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ABSTRACT

Developing deep neural networks (DNNs) for manifold-valued data sets has gained
much interest of late in the deep learning research community. Examples of
manifold-valued data include data from omnidirectional cameras on automobiles,
drones etc., diffusion magnetic resonance imaging, elastography and others. In
this paper, we present a novel theoretical framework for DNNs to cope with
manifold-valued data inputs. In doing this generalization, we draw parallels to the
widely popular convolutional neural networks (CNNs). We call our network the
ManifoldNet.
As in vector spaces where convolutions are equivalent to computing the weighted
mean of functions, an analogous definition for manifold-valued data can be con-
structed involving the computation of the weighted Fréchet Mean (wFM). To this
end, we present a provably convergent recursive computation of the wFM of the
given data, where the weights makeup the convolution mask, to be learned. Fur-
ther, we prove that the proposed wFM layer achieves a contraction mapping and
hence the ManifoldNet does not need the additional non-linear ReLU unit used
in standard CNNs. Operations such as pooling in traditional CNN are no longer
necessary in this setting since wFM is already a pooling type operation. Analogous
to the equivariance of convolution in Euclidean space to translations, we prove
that the wFM is equivariant to the action of the group of isometries admitted by
the Riemannian manifold on which the data reside. This equivariance property
facilitates weight sharing within the network. We present experiments, using the
ManifoldNet framework, to achieve video classification and image reconstruc-
tion using an auto-encoder+decoder setting. Experimental results demonstrate the
efficacy of ManifoldNet in the context of classification and reconstruction accuracy.

1 INTRODUCTION

Convolutional neural networks (CNNs) have attracted enormous attention in the past decade due to
their significant success in Computer Vision, Speech Analysis and other fields. CNNs were pioneered
by LeCun et al. (1998) and gained much popularity ever since their significant success on Imagenet
data reported in Krizhevsky et al. (2012). CNNs have traditionally been restricted to dealing with data
residing in vector spaces. However, in the past few years, there is growing interest in generalizing
the CNNs and deep networks in general to data that reside on smooth non-Euclidean spaces. In this
context, at the outset, it would be useful to categorize problems into 1) those that involve data as
samples of real-valued functions defined on a manifold and 2) those that are simply manifold-valued
and hence are sample points on a manifold.

In the context of input data being samples of functions defined on smooth manifolds, recently there
has been a flurry of activity in developing methods that can cope specifically with samples of functions
on a sphere that are encountered in many applications such as, omnidirectional cameras on drones,
robots etc., meteorological data and many others. The key property that allows learned weight sharing
in CNNs is the equivariance to translations. The simplest technique to achieve equivariance is via
data augmentation (Krizhevsky et al., 2012; Dieleman et al., 2015). Cascade of wavelet transforms to
achieve equivariance was shown in Bruna & Mallat (2013); Oyallon & Mallat (2015). In Gens (2014),
authors describe ‘Symnet’, which achieves invariance to symmetry group actions. Equivariance
to discrete group actions was achieved through parameter sharing in Ravanbakhsh et al. (2017).
For the case of data on a spherical domain, one considers exploiting equivariance to the rotation
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group. Several research groups recently reported spherical-CNNs (SCNNs) to accommodate such
an equivariance in defining the convolution of functions (Worrall et al., 2017; Cohen & Welling,
2016; Cohen et al., 2018). In another recent work Esteves et al. (2017), authors describe a polar
transformer network, which is equivariant to rotations and scaling transformations. By combining this
with a spatial transformer (Jaderberg et al., 2015), they achieve equivariance to translations as well.
More generally, equivariance of convolution operations to group actions admitted by the underlying
manifold is what is needed to this end and most recent work reported in Chakraborty et al. (2018);
Kondor & Trivedi (2018) achieves this for Riemannian homogeneous spaces.

