BACKPROPAGATION THROUGH THE VOID: OPTIMIZING CONTROL VARIATES FOR BLACK-BOX GRADIENT ESTIMATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Gradient-based optimization is the foundation of deep learning and reinforcement learning. Even when the mechanism being optimized is unknown or not differentiable, optimization using high-variance or biased gradient estimates is still often the best strategy. We introduce a general framework for learning low-variance, unbiased gradient estimators for black-box functions of random variables, based on gradients of a learned function. These estimators can be jointly trained with model parameters or policies, and are applicable in both discrete and continuous settings. We give unbiased, adaptive analogs of state-of-the-art reinforcement learning methods such as advantage actor-critic. We also demonstrate this framework for training discrete latent-variable models.

1 INTRODUCTION

Gradient-based optimization has been key to most recent advances in machine learning and reinforcement learning. The back-propagation algorithm (Rumelhart & Hinton, 1986), also known as reverse-mode automatic differentiation (Speelpenning, 1980; Rall, 1981) computes exact gradients of deterministic, differentiable objective functions. The reparameterization trick (Williams, 1992; Kingma & Welling, 2014; Rezende et al., 2014) allows backpropagation to give unbiased, low-variance estimates of gradients of expectations of continuous random variables. This has allowed effective stochastic optimization of large probabilistic latent-variable models.

Unfortunately, there are many objective functions relevant to the machine learning community for which backpropagation cannot be applied. In reinforcement learning, for example, the function being optimized is unknown to the agent and is treated as a black box (Schulman et al., 2015). Similarly, when fitting probabilistic models with discrete latent variables, discrete sampling operations create discontinuities giving the objective function zero gradient with respect to its parameters. Much recent work has been devoted to constructing gradient estimators for these situations. In reinforcement learning, advantage actor-critic methods (Sutton et al., 2000) give unbiased gradient estimates with reduced variance obtained by jointly optimizing the policy parameters with an estimate of the value function. In discrete latent-variable models, low-variance but biased gradient estimates can be given by continuous relaxations of discrete variables (Maddison et al., 2016; Jang et al., 2016).

A recent advance by Tucker et al. (2017) used a continuous relaxation to construct a control variate for functions of discrete random variables. Low-variance estimates of the expectation of the control variate can be computed using the reparameterization trick to produce an unbiased estimator with lower variance than previous methods. Furthermore, Tucker et al. (2017) showed how to tune the free parameters of these relaxations to minimize the estimator’s variance during training.

In this work we generalize the method of Tucker et al. (2017) to learn a free-form control variate parameterized by a neural network, giving a lower-variance, unbiased gradient estimator which can be applied to a wider variety of problems with greater flexibility. Most notably, our method is applicable even when no continuous relaxation is available, as in reinforcement learning or black box function optimization. Furthermore, we derive improved variants of popular reinforcement learning methods with unbiased, action-dependent gradient estimates and lower variance.
When the parameters \(\theta \) are high-dimensional, gradient-based optimization is appealing because it provides information about how to adjust each parameter individually. Stochastic optimization is essential for scalability. However, it is only guaranteed to converge to a fixed point of the objective when the stochastic gradients \(\hat{g} \) are unbiased, i.e. \(\mathbb{E}[\hat{g}] = \mathbb{E}[\nabla_{\theta} f(b)] \) (Robbins & Monro, 1951).

How can we build unbiased, stochastic estimators of \(\nabla_{\theta} \mathcal{L}(\theta) \)? There are several standard methods:

The score-function gradient estimator One of the most generally-applicable gradient estimators is known as the score-function estimator, or REINFORCE (Williams, 1992):

\[
\hat{g}_{\text{REINFORCE}}[f] = f(b) \frac{\partial}{\partial \theta} \log p(b|\theta), \quad b \sim p(b|\theta)
\]

This estimator is unbiased, but in general has high variance. Intuitively, this estimator is limited by the fact that it doesn’t use any information about how \(f \) depends on \(b \), only on the final outcome \(f(b) \).

The reparameterization trick When \(f \) is continuous and differentiable, and the latent variables \(b \) can be written as a deterministic, differentiable function of a random draw from a fixed distribution, the reparameterization trick (Williams, 1992; Kingma & Welling, 2014; Rezende et al., 2014) creates a low-variance, unbiased gradient estimator by making the dependence of \(b \) on \(\theta \) explicit through a reparameterization function \(b = T(\theta, \epsilon) \):

\[
\hat{g}_{\text{reparam}}[f] = \frac{\partial}{\partial \theta} f(b) = \frac{\partial f}{\partial T} \frac{\partial T}{\partial \theta}, \quad \epsilon \sim p(\epsilon)
\]

This gradient estimator is often used when training high-dimensional, continuous latent-variable models, such as variational autoencoders or GANs (Goodfellow et al., 2014). One intuition for why this gradient estimator is preferable to REINFORCE is that it depends on \(\frac{\partial f}{\partial \theta} \), which exposes the dependence of \(f \) on \(b \).

Control variates Control variates are a general method for reducing the variance of a Monte Carlo estimator. Given an estimator \(\hat{g}(b) \), a control variate is a function \(c(b) \) with a known mean \(\mathbb{E}[p(b)|c(b)] \). Subtracting the control variate from our estimator and adding its mean gives us a new estimator:

\[
\hat{g}_{\text{new}}(b) = \hat{g}(b) - c(b) + \mathbb{E}[p(b)|c(b)]
\]

Figure 1: Left: Training curves comparing different gradient estimators on a toy problem: \(\mathcal{L}(\theta) = \mathbb{E}_{p(b|\theta)}[(b - 0.49\theta)^2] \) Right: Variance of each estimator’s gradient.
This new estimator has the same expectation as the old one:
\[
\mathbb{E}_{p(b)}[\hat{g}_{\text{new}}(b)] = \mathbb{E}_{p(b)}[\hat{g}(b) - c(b) + \mathbb{E}_{p(b)}[c(b)]] = \mathbb{E}_{p(b)}[\hat{g}(b)]
\]
(5)
Importantly, the new estimator has lower variance than \(\hat{g}(b)\) if \(c(b)\) is positively correlated with \(f(b)\).

