT gates that together correspond to the sign
function. They can be seen to flip the state of the ancilla qubit to +1 if either all the weighted input values are
in the state +1, or if any two of them are in the state +1. Ancilla qubits are additional ’helper’ qubits.

Multiplying values by binary weights
Given two qubits representing binary values ±1 as described above, we can multiply them using
an anti-CNOT gate. An anti-CNOT gate applies a NOT gate to a target qubit if the control qubit is
in the state |0〉 instead of |1〉. Its truth table is identical to an XNOR gate and outputs |1〉 if both
input values are equal, and |0〉 otherwise. This truth table matches the truth table of multiplying
two binary values and thus performs the same function. It can be constructed using two NOT gates
and a CNOT gate. Qubits that encode weights must always be used as control qubits to preserve the
values they encode.

Implementing the Activation Function
Since the sign function is highly non-linear, it poses the greatest challenge to translate to the linear
algebra-based language of quantum mechanics. Generally, the problem can be overcome by the
addition of extra helper or ’ancilla’ qubits. If we restrict the problem to the special case of binary
arguments only, the sign function1 is reduced to finding whether there exist N/2 qubits out of N in
state |1〉. This can be achieved by constructing a quantum analogue of a classical majority function
by replacing AND gates with CCNOT gates and constructing OR gates out of CNOT and NOT gates.
The number of gates needed scales as the binomial coefficientN chooseN/2. As an example, figure
2 shows a three input neuron and its quantum circuit implementation. Note that this is just a single
neuron, and not our entire network. In practice, it works in the same manner as a classical neural
network. The activations of each neuron in one layer are then weighted by their own weight qubits
and used as input to the next layer and so on. This whole circuit is what we refer to as the QBNN.

Calculating Accuracy

For each data point on the training set we must compare the prediction to the label in order to
find the accuracy. We initialise a register of qubits to store the predictions. The reversibility of
quantum circuits allows us to apply the QBNN for a given data point, store its output value onto its
corresponding qubit on the register, perform the same QBNN in reverse order - its inverse - to refresh
the other qubits, and continue for the next data point in the training set. This resetting is a common,
necessary workaround for small quantum computers and is easily avoided by parallelization given
more qubits. For a training set of size N , we obtain a register of N qubits containing the predictions
of the QBNN for each of them. Since both the labels and the outputs are binary, we can represent the
accuracy of each of these predictions by performing a NOT gate on all the qubits corresponding to

1The sign function with binary arguments is also known simply as the majority function

6

Under review as a conference paper at ICLR 2019

a data point with a label of 0. Each qubit in this register will then be in the state |1〉 if it corresponds
to a correctly classified data point and |0〉 if it does not.

4.4 QUANTUM TRAINING FROM THE LANDSCAPE STATE

By applying the QBNN over the entire training set with the weights initialized in superposition,
our circuit output is the cost landscape state. Training the BNN can be seen as a search for a
single state within the cost function landscape, for which we use a quantum algorithm known as
quantum amplitude amplification. It is not the first time that quantum amplitude amplification has
been suggested as a means to train quantum neural networks (Ricks & Ventura, 2004), but they
did not construct the actual details of an implementation such as the method of generating a non-
linearity. Quantum amplitude amplification is a technique to amplify the probability amplitudes
that correspond to desired state(s) within the superposition and therefore increase the probability
of measuring one of these. It works by splitting the space of all states into a ’good’ and a ’bad’
subspace and rotating their relative probabilities when measured. In this case the ’good’ subspace is
defined as that which has all the qubits in the prediction register in the state |1〉 implying that all data
points have been correctly classified. It is known that quantum amplitude amplification requires just
O(1/

√
a) to search for an entry with an occurrence probability of a (Brassard et al., 2002).

Quantum amplitude amplification works by first constructing the amplifying operator, Q.

Q ≡ −UQBNN S0 U
−1
QBNN Sχ

The composite operation, Q, is interpreted as a sequence of operations applied from right to left as
read in the equation above. UQBNN is our entire QBNN circuit (for all data points), and U−1QBNN is
its (matrix) inverse. Since quantum gates are reversible, and every gate we have used is self-inverse,
we obtain this by applying all of the gates of UQBNN in reverse order. The operations S0 and Sχ
reverse the sign of the probability amplitudes of the initial state and the target state(s) respectively.
In this case, our target states correspond to those with an accuracy of 100% and Sχ is a controlled-Z
gate performed on each of the target qubits. Similarly, the initial state of any quantum computer is
defined as having all the qubits in the state |0〉, and thus we can implement S0 by first applying a
NOT gate to each qubit and then applying the same controlled-Z gates as for Sχ.
Figure 3 is a pictorial representation of how quantum amplitude amplification changes the probabil-
ity distribution of the measured weights. If we write the initial probability of obtaining the correct
weights by random as p and the number of successive applications of operator Q to be k, it can
be shown that the probability of obtaining the optimal weights when measuring the circuit after k
amplifications is