In this paper we will consider the second problem, namely, when the input data are sample points
on known Riemannian manifolds for example, the manifold of symmetric positive definite matrices,
SPD(n), the special orthogonal group, SO(n), the n-sphere, Sn, the Grassmannian, Gr(p, n), and
others. To be precise, the domain of interest is an n-dimensional field of points sampled from a
Riemannian manifold. There is very little prior work that we are aware of on DNNs that can cope
with input data samples residing on these manifolds with the exception of Huang et al. (2016);
Huang & Van Gool (2017). In Huang et al. (2016), authors presented a deep network architecture
for classification of hand-crafted features residing on a Grassmann manifold that form the input to
the network. In Huang & Van Gool (2017), authors presented a deep network architecture for data
on SPD(n). In both of these works, the architecture does not involve the use of any convolution or
equivalent operations on Gr(p, n) or SPD(n). Further, it does not use the natural invariant metric
or intrinsic operations on the Grassmannian or the SPD(n) in the network blocks. Using intrinsic
operations within the layers guarantees that the result remains on the manifold and hence does not
require any projection (extrinsic) operations to ensure the result lies in the same space. Further, using
extrinsic operations can yield results that are susceptible to significant inaccuracies when the data
variance is large (Salehian et al., 2015). Moreover, since there are no convolution type operations
defined for data on these manifolds in their network, it can not be considered a generalization to the
CNN and as a consequence does not consider equivariance property to the action of the group of
isometries denoted by I (M), admitted by the manifoldM.

There are several deep networks reported in literature to deal with cases when data reside on 2-
manifolds encountered in Computer Vision and Graphics for modeling shapes of objects. Some of
these are based on graph-based representations of points on the surfaces in 3D and a generalization of
CNNs to graphs (Henaff et al., 2015; Defferrard et al., 2016). There is also recent work in Masci
et al. (2015) where the authors presented a deep network called geodesic CNN (GCNN), where
convolutions are performed in local geodesic polar charts constructed on the manifold. For more
literature on deep networks for data on 2-manifolds, we refer the interested reader to a recent survey
paper Bronstein et al. (2017) and references therein.

In this paper, we present a novel DNN framework called the ManifoldNet. This is a potential analog
of a CNN and can cope with input data sampled from a Riemannian manifold. The intuition in
defining the analog relies on the equivariance property. Note that convolution of functions in vector
spaces are equivariant to translations in the spatial domain and in the pixel domain. I.e. if the input
pixels are all translated by a fixed amount, then the output pixels are equally translated. Further, it
is easy to show that traditional convolutions are equivalent to computing the weighted mean (Goh
et al., 2011). Hence, for the case of manifold-valued data, we can define the analogous operation of
a weighted Fréchet mean (wFM) and prove that it is equivariant to the action of I (M). This will
be achieved in a subsequent section. Our key contributions in this work are: [presented in section
2](i) we define the analog of convolution operations for manifold-valued data to be one of estimating
the wFM for which we present a provably convergent, efficient and recursive estimator. (ii) A proof
of equivariance of wFM to the action of I (M). This equivariance allows the network to share
weights within the layers. (iii) A novel deep architecture involving the Riemannian counterparts to the
conventional CNN units. [presented in section 3] (iv) Several real data experiments on classification
and reconstruction demonstrating the performance of the ManifoldNet.

2 GROUP ACTION EQUIVARIANT NETWORK FOR MANIFOLD-VALUED DATA

In this section, we will define the equivalent of a convolution operation on Riemannian manifolds.
As mentioned in the introduction, the domain of interest is an n-dimensional field of manifold valued
points. Before formally defining such an operation and building the DNN for the manifold-valued
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data, dubbed a ManifoldNet, we first present some relevant concepts from differential geometry that
will be used in the rest of the paper.