3 Constructing and Optimizing a Differentiable Surrogate

In this section, we introduce a gradient estimator for the expectation of a function \(\frac{\partial}{\partial \theta} \mathbb{E}_{p(b)}[f(b)]\) that can be applied even when \(f\) is unknown, or not differentiable, or when \(b\) is discrete. Our estimator combines the score function estimator, the reparameterization trick, and control variates. We obtain an unbiased estimator whose variance can potentially be as low as the reparameterization-trick estimator, even when \(f\) is not differentiable or not computable.

First, we consider the case where \(b\) is continuous, but that \(f\) cannot be differentiated. Instead of differentiating through \(f\), we build a surrogate of \(f\) using a neural network \(c_\phi\), and differentiate \(c_\phi\) instead. Since the score-function estimator and reparameterization estimator have the same expectation, we can simply subtract the score-function estimator for \(c_\phi\) and add the reparameterization estimator for \(c_\phi\), to produce a gradient estimator which we call LAX:
\[
\hat{g}_{\text{LAX}} = g_{\text{REINFORCE}}[f] - g_{\text{REINFORCE}}[c_\phi] + g_{\text{reparam}}[c_\phi] \\
= [f(b) - c_\phi(b)] \frac{\partial}{\partial \theta} \log p(b|\theta) + \frac{\partial}{\partial \theta} c_\phi(b) \quad b = T(\theta, \epsilon), \epsilon \sim p(\epsilon).
\]
(6)
This estimator is unbiased for any choice of \(c_\phi\) and when \(c_\phi = f\), our estimator becomes the reparameterization estimator for \(c_\phi\). Thus our estimator can have variance at least as low as the reparameterization estimator.

3.1 Optimizing the Gradient Control Variate with Gradients

Since \(\hat{g}_{\text{LAX}}\) is unbiased for any choice of the surrogate \(c_\phi\), the only remaining problem is to choose a \(c_\phi\) that gives low variance to \(\hat{g}_{\text{LAX}}\). How can we find a \(\phi\) which gives our estimator low variance? We simply optimize \(c_\phi\) using stochastic gradient descent, at the same time as we optimize the parameters of our model or policy.

To optimize \(c_\phi\), we require the gradient of the variance of our gradient estimator. To estimate these gradients, we could simply differentiate through the empirical variance over each mini-batch. Or, following Ruiz et al. (2016) and Tucker et al. (2017), we can construct an unbiased, single-sample estimator using the fact that our gradient estimator is unbiased. For any unbiased gradient estimator \(\hat{g}\) with parameters \(\phi\):
\[
\frac{\partial}{\partial \phi} \mathbb{V}ar(\hat{g}) = \frac{\partial}{\partial \phi} \mathbb{E}[\hat{g}^2] - \mathbb{E}[\hat{g}]^2 = \frac{\partial}{\partial \phi} \mathbb{E}[\hat{g}^2] = \mathbb{E} \left[\frac{\partial}{\partial \phi} \hat{g}^2 \right] = \mathbb{E} \left[2 \hat{g} \frac{\partial}{\partial \phi} \hat{g} \right].
\]
(7)
Thus, an unbiased single-sample estimate of the gradient of the variance of \(\hat{g}\) is given by \(2\hat{g} \frac{\partial}{\partial \phi} \hat{g}\).

This method of directly minimizing the variance of the gradient estimator stands in contrast to other methods such as Q-Prop (Gu et al., 2016) and advantage actor-critic (Sutton et al., 2000), which train the control variate to minimize the squared error \((f(b) - c_\phi(b))^2\). Our algorithm, which jointly optimizes the parameters \(\theta\) and the surrogate \(c_\phi\) is given in Algorithm 1.

3.1.1 Optimal Surrogate

What is the form of the variance-minimizing \(c_\phi\)? Inspecting the square of (6), we can see that this loss encourages \(c_\phi(b)\) to approximate \(f(b)\), but with a weighting based on \(\frac{\partial}{\partial \phi} \log p(b)\). Moreover, as \(c_\phi \to f\) then \(\hat{g}_{\text{LAX}} \to \frac{\partial}{\partial \phi} c_\phi\). Thus, this objective encourages a balance between the variance of the reparameterization estimator and the variance of the REINFORCE estimator. Figure 2 shows the learned surrogate on a toy problem.
We now describe how we apply the LAX estimator in the reinforcement learning (RL) setting. By reinforcement learning, we refer to the problem of optimizing the parameters θ of a policy distribution $\pi_{\theta}(a|x)$ in order to maximize the expected return $J(\theta) = \mathbb{E}_{\pi(\theta)}[\sum_{t=0}^{\infty} \gamma^t R_t]$. The key idea behind LAX is a control variate which is unbiased, and has a variance-reduction objective.

The variance-reduction objective introduced above allows us to use any differentiable, parametric function f as our control variate

$$
\hat{g}_{\text{LAX}} = \frac{\partial}{\partial \theta} \log p(b|\theta) - c_\phi(z) \frac{\partial}{\partial \theta} \log p(z|\theta) + \frac{\partial}{\partial \theta} \frac{\partial}{\partial \phi} c_\phi(z),
$$

where $b = H(z)$, $z \sim p(z|\theta)$. This estimator is unbiased for any c_ϕ. A proof and a detailed algorithm can be found in appendix B.

We note that the distribution $b = H(z)$ is known, differentiable function of discrete random variables z. We require a continuous, reparameterizable distribution $p(z|\theta)$ and a deterministic mapping $H(z)$ such that $H(z) = b \sim p(b|\theta)$ when $z \sim p(z|\theta)$. In our implementation, we use the Gumbel-softmax trick, the details of which can be found in appendix B.