sin2(2k + 1)θ (3)

where p and θ obey the relation p = sin2θ (Brassard et al., 2002). The probability of success is
therefore highly periodic in k. The problem of training the BNN essentially reduces to a probabilistic
search on this one hyper-parameter and its regular periodic landscape. The location of the first
maximum, i.e of k∗, is inversely proportional to θ and hence to the probability of obtaining the
weights by random. In other words, a harder problem with more weights to search requires a greater
number of quantum amplifications to find.
In practical terms the landscape state is a set of 8 weight qubits and 8 prediction qubits. After the
search, at the end of the entire process, all the qubits are measured. If the prediction qubits are all
in the state |1〉 the training was a success and the appropriate weights can be simply read off their
corresponding qubits.

5 RESULTS

We constructed and simulated the QBNN and quantum amplitude amplification circuits on the pro-
jectQ framework (Steiger et al., 2018). The use of an actual quantum computer was not possible as
the number of gates used during the computation (called circuit depth) exceeds the maximum pos-
sible circuit depth for the current generation of imperfect noisy qubits. Furthermore, we use more
qubits than are available on current publicly accessible quantum hardware.
For each of the two problems defined, we plotted the probability of obtaining an optimal set of
weights against the number of iterations of the quantum amplitude amplification and obtained re-
sults, shown in figure 4, that match well with the expected periodic behavior described in equation 3.

7

Under review as a conference paper at ICLR 2019

(a) (b)

(c)

Figure 3: The change in the probability distribution of output weights under quantum amplitude amplification
after k iterations where (a) k = 0, i.e random , (b) k is sub-optimal (c) k is near optimal. The black data point
represents the optimal configuration.

This confirms that a quantum search of the landscape state can indeed be used to train a BNN in
exactly the manner as predicted theoretically. We emphasize here that every reference to finding
optimal weights means that the BNN has been trained to an accuracy of 100% on the training data.

(a) (b)

Figure 4: A plot showing the relationship between the probability of obtaining an optimal set of weights
against the number of quantum amplifications, k, for problem 1 (a) and problem 2 (b). Each point represents a
simulation of 50 separate runs of the algorithm at the given k and the probability of success of those 50 runs.
The error bars represent 95% confidence intervals.

In order to demonstrate the performance of this method in actual training, we follow the simple al-
gorithm described in Brassard et al. (2002) for probing this landscape. This simple algorithm begins
with n = 0 and chooses a random integer k of quantum amplifications between 0 and n. n increases
by 1 until the training succeeds. In our experiment, we perform 100 runs of this algorithm and
present in figure 5 a cumulative plot of the proportion of these runs that were successful against the
number of iterations this algorithm required. We find that training succeeds with a probability over
90% after just 5 steps for the first problem and 6 steps for the second. In order to compare this to a
classical search, we search the entire space of 28 = 256 possible sets of weights and find that there
are eight and four correct sets of weights (giving 100% accuracy) for the first and second problem
respectively. Statistically, if these weights were to be searched through the analogous classical brute

8

Under review as a conference paper at ICLR 2019

(a) Problem 1 (b) Problem 2

Figure 5: A plot comparing the scaling of a quantum search algorithm over a classical one. The quantum
data is the cumulative probability of success over 100 runs of the algorithm. Classical results are analytically
derived from the known probability of obtaining a solution by random search. The superior scaling of the
quantum algorithm becomes more prominent for harder problems.

force search, one would find that it requires 28 and 57 steps respectively to succeed with a confi-
dence over 90%. This matches our expectation of a quadratic speedup of the quantum search over
the classical.

5.1 QUANTUM METATRAINING

We then construct a more complex QBNN which can incorporate meta-training by introducing a set
of binary indicators that correspond to the presence or absence of a set of connections within the
BNN and encode these within qubits in the exact same way as was done with the weights. With
the weights and connection parameters both set to superpositions, the output of this circuit is the
meta-cost landscape, where weights, connections and accuracy are all entangled with one another.
As before quantum amplitude amplification is used to search for the state with all points correctly
classified. Again this has been suggested before, but we present a full circuit implementation of this
idea (da Silva et al., 2016).
In practice, due to qubit number constraints, we choose to only learn the structure of the first layer of
the BNN. The second layer remains fixed. Due to the increased size of the circuit, and the significant
increase in computational cost, we did not perform a complete classical search of the space as before
but it is clear to see that the space of parameters we are searching has increased and therefore the
number of amplifications required has similarly increased. Between 16 and 20 amplifications were
found to be sufficient to produce results with a reasonable probability. Figure 6 (a) shows the meta-
BNN that was used, and (b) and (c) show two solutions to problems 1 and 2 respectively learnt by
our meta-QBNN. It is particularly interesting to note that the learned structures of the two BNN
solutions seem to match well with their problem definitions (equation 1 and equation 2). Note that
due to our circuit construction a neuron that receives no input will always output −1.