Preliminaries. Let (M, gM) be a orientable complete Riemannian manifold with a Riemannian
metric gM, i.e., (∀x ∈ M) gMx : TxM× TxM → R is a bi-linear symmetric positive definite
map, where TxM is the tangent space ofM at x ∈ M. Let d :M×M → [0,∞) be the metric
(distance) induced by the Riemannian metric gM. With a slight abuse of notation we will denote a
Riemannian manifold (M, gM) byM unless specified otherwise. Let ∆ be the supremum of the
sectional curvatures ofM.
Definition 1. Let p ∈ M, r > 0. Define Br(p) = {q ∈M|d(p, q) < r} to be a open ball at p of
radius r.
Definition 2. (Groisser, 2004) The local injectivity radius at p ∈M, rinj(p), is defined as rinj(p) =
sup

{
r|Expp : (Br(0) ⊂ TpM)→M is defined and is a diffeomorphism onto its image}. The in-

jectivity radius Manton (2004) ofM is defined as rinj(M) = infp∈M {rinj(p)}.

Within Br(p), where r ≤ rinj(M), the mapping Exp−1p : Br(p)→ U ⊂ TpM, is called the inverse
Exponential/ Log map.
Definition 3. (Kendall, 1990) An open ball Br(p) is a regular geodesic ball if r < rinj(p) and
r < π/

(
2∆1/2

)
.

In Definition 3 and below, we interpret 1/∆1/2 as∞ if ∆ ≤ 0. It is well known that, if p and q are
two points in a regular geodesic ball Br(p), then they are joined by a unique geodesic within Br(p)
(Kendall, 1990).
Definition 4. (Chavel, 2006) U ⊂ M is strongly convex if for all p, q ∈ U , there exists a unique
length minimizing geodesic segment between p and q and the geodesic segment lies entirely in U .
Definition 5. (Groisser, 2004) Let p ∈ M. The local convexity radius at p, rcvx(p), is defined
as rcvx(p) = sup {r ≤ rinj(p)|Br(p) is strongly convex}. The convexity radius ofM is defined as
rcvx(M) = infp∈M {rcvx(p)}.

For the rest of the paper, we will assume that the samples onM lie inside an open ball U = Br(p)
where r = min {rcvx(M), rinj(M)}, for some p ∈ M, unless mentioned otherwise. Now, we are
ready to define the operations necessary to develop the ManifoldNet.

2.1 WFM ONM AS A GENERALIZATION OF CONVOLUTION

We will now define a convolution type operation on points sampled from M. This convolution
operation will perform an averaging operation over a moving window, but will replace weighted sums
with weighted intrinsic averages. Let {Xi}Ni=1 be the manifold-valued samples onM. We define
the convolution type operation onM as the weighted Fréchet mean (wFM) (Maurice Fréchet, 1948)
of the samples {Xi}Ni=1. Also, by the aforementioned condition on the samples, the existence and
uniqueness of FM is guaranteed (Afsari, 2011). As mentioned earlier, it is easy to show (see Goh et al.
(2011)). that convolution ψ∗ = b ? a of two functions a : X ⊂ Rn → R and b : X ⊂ Rn → R

can be formulated as computation of the weighted mean ψ∗ = argminψ
∫
a(u)(ψ − b̃u)2du, where,

∀x ∈ X, b̃u(x) = b (u + x) and
∫
a(x)dx = 1. Here, f2 for any function f is defined pointwise.

Further, the defining property of convolutions in vector spaces is the linear translation equivariance.
Since weighted mean in vector spaces can be generalized to wFM on manifolds and further, wFM
can be shown (see below) to be equivariant to group actions admitted by the manifold, we claim that
wFM is a generalization of convolution operations to manifold-valued data.

Let {wi}Ni=1 be the weights such that they satisfy the convexity constraint, i.e., ∀i, wi > 0 and∑
i wi = 1, then wFM, wFM ({Xi} , {wi}) is defined as:

wFM ({Xi} , {wi}) = argmin
M∈M

N∑
i=1

wid
2 (Xi,M) (1)

Analogous to the equivariance property of convolution translations in vector spaces, we will now
proceed to show that the wFM is equivariant under the action of the group of isometries ofM. We
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will first formally define the group of isometries ofM (let us denote it by G) and then define the
equivariance property and show that wFM is G-equivariant.