To construct a more powerful gradient estimator, we incorporate a further refinement due to Tucker et al. (2017). Specifically, we evaluate our control variate both at a relaxed input $z \sim p(z|\theta)$, and also at a relaxed input z conditioned on the discrete variable b, denoted $\tilde{z} \sim p(z|b, \theta)$. Thus we define our estimator as

$$
\hat{g}_{\text{RELAX}} = \left[f(b) - c_\phi(\tilde{z})\right] \frac{\partial}{\partial \theta} \log p(b|\theta) + \frac{\partial}{\partial \theta} \frac{\partial}{\partial \phi} c_\phi(\tilde{z}) - \frac{\partial}{\partial \theta} \frac{\partial}{\partial \phi} c_\phi(z)
$$

This estimator is unbiased for any c_ϕ. A proof and a detailed algorithm can be found in appendix A.

We note that the distribution $p(z|b, \theta)$ must also be reparameterizable. We demonstrate how to perform this conditional reparameterization for Bernoulli and categorical random variables in appendix B.

3.3 Choosing the Control Variate Architecture

The variance-reduction objective introduced above allows us to use any differentiable, parametric function as our control variate c_ϕ. How should we choose the architecture of c_ϕ? Ideally, we will take advantage of any known structure in f.

If f is a known, differentiable function of discrete random variables, we can use the concrete relaxation (Jang et al., 2016; Maddison et al., 2016) and let $c_\phi(z) = f(\sigma_\lambda(z))$. In this special case, our estimator is exactly the REBAR estimator. We are also free to add a learned component to the concrete relaxation and let $c_\phi(z) = f(\sigma_\lambda(z)) + r_p(z)$ where r_p is a neural network with parameters ρ. We took this approach in our experiments training discrete variational auto-encoders. If f is unknown, we can simply let c_ϕ be a generic function approximator such as a neural network. We took this simpler approach in our reinforcement learning experiments.

3.4 Reinforcement Learning

We now describe how we apply the LAX estimator in the reinforcement learning (RL) setting.

Algorithm 1 LAX: Optimizing parameters and a gradient control variate simultaneously.

Require: $f(\cdot)$, $\log p(b|\theta)$, reparameterized $b = T(\theta, \epsilon)$, neural network $c_\phi(\cdot)$

while not converged do

$\epsilon_i \sim p(\epsilon)$ \hspace{1cm} \triangleright Sample noise

$b_i \sim T(\epsilon_i, \theta)$ \hspace{1cm} \triangleright Compute input

$g_0 \leftarrow [f(b_i) - c_\phi(b_i)] \nabla_\theta \log p + \nabla_\theta c_\phi(b_i)$ \hspace{1cm} \triangleright Estimate gradient

$g_\phi \leftarrow 2g_\theta \frac{\partial g_\theta}{\partial \phi}$ \hspace{1cm} \triangleright Estimate gradient of variance of gradient

$\theta \leftarrow \theta + \alpha_1 g_\theta$ \hspace{1cm} \triangleright Update parameters

$\phi \leftarrow \phi + \alpha_2 g_\phi$ \hspace{1cm} \triangleright Update control variate

end while

return θ

Under review as a conference paper at ICLR 2018
\[\pi(a|s, \theta) \] to maximize the sum of rewards. In this setting, the random variable being integrated over is \(\tau \), which denotes a series of actions and states \([s_1, a_1, (s_2, a_2), \ldots, (s_T, a_T)]\). The function whose expectation is being optimized, \(R \), maps \(\tau \) to the sum of rewards \(R(\tau) = \sum_{t=1}^{T} r_t(s_t, a_t) \).

Again, we want to estimate the gradient of an expectation of a black-box function: \(\frac{\partial}{\partial \theta} \mathbb{E}_{p(\tau|\theta)}[R(\tau)] \). The \textit{de facto} standard approach is the advantage actor-critic estimator (A2C) (Sutton et al., 2000):

\[
\hat{g}_{A2C} = \sum_{t=1}^{\infty} \frac{\partial \log \pi(a_t|s_t, \theta)}{\partial \theta} \left[\sum_{t'=t}^{\infty} r_{t'} - c_\phi(s_t) \right], \quad a_t \sim \pi(a_t|s_t, \theta) \tag{10}
\]

Where \(c_\phi(s_t) \) is an estimate of the state-value function, \(c_\phi(s) = V^\pi(s) = \mathbb{E}_{\tau}[R|s_1 = s] \). This estimator is unbiased when \(c \) does not depend on \(a_t \). The main limitations of A2C are that \(c \) does not depend on \(a_t \), and that it’s not obvious how to optimize \(c \). Using the LAX estimator addresses both of these problems.

First, we assume \(\pi(a_t|s_1) \) is reparameterizable, meaning that we can write \(a_t = a(\epsilon_t, s_t, \theta) \), where \(\epsilon_t \) does not depend on \(\theta \). We again introduce a differentiable surrogate \(c_\phi(a, s) \). Crucially, this surrogate is a function of the action as well as the state.

Our estimator is defined as:

\[
\hat{g}_{RLAX} = \sum_{t=1}^{\infty} \frac{\partial \log \pi(a_t|s_t, \theta)}{\partial \theta} \left[\sum_{t'=t}^{\infty} r_{t'} - c_\phi(a_t, s_t) \right] + \frac{\partial}{\partial \theta} c_\phi(a_t, s_t), \tag{11}
\]

\[a_t = a(\epsilon_t, s_t, \theta) \quad \epsilon_t \sim p(\epsilon_t). \]

This estimator is unbiased if the true dynamics of the system are Markovian w.r.t. the state \(s_t \). When \(T = 1 \), we recover the special case \(\hat{g}_{RLAX} = \hat{g}_{LAX} \). Comparing \(\hat{g}_{RLAX} \) to the standard advantage actor-critic estimator in (10), the main difference is that our baseline \(c_\phi(a_t, s_t) \) is action-dependent while still remaining unbiased.