CONCLUSIONS AND FUTURE WORK

We show that quantum superposition can be used to represent many parameters of a neural network
at once and efficiently encode entire loss landscapes in a quantum state using just a single run of a
quantum circuit. We demonstrate this explicitly for both parameters and hyper-parameters of a BNN,
and show that further processing of this state can lead to quantum advantage in training and meta-
training. As a training method it possesses significant advantages as it is landscape-independent, has
a quadratic speedup over a classical search of the same kind, and would be able to solve statistically
neutral problems such as parity problems (Thornton, 1996). It is not, however, without shortcom-
ings.
One potential criticism is the issue of over-fitting. Since our problem is so small, we chose to define
a target state as one where the accuracy is 100% on the training set but this is rarely desirable in
real machine learning. One solution may be to simply run the quantum algorithm and, upon finding

9

Under review as a conference paper at ICLR 2019

(a)

−1

+1

−1

−1

+1

-1

-1

(b)

+1

+1

+1

+1

+1

(c)

Figure 6: (a) The meta-BNN we train. The dotted lines represent the presence or absence of connections
within the first layer. A meta-learned solution to (b) problem 1 and (c) problem 2

a particular set of weights that represents an overfit, run the algorithm again but with a deselection
of that particular set of weights. This can be done by simply changing the sign of the probability
amplitude corresponding to that state during each iteration of the quantum amplitude amplification.
A similar issue is that regular machine learning typically uses batch learning, whilst our method in-
corporates the entire dataset at once. This too can be fixed by altering our method to use a different
batch of the data for each quantum amplitude amplification iteration. This works since no matter
what batch we use, a good set of weights should still be amplified by the circuit. In fact, such an
implementation is advantageous since it would allow us to use less qubits which in practical terms
are limited in number in the near term.
A significant limitation in our method is the requirement that the input is binary, and the poor scal-
ing of the activation function. Both of these problems arise completely from our implementation of
the sign function, which could either be improved or replaced entirely with a different binary acti-
vation function that could be implemented more efficiently on a quantum computer and would be
compatible with non-binary input. There has been progress on creating effective non-linear activa-
tion functions by so-called repeat-until-success circuits (Cao et al., 2017). An alternative approach
would be to use floating point representations as in classical computing and the quantum equivalent
of full-adders, but this would require an overhead in the number of qubits that would take us beyond
the limit of classical simulation.
Finally, we note that this method scales poorly compared to backpropagation and that the advantage
only appears in like for like comparisons of unstructured classical/quantum searches. The cost func-
tion landscape is not unstructured and algorithms such as backpropagation take advantage of this.
We conjecture that a quantum search method that applies quantum advantage to structured searches,
if it exists, can be applied to the cost landscape in place of quantum amplitude amplification.

Finding ways to harness quantum computers to aid classical machine learning methods in a mean-
ingful way remains an open problem and we present the loss landscape state as a plausible candidate
towards this goal. Whilst we used the example of quantum training, the most fruitful approach in
the short term is to ask whether some property of the state can be used to glean useful information
for classical machine learning methods. This might take the form of understanding the roughness
of the landscape, identifying certain features, or even choosing an appropriate learning rate. Further
work in investigating the relationship between the landscape as a quantum state and its features from
a machine learning perspective would be a step forward in this direction.

10

Under review as a conference paper at ICLR 2019

ACKNOWLEDGEMENTS

This work was supported by InnovateUK (79852-520140). Concepts and information presented
are based on research and are not commercially available. Due to regulatory reasons, the future
availability cannot be guaranteed.

11

Under review as a conference paper at ICLR 2019

REFERENCES

Gilles Brassard, Peter Hoyer, Michele Mosca, and Alain Tapp. Quantum amplitude amplification
and estimation. Contemporary Mathematics, 305:53–74, 2002.

Yudong Cao, Gian Giacomo Guerreschi, and Alán Aspuru-Guzik. Quantum neuron: an elementary
building block for machine learning on quantum computers. arXiv preprint arXiv:1711.11240,
2017.

Anna Choromanska, Yann LeCun, and Gérard Ben Arous. Open problem: The landscape of the loss
surfaces of multilayer networks. In Conference on Learning Theory, pp. 1756–1760, 2015.

Carlo Ciliberto, Mark Herbster, Alessandro Davide Ialongo, Massimiliano Pontil, Andrea Roc-
chetto, Simone Severini, and Leonard Wossnig. Quantum machine learning: a classical per-
spective. Proc. R. Soc. A, 474(2209):20170551, 2018.