To optimize the parameters \(\phi \) of our control variate \(c_\phi(a_t, s_t) \), we can again use the single-sample estimator of the gradient of our estimator’s variance given in (7). This approach avoids unstable training dynamics, and doesn’t require storage and replay of previous rollouts.

Details of this derivation, as well as the discrete and conditionally reparameterized version of this estimator can be found in appendix C.

4 Scope and Limitations

The work most related to ours is the recently-developed REBAR method (Tucker et al., 2017), which inspired our work. The REBAR estimator is a special case of the RELAX estimator, when the surrogate is set to \(c_\phi(z) = \eta \cdot f(\text{softmax}_\lambda(z)) \). The only free parameters of the REBAR estimator are the scaling factor \(\eta \), and the temperature \(\lambda \), which gives limited scope to optimize the surrogate. REBAR can only be applied when \(f \) is known and differentiable. Furthermore, it depends on essentially undefined behavior of the function being optimized, since it evaluates the discrete loss function at continuous inputs.

Because LAX and RELAX can construct a surrogate from scratch, they can be used for optimizing black-box functions, as in reinforcement learning settings where the reward is an unknown function of the environment. LAX and RELAX only require that we can query the function being optimized, and can sample from and differentiate \(p(b|\theta) \).

Can RELAX be used to optimize deterministic black-box functions? The answer is yes, with the caveat that one must introduce stochasticity to the inputs. Thus, RELAX is most suitable for problems where one is already optimizing a distribution over inputs, such as in inference or reinforcement learning.

Direct dependence on parameters Above, we assumed that the function \(f \) being optimized does not depend directly on \(\theta \), which is usually the case in black-box optimization settings. However, a dependence on \(\theta \) can occur when training probabilistic models, or when we add a regularizer to
a black-box optimization problem. In both these settings, if the dependence on θ is known and differentiable, we can use the fact that

$$\frac{\partial}{\partial \theta} \mathbb{E}_{p(b|\theta)}[f(b, \theta)] = \mathbb{E}_{p(b|\theta)} \left[\frac{\partial}{\partial \theta} f(b, \theta) + f(b, \theta) \frac{\partial}{\partial \theta} \log p(b|\theta) \right]$$

and simply add the term $\frac{\partial}{\partial \theta} f(b, \theta)$ to our gradient estimate.

5 RELATED WORK

Miller et al. (2017) reduce the variance of reparameterization gradients in an orthogonal way to ours by approximating the gradient-generating procedure with a simple model and using that model as a control variate. NVIL (Mnih & Gregor, 2014) and VIMCO (Mnih & Rezende, 2016) provide reduced variance gradient estimation in the special case of discrete latent variable models and discrete latent variable models with Monte-Carlo objectives. Salimans et al. (2017) estimate gradients using a form of finite differences, evaluating hundreds of different parameter values in parallel to construct a gradient estimate. In contrast, our method is a single-sample estimator.

Staines & Barber (2012) address the general problem of developing gradient estimators for deterministic black-box functions or discrete optimization. They introduce a sampling distribution, and optimize an objective similar to ours. Wierstra et al. (2014) also introduce a sampling distribution to build a gradient estimator, and consider optimizing the sampling distribution.

In the reinforcement learning setting, the work most similar to ours is Q-prop (Haarnoja et al., 2017). Like our method, Q-prop reduces the variance of the policy gradient with an learned, action-dependent control variate whose expectation is approximated via a monte-carlo sample from a taylor series expansion of the control variate. Unlike our method, their control variate is trained off-policy. While our method is applicable in both the continuous and discrete action domain, Q-prop is only applicable to continuous actions.

6 APPLICATIONS

We demonstrate the effectiveness of our estimator on a number of challenging optimization problems. Following Tucker et al. (2017) we begin with a simple toy example to illuminate the potential of our method and then continue to the more relevant problems of optimizing binary VAE’s and reinforcement learning.

6.1 TOY EXPERIMENT

As a simple example, we follow Tucker et al. (2017) in minimizing $\mathbb{E}_{p(b|\theta)}[(b - t)^2]$ as a function of the parameter θ where $p(b|\theta) = \text{Bernoulli}(b|\theta)$. Tucker et al. (2017) set the target $t = .45$. We focus on the more challenging case where $t = .499$. Figures 1a and 1b show the relative performance and gradient log-variance of REINFORCE, REBAR, and RELAX.

Figure 2 plots the learned surrogate c_ϕ for a fixed value of θ. We can see that c_ϕ is near f for all z, keeping the variance of the REINFORCE part of the estimator small. Moreover the derivative of c_ϕ is positive for all z meaning that the reparameterization part of the estimator will produce gradients pointing in the correct direction to optimize the expectation. Conversely, the concrete relaxation of REBAR is close to f only near 0 and 1 and its gradient points in the correct direction.
only for values of $z > \log(\frac{1-t}{t})$. These factors together result in the RELAX estimator achieving the best performance.

6.2 Discrete Variational Autoencoder

Next, we evaluate the RELAX estimator on the task of training a variational autoencoder (Kingma & Welling, 2014; Rezende et al., 2014) with Bernoulli latent variables. We reproduced a subset of the experiments from Tucker et al. (2017), training models with 1 and 2 layers of 200 Bernoulli random variables with linear mappings between them, on both the MNIST and Omniglot (Lake et al., 2015) datasets. Details of these models and our experimental procedure can be found in appendix E.1.

To take advantage of the available structure in the loss function, we choose the form of our control variate to be $c_\phi(z) = f(\sigma_\lambda(z)) + \hat{r}_\rho(z)$ where \hat{r}_ρ is a neural network with parameters ρ and $f(\sigma_\lambda(z))$ is the discrete loss function (the evidence lower-bound) evaluated at continuously relaxed inputs as in REBAR. In all experiments, the learned control variate improved the training and validation performance, over the state-of-the-art baseline of REBAR.