Matthieu Courbariaux, Itay Hubara, Daniel Soudry, Ran El-Yaniv, and Yoshua Bengio. Binarized
neural networks: Training deep neural networks with weights and activations constrained to+ 1
or-1. arXiv preprint arXiv:1602.02830, 2016.

Adenilton José da Silva, Teresa Bernarda Ludermir, and Wilson Rosa de Oliveira. Quantum per-
ceptron over a field and neural network architecture selection in a quantum computer. Neural
Networks, 76:55–64, 2016.

Pierre-Luc Dallaire-Demers and Nathan Killoran. Quantum generative adversarial networks. arXiv
preprint arXiv:1804.08641, 2018.

Vittorio Giovannetti, Seth Lloyd, and Lorenzo Maccone. Quantum random access memory. Physical
review letters, 100(16):160501, 2008.

Lov K Grover. A fast quantum mechanical algorithm for database search. In Proceedings of the
twenty-eighth annual ACM symposium on Theory of computing, pp. 212–219. ACM, 1996.

Aram W Harrow, Avinatan Hassidim, and Seth Lloyd. Quantum algorithm for linear systems of
equations. Physical review letters, 103(15):150502, 2009.

Ashish Kapoor, Nathan Wiebe, and Krysta Svore. Quantum perceptron models. In Advances in
Neural Information Processing Systems, pp. 3999–4007, 2016.

Nathan Killoran, Thomas R Bromley, Juan Miguel Arrazola, Maria Schuld, Nicolás Quesada, and
Seth Lloyd. Continuous-variable quantum neural networks. arXiv preprint arXiv:1806.06871,
2018.

Sam Leroux, Steven Bohez, Tim Verbelen, Bert Vankeirsbilck, Pieter Simoens, and Bart Dhoedt.
Transfer learning with binary neural networks. arXiv preprint arXiv:1711.10761, 2017.

Xiaofan Lin, Cong Zhao, and Wei Pan. Towards accurate binary convolutional neural network. In
Advances in Neural Information Processing Systems, pp. 345–353, 2017.

Seth Lloyd, Masoud Mohseni, and Patrick Rebentrost. Quantum algorithms for supervised and
unsupervised machine learning. arXiv preprint arXiv:1307.0411, 2013.

Harmut Neven, Vasil S Denchev, Marshall Drew-Brook, Jiayong Zhang, William G Macready, and
Geordie Rose. Nips 2009 demonstration: Binary classification using hardware implementation of
quantum annealing. 2009.

Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and Ali Farhadi. Xnor-net: Imagenet
classification using binary convolutional neural networks. In European Conference on Computer
Vision, pp. 525–542. Springer, 2016.

Bob Ricks and Dan Ventura. Training a quantum neural network. In Advances in neural information
processing systems, pp. 1019–1026, 2004.

Damian S Steiger, Thomas Häner, and Matthias Troyer. Projectq: an open source software frame-
work for quantum computing. Quantum, 2:49, 2018.

12

Under review as a conference paper at ICLR 2019

Edwin Stoudenmire and David J Schwab. Supervised learning with tensor net-
works. In D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Gar-
nett (eds.), Advances in Neural Information Processing Systems 29, pp. 4799–4807.
Curran Associates, Inc., 2016a. URL http://papers.nips.cc/paper/
6211-supervised-learning-with-tensor-networks.pdf.

Edwin Stoudenmire and David J Schwab. Supervised learning with tensor networks. In Advances
in Neural Information Processing Systems, pp. 4799–4807, 2016b.

Ewin Tang. A quantum-inspired classical algorithm for recommendation systems. arXiv preprint
arXiv:1807.04271, 2018.

Wei Tang, Gang Hua, and Liang Wang. How to train a compact binary neural network with high
accuracy? In AAAI, pp. 2625–2631, 2017.

Chris Thornton. Parity: the problem that won’t go away. In Conference of the Canadian Society for
Computational Studies of Intelligence, pp. 362–374. Springer, 1996.

Christof Zalka. Grovers quantum searching algorithm is optimal. Physical Review A, 60(4):2746,
1999.

13

http://papers.nips.cc/paper/6211-supervised-learning-with-tensor-networks.pdf
http://papers.nips.cc/paper/6211-supervised-learning-with-tensor-networks.pdf

	Introduction
	Related Work
	Binary Neural Networks
	Quantum Machine Learning

	Quantum Computing
	Qubits
	Quantum Gates

	Method
	Example: Training A Binary Neural Network
	Problem Statement
	Constructing the Quantum Binary Neural Network (QBNN)
	Quantum Training from the Landscape State

	Results
	Quantum MetaTraining