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Model</th>
<th>Concrete</th>
<th>NVIL</th>
<th>MuProp</th>
<th>REBAR</th>
<th>RELAX</th>
</tr>
</thead>
<tbody>
<tr>
<td>MNIST</td>
<td>Nonlinear</td>
<td>-102.2</td>
<td>-101.5</td>
<td>-101.1</td>
<td>-81.01</td>
<td>-78.13</td>
</tr>
<tr>
<td></td>
<td>linear 1 layer</td>
<td>-111.3</td>
<td>-112.5</td>
<td>-111.7</td>
<td>-111.6</td>
<td>-111.20</td>
</tr>
<tr>
<td></td>
<td>linear 2 Layer</td>
<td>-99.62</td>
<td>-99.6</td>
<td>-99.07</td>
<td>-98.22</td>
<td>-98.00</td>
</tr>
<tr>
<td>Omniglot</td>
<td>Nonlinear</td>
<td>-110.4</td>
<td>-109.58</td>
<td>-108.72</td>
<td>-62.28</td>
<td>-58.55</td>
</tr>
<tr>
<td></td>
<td>linear 1 layer</td>
<td>-117.23</td>
<td>-117.44</td>
<td>-117.09</td>
<td>-116.63</td>
<td>-116.57</td>
</tr>
</tbody>
</table>

Table 1: Best obtained training objective.

To obtain training curves we created our own implementation of REBAR, which gave identical or slightly improved performance compared to the implementation of Tucker et al. (2017).

While we obtained a modest improvement in training and validation scores (tables 1 and 3), the most notable improvement provided by RELAX is in its rate of convergence. Training curves for the linear models can be seen in figure 3 and in appendix D. In table 4 we compare the number of training epochs that are required to match the best validation score of REBAR. In all experiments, RELAX provides an increase in rate of convergence.

6.3 Reinforcement Learning

We apply our gradient estimator to a few simple reinforcement learning environments with discrete and continuous actions. We use the RELAX and LAX estimators for discrete and continuous actions,
respectively. We compare with the advantage actor-critic algorithm (A2C) (Sutton et al., 2000) as a baseline. Full details of our experiments can be found in Appendix E.

6.3.1 Experiments

In the discrete action setting, we test our approach on the Cart Pole and Lunar Lander environments as provided by the OpenAI gym (Brockman et al., 2016). In the continuous action setting, we test on the MuJoCo-simulated (Todorov et al., 2012) environments Inverted Pendulum and Inverted Double Pendulum also found in the OpenAI gym. In all tested environments we observe improved performance and sample efficiency using our method. The results of our experiments can be seen in figure 4, and table 2.

We found that our estimator produced policy gradients with drastically reduced variance (see figure 4) allowing for larger learning rates to be used while maintaining stable training. In both discrete environments our estimator achieved greater than a 2-times speedup in convergence over the baseline.

<table>
<thead>
<tr>
<th>Model</th>
<th>Cart-pole</th>
<th>Lunar lander</th>
<th>Inverted pendulum</th>
<th>Inverted double pendulum</th>
</tr>
</thead>
<tbody>
<tr>
<td>A2C</td>
<td>1152 ± 90</td>
<td>162374 ± 17241</td>
<td>9916 ± 235</td>
<td>78260 ± 1877</td>
</tr>
<tr>
<td>LAX/RELAX</td>
<td>472 ± 114</td>
<td>68712 ± 20668</td>
<td>6237 ± 45</td>
<td>60967 ± 1669</td>
</tr>
</tbody>
</table>

Table 2: Mean episodes to solve each task. Definition of solving each task can be found in appendix E.

7 Conclusions and Future Work

In this work we synthesized and generalized many of the standard approaches for constructing gradient estimators. We proposed a simple and generic gradient estimator that can be applied to expectations of known or black-box functions of discrete or continuous random variables. We also derive a simple extension to apply our method to reinforcement learning in both discrete- and continuous-action domains. This approach is relatively simple to implement and adds little computational overhead.

The scope and generality of our estimator opens up many new possibilities for models which can now be trained via gradient decent. For example, we could apply our estimator to train a VAE with
continuous latent variables whose generative model is non-differentiable (a rendering engine perhaps). We also feel that there is much room to explore model design choices for the control variate and to better understand the properties of the optimal control variate.

We believe our results in reinforcement learning are promising and should motivate further research into using action-dependent control-variables for policy-gradient methods. We are interested in combining our approach with other popular variance reduction techniques such as generalized advantage estimation (Kimura et al., 2000). We are also interested in ways to train our control variate off-policy as in Q-prop (Gu et al., 2016). We also feel that the relationship between our learned control variate and the action-value function (commonly denoted as Q) is worth exploring and understanding in greater detail.

REFERENCES

APPENDICES

A THE RELAX ALGORITHM

We prove that \(\hat{g}_{\text{RELAX}} \) is unbiased. Following Tucker et al. (2017):

\[
E[\hat{g}_{\text{RELAX}}] = \mathbb{E}_p(b|\theta) \left[f(b) - \mathbb{E}_p(z|b, \theta)[c_\phi(z)] \right] \frac{\partial}{\partial \theta} \log p(b|\theta) - \frac{\partial}{\partial \theta} \mathbb{E}_p(z|b, \theta)[c_\phi(z)] + \frac{\partial}{\partial \theta} \mathbb{E}_p(z|\theta)[c_\phi(z)]
\]

(13)

\[
= \frac{\partial}{\partial \theta} \mathbb{E}_p(b|\theta) \left[f(b) - \mathbb{E}_p(z|b, \theta)[c_\phi(z)] \right] + \frac{\partial}{\partial \theta} \mathbb{E}_p(z|\theta)[c_\phi(z)]
\]

(14)

Algorithm 2 RELAX: Low-variance control variate optimization for black-box gradient estimation.

Require: \(f(\cdot), \log p(b|\theta) \), reparameterized samplers \(b = H(z) \), \(z = S(\epsilon, \theta) \) and \(\tilde{z} = S(\epsilon, \theta | b) \), neural network \(c_\phi(\cdot) \)

while not converged do

\(
\begin{aligned}
\epsilon_i, \xi_i &\sim p(\epsilon) \quad \triangleright \text{Sample noise} \\
 z_i &\leftarrow S(\epsilon_i, \theta) \quad \triangleright \text{Compute unconditional relaxed input} \\
b_i &\leftarrow H(z_i) \quad \triangleright \text{Compute input} \\
 \tilde{z}_i &\leftarrow S(\xi_i, \theta | b_i) \quad \triangleright \text{Compute conditional relaxed input} \\
g_\theta &\leftarrow \left[f(b_i) - c_\phi(\tilde{z}_i) \right] \nabla_\theta \log p + \nabla_\theta c_\phi(z_i) - \nabla_\theta c_\phi(\tilde{z}_i) \quad \triangleright \text{Estimate relaxed input} \\
 g_\phi &\leftarrow 2g_\theta \partial_g p \\
 \theta &\leftarrow \theta + \alpha_1 g_\theta \quad \triangleright \text{Update parameters} \\
 \phi &\leftarrow \phi + \alpha_2 g_\phi \\
end while
\)

return \(\theta \)

B CONDITIONAL RE-SAMPLING FOR DISCRETE RANDOM VARIABLES

When applying the RELAX estimator to a function of discrete random variables \(b \sim p(b|\theta) \), we require that there exists a distribution \(p(z|\theta) \) and a deterministic mapping \(H(z) \) such that if \(z \sim p(z|\theta) \) then \(H(z) = b \sim p(b|\theta) \). Treating both \(b \) and \(z \) as random, this procedure defines a probabilistic model \(p(b, z|\theta) = p(b|z)p(z|\theta) \). The RELAX estimator requires reparameterized samples from \(p(z|\theta) \) and \(p(b|z, \theta) \). We describe how to sample from these distributions in the common cases of \(p(b|\theta) \sim \text{Bernoulli}(\theta) \) and \(p(b|\theta) \sim \text{Categorical}(\theta) \).

Bernoulli When \(p(b|\theta) \) is Bernoulli distribution we let \(H(z) = 1(z > 0) \) and we sample from \(p(z|\theta) \) with

\[
z = \log \frac{\theta}{1 - \theta} + \log \frac{u}{1 - u}, \quad u \sim \text{uniform}[0, 1].
\]

We can sample from \(p(z|b, \theta) \) with

\[
\tilde{z} = \begin{cases}
 v \cdot \theta & b = 0 \\
 v(1 - \theta) + \theta & b = 1
\end{cases}
\]

where \(v \sim \text{uniform}[0, 1] \).

Categorical When \(p(b|\theta) \) is a Categorical distribution where \(\theta_i = p(b = i|\theta) \), we let \(H(z) = \text{argmax}(z) \) and we sample from \(p(z|\theta) \) with

\[
z = \log \theta - \log(-\log u), \quad u \sim \text{uniform}[0, 1]^k
\]

where \(k \) is the number of possible outcomes.
We can define v such that

$$v_i' = \begin{cases}
 v_i & i = b \\
 v_i \cdot (v_b) \frac{g_i}{g_b} & i \neq b
\end{cases}$$

and then $\tilde{v} = \log \theta - \log(-\log v')$ which is our sample from $p(z|b, \theta)$.

C Derivations of Estimators Used in Reinforcement Learning

We give the derivation of the LAX estimator used for continuous RL tasks.

Theorem C.1. The LAX estimator,

$$\hat{g}_{\text{LAX}}^{\text{RL}} = \sum_{t=1}^{\infty} \frac{\partial \log \pi(a_t|s_t, \theta)}{\partial \theta} \left[\sum_{t'=t}^{\infty} r_{t'} - c_\phi(a_t, s_t) \right] + \frac{\partial}{\partial \theta} c_\phi(a_t, s_t), \quad (15)$$

is unbiased.

Proof. Note that by using the score-function estimator, for all t, we have

$$\mathbb{E}_{p(\tau)} \left[\frac{\partial \log \pi(a_t|s_t, \theta)}{\partial \theta} c_\phi(a_t, s_t) \right] = \mathbb{E}_{p(a_{t-1}, s_{t-1}, \tau)} \left[\frac{\partial}{\partial \theta} \mathbb{E}_{\pi(a_t|s_t, \theta)} \left[c_\phi(a_t, s_t) \right] \right].$$

Then, by adding and subtracting the same term, we have

$$\frac{\partial}{\partial \theta} \mathbb{E}_{p(\tau)} [f(\tau)] = \mathbb{E}_{p(\tau)} \left[f(\tau) \cdot \frac{\partial \log p(\tau; \theta)}{\partial \theta} \right] - \sum_t \mathbb{E}_{p(\tau)} \left[\frac{\partial \log \pi(a_t|s_t, \theta)}{\partial \theta} c_\phi(a_t, s_t) \right] +$$

$$+ \sum_t \mathbb{E}_{p(a_{t-1}, s_{t-1}, \tau)} \left[\frac{\partial}{\partial \theta} \mathbb{E}_{\pi(a_t|s_t, \theta)} \left[c_\phi(a_t, s_t) \right] \right]$$

$$= \mathbb{E}_{p(\tau)} \left[\frac{\partial \log \pi(a_t|s_t, \theta)}{\partial \theta} \left(\sum_{t'=t}^{\infty} r_{t'} - c_\phi(a_t, s_t) \right) \right] + \sum_t \mathbb{E}_{p(a_{t-1}, s_{t-1}, \tau)} \left[\mathbb{E}_{p(\epsilon_t)} \left[\frac{\partial}{\partial \theta} c_\phi(a_t(\epsilon_t, s_t, \theta), s_t) \right] \right]$$

$$= \mathbb{E}_{p(\tau)} \left[\frac{\partial \log \pi(a_t|s_t, \theta)}{\partial \theta} \left(\sum_{t'=t}^{\infty} r_{t'} - c_\phi(a_t, s_t) \right) + \frac{\partial}{\partial \theta} c_\phi(a_t(\epsilon_t, s_t, \theta), s_t) \right]$$

In the discrete control setting, our policy parameterizes a soft-max distribution which we use to sample actions. We define $z_t \sim p(z_t|s_t)$, which is equal to $\sigma(\log \pi - \log(-\log u))$ where $u \sim \text{Unif}(0, 1]$, $a_t = \arg\max (z_t)$, σ is the soft-max function. We also define $\tilde{z}_t \sim p(z_t|a_t, s_t)$ and uses the same reparametrization trick for sampling \tilde{z}_t as explicated in Appendix B.

Theorem C.2. The RELAX estimator,

$$\hat{g}_{\text{RELAX}}^{\text{RL}} = \sum_{t=1}^{\infty} \frac{\partial \log \pi(a_t|s_t, \theta)}{\partial \theta} \left(\sum_{t'=t}^{\infty} r_{t'} - c_\phi(\tilde{z}_t, s_t) \right) - \frac{\partial}{\partial \theta} c_\phi(\tilde{z}_t, s_t), \quad (16)$$

is unbiased.

Proof. Note that by using the score-function estimator, for all t, we have

$$\mathbb{E}_{p(a_{t-1}, s_{t-1}, \tau)} \left[\frac{\partial \log \pi(a_t|s_t, \theta)}{\partial \theta} \mathbb{E}_{p(z_t|a_t, s_t)} [c_\phi(z_t, s_t)] \right] = \mathbb{E}_{p(a_{t-1}, s_{t-1}, \tau)} \left[\frac{\partial}{\partial \theta} \mathbb{E}_{\pi(a_t|s_t, \theta)} \left[\mathbb{E}_{p(z_t|a_t, \tau)} [c_\phi(z_t, s_t)] \right] \right]$$

$$= \mathbb{E}_{p(a_{t-1}, s_{t-1}, \tau)} \left[\frac{\partial}{\partial \theta} \mathbb{E}_{p(z_t|s_t)} [c_\phi(z_t, s_t)] \right]$$
Then, by adding and subtracting the same term, we have
\[
\frac{\partial}{\partial \theta} \mathbb{E}_{p(\tau)} [f(\tau)] = \mathbb{E}_{p(\tau)} \left[f(\tau) \cdot \frac{\partial}{\partial \theta} \log p(\tau; \theta) \right] - \sum_t \mathbb{E}_{p(a_{t-1:t}, s_{t})} \left[\frac{\partial}{\partial \theta} \mathbb{E}_{p(z_{t}|s_{t})} [c_{\phi}(z_{t}, s_{t})] \right] + \\
\sum_t \mathbb{E}_{p(a_{t-1:t}, s_{t})} \left[\frac{\partial}{\partial \theta} \mathbb{E}_{p(z_{t}|s_{t})} [c_{\phi}(z_{t}, s_{t})] \right]
\]

\[
= \mathbb{E}_{p(\tau)} \left[\sum_{t=1}^{\infty} \frac{\partial}{\partial \theta} \log p(a_{t}|s_{t}, \theta) \left(\sum_{t'=t}^{\infty} r_{t'} - \mathbb{E}_{p(z_{t}|a_{t}, s_{t})} [c_{\phi}(z_{t}, s_{t})] \right) \right]
\]

\[
+ \sum_t \mathbb{E}_{p(a_{t-1:t}, s_{t})} \left[\frac{\partial}{\partial \theta} \mathbb{E}_{p(z_{t}|s_{t})} [c_{\phi}(z_{t}, s_{t})] \right]
\]

\[
= \mathbb{E}_{p(\tau)} \left[\sum_{t=1}^{\infty} \frac{\partial}{\partial \theta} \log p(a_{t}|s_{t}, \theta) \left(\sum_{t'=t}^{\infty} r_{t'} - \mathbb{E}_{p(z_{t}|a_{t}, s_{t})} [c_{\phi}(z_{t}, s_{t})] \right) \right] - \\
\frac{\partial}{\partial \theta} \mathbb{E}_{p(z_{t}|a_{t}, s_{t})} [c_{\phi}(z_{t}, s_{t})] + \frac{\partial}{\partial \theta} \mathbb{E}_{p(z_{t}|s_{t})} [c_{\phi}(z_{t}, s_{t})]
\]

Since \(p(z_{t}|s_{t})\) is reparametrizable, we obtain the estimator in Eq.(16). □

D Further results on discrete variational autoencoders

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Model</th>
<th>REBAR</th>
<th>RELAX</th>
</tr>
</thead>
<tbody>
<tr>
<td>MNIST</td>
<td>1 layer</td>
<td>-114.32</td>
<td>-113.62</td>
</tr>
<tr>
<td></td>
<td>2 Layer</td>
<td>-101.20</td>
<td>-100.85</td>
</tr>
<tr>
<td>Omniglot</td>
<td>1 layer</td>
<td>-122.44</td>
<td>-122.11</td>
</tr>
<tr>
<td></td>
<td>2 Layer</td>
<td>-115.83</td>
<td>-115.42</td>
</tr>
</tbody>
</table>

Table 3: Best obtained validation objective.

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Model</th>
<th>REBAR</th>
<th>RELAX</th>
</tr>
</thead>
<tbody>
<tr>
<td>MNIST</td>
<td>1 layer</td>
<td>857</td>
<td>531</td>
</tr>
<tr>
<td></td>
<td>2 Layer</td>
<td>900</td>
<td>620</td>
</tr>
<tr>
<td>Omniglot</td>
<td>1 layer</td>
<td>2086</td>
<td>566</td>
</tr>
<tr>
<td></td>
<td>2 Layer</td>
<td>1027</td>
<td>673</td>
</tr>
</tbody>
</table>

Table 4: Epochs needed to achieve REBAR’s best validation score.
E EXPERIMENTAL DETAILS

E.1 DISCRETE VAE

In the one layer models we optimize the evidence lower bound (ELBO):

$$\log p(x) \geq \mathcal{L}(\theta) = \mathbb{E}_{q(b|x)}[\log p(x|b) + \log p(b) - \log q(b|x)]$$

where $q(b|x) = \sigma(x \cdot W_q + \beta_q)$ and $p(x|b_1) = \sigma(b_1 \cdot W_p + \beta_p)$ with weight matrices W_q, W_p and bias vectors β_q, β_p. The parameters of the prior $p(b)$ are also learned.

We run all models for 2,000,000 iterations with a batch size of 24. For the REBAR models, we tested learning rates in $\{.005, .001, .0005, .0001, .00005\}$.

RELAX adds more hyperparameters. These are the depth of the neural network component of our control variate r_p, the weight decay placed on the network, and the scaling on the learning rate for the control variate. We tested neural network models with l layers of 200 units using the ReLU nonlinearity with $l \in \{2, 4\}$. We trained the control variate with weight decay in $\{.001, .0001\}$. We trained the control variate with learning rate scaling in $\{1, 10\}$.

To limit the size of hyperparameter search for the RELAX models, we only test the best performing learning rate for the REBAR baseline and the next largest learning rate in our search set. In many cases, we found that RELAX allowed our model to converge at learning rates which made the REBAR estimators diverge. We believe further improvement could be achieved by tuning this parameter.

All presented results are from the models which achieve the highest ELBO on the validation data.

E.1.1 TWO LAYER MODEL

In the two layer models we optimize the ELBO

$$\mathcal{L}(\theta) = \mathbb{E}_{q(b_2|b_1)q(b_1|x)}[\log p(x|b_1) + \log p(b_1|b_2) + \log p(b_2) - \log q(b_1|x) - \log q(b_2|b_1)]$$

where $q(b_1|x) = \sigma(x \cdot W_{q_1} + \beta_{q_1})$, $q(b_2|b_1) = \sigma(b_1 \cdot W_{q_2} + \beta_{q_2})$, $p(x|b_1) = \sigma(b_1 \cdot W_{p_1} + \beta_{p_1})$, and $p(b_1|b_2) = \sigma(b_2 \cdot W_{p_2} + \beta_{p_2})$ with weight matrices $W_{q_1}, W_{q_2}, W_{p_1}, W_{p_2}$ and biases $\beta_{q_1}, \beta_{q_2}, \beta_{p_1}, \beta_{p_2}$. As in the one layer model, the prior $p(b_2)$ is also learned.

We run an identical hyperparameter search in the 2 layer model as we do in the 1 layer model.

E.2 DISCRETE RL

In both the baseline A2C and RELAX models, the policy and control variate (value function in the baseline model) were 2 layer neural networks with 10 units per layer. The ReLU non-linearity was used on all layers except for the output layer.

For these tasks we estimate the policy gradient with a single Monte Carlo sample. We run one episode of the environment to completion, compute the discounted rewards, and run one iteration of gradient decent. We believe using larger batches will improve performance but would less clearly demonstrate the potential of our method.

As our control variate does not have the same interpretation as the value function of A2C, it was not directly clear how to add reward bootstrapping and other variance reduction techniques common in RL into our model. We leave the task of incorporating these and other variance reduction techniques to future work.

Both models were trained with the RMSProp \cite{Tieleman2012} optimizer and a reward discount factor of .99 was used.

Both models have 2 hyperparameters to tune: the global learning rate and the scaling factor on the learning rate for the control variate (or value function). We complete a grid search for both parameters in $\{0.01, 0.003, 0.001\}$ and present the model which “solves” the task in the fewest number of episodes averaged over 5 random seeds. “Solving” the tasks was defined by the creators of the OpenAI gym \cite{Brockman2016}. The Cart Pole task is considered solved if the agent receives an average reward greater than 195 over 100 consecutive episodes. The Lunar Lander task

Under review as a conference paper at ICLR 2018
is considered solved if the agent receives an average reward greater than 200 over 100 consecutive episodes.

The Cart Pole experiments were run for 250,000 frames. The Lunar Lander experiments were run for 5,000,000 frames.

E.3 Continuous RL

The continuous tasks uses both the value function and the control variate to enable bootstrapping, which is needed due to the increased complexity of the problem. The three models—policy, value, and control variate—are 2 layer neural networks with 64 hidden units per layer. The value and control variate networks are identical, with the ELU (Djork-Arné Clevert & Hochreiter, 2016) nonlinearity in each hidden layer. The policy network has tanh nonlinearity. The policy network, which parameterizes the Gaussian policy comprises of a network (with the architecture mentioned above) that outputs the mean, and a separate, trainable log standard deviation value that is not input dependent. All three networks have a linear output layer. We selected the batch size to be 2500, meaning for a fixed timestep (2500) we collect multiple rollouts of a task and update the networks’ parameters with the batch of episodes. Per one policy update, we optimize both the value and control variate network multiple times. The number of times we train the value network is fixed to 25, while for the control variate, it was chosen to be a hyperparameter. All models were trained using ADAM (Kingma & Ba, 2015), with $\beta_1 = 0.9$, $\beta_2 = 0.999$, and $\epsilon = 1e^{-08}$.

The baseline A2C case has 2 hyperparameters to tune: the learning rate for the optimizer for the policy and value network. A grid search was done over the set: {0.03, 0.003, 0.003}. RELAX has 4 hyperparameters to tune: 3 learning rates for the optimizer per network, and the number of training iterations of the control variate per policy gradient update. Due to the large number of hyperparameters, we restricted the size of the grid search set to {0.003, 0.0003} for the learning rates, and {10, 25, 50} for the control variate training iteration number. We chose the hyperparameter setting that yielded the shortest episode-to-completion time averaged over 5 random seeds. As with the discrete case, we used the definition of completion defined by OpenAI gym (Brockman et al., 2016) for each task.

The Inverted Pendulum experiments were run for 1,000,000 frames. The Inverted Double Pendulum experiments were run for 50,000,000 frames.