Definition 6 (Group of isometries ofM (I (M))). A diffeomorphism φ :M→M is an isometry
if it preserves distance, i.e., d (φ (x) , φ (y)) = d (x, y). The set I(M) of all isometries ofM forms
a group with respect to function composition. Rather than write an isometry as a function φ, we will
write it as a group action. Henceforth, let G denote the group I(M), and for g ∈ G, and x ∈M, let
g.x denote the result of applying the isometry g to point x.

ClearlyM is a G set (see Dummit & Foote (2004) for the definition of a G set). We will now define
equivariance and show that wFM, is G-equivariant.

Definition 7 (Equivariance). LetX and Y beG sets. Then, F : X → Y is said to beG-equivariant
if ∀g ∈ G, ∀x ∈ X , F (g.x) = g.F (x).

Let U ⊂ M be an open ball inside which FM exists and is unique, let P be the set consists of all
possible finite subsets of U .

Theorem 1. Given {wi} satisfying the convex constraint, let F : P → U be a function defined by
{Xi} 7→ wFM ({Xi} , {wi}). Then, F is G-equivariant.

Proof. Let g ∈ G and {Xi}Ni=1 ∈ P , now, let M∗ = wFM ({Xi} , {wi}), as g.F ({Xi}) =
g.M∗, it suffices to show g.M∗ is wFM ({g.Xi} , {wi}) (assuming the existence and uniqueness of
wFM ({g.Xi} , {wi}) which is stated in the following claim).
Claim: Let U = Br (p) for some r > 0 and p ∈ M. Then, {g.Xi} ⊂ Br (g.p) and hence
wFM ({g.Xi} , {wi}) exists and is unique.

Let M̃ be wFM ({g.Xi} , {wi}). Then,
∑N
i=1 wid

2
(
g.Xi, M̃

)
=
∑N
i=1 wid

2
(
Xi, g

−1.M̃
)

.

Since, M∗ = wFM ({Xi} , {wi}), hence, M∗ = g−1.M̃ , i.e., M̃ = g.M∗. Thus, g.M∗ =
wFM ({g.Xi} , {wi}), which implies F is G-equivariant. �

Now we give some examples ofM with the corresponding group of isometries G. LetM = SPD(n)
(the space of n×n symmetric positive-definite matrices). Let d be the Stein metric on SPD(n). Then,
the group of isometries G is O(n) (the space of n× n orthogonal matrices). A class of Riemannian
manifolds on which G acts transitively are called Riemannian homogeneous spaces. We can see that
on a Riemannian homogeneous spaceM, wFM is G-equivariant. Equipped with a G-equivariant
operator onM, we can claim that the wFM (defined above) is a valid convolution operator since
group equivariance is a unique defining property of a convolution operator. The rest of this subsection
will be devoted to developing an efficient way to compute wFM. Let ωM > 0 be the Riemannian
volume form. Let pX be the probability density of a U -valued random variable X with respect to
ωM on U ⊂ M, so that Pr (X ∈ A) =

∫
A
pX(Y )ωM (Y ) for any Borel-measurable subset A of

U. Let Y ∈ U , we can define the expectation of the real valued random variable d2(, Y ) : U → R
by E

[
d2(, Y )

]
=
∫
U
d2(X,Y )pX(X)ωM(X). Now, let w : U → (0,∞) be an integrable function

and
∫
U
w (X)ωM (X) = 1.

Then, observe that, Ew
[
d2(, Y )

]
:=
∫
U
w(X)d2(X,Y )pX(X)ωM(X) = C

∫
U
d2(X,Y )p̃X(X)

ωM(X) = C Ẽ
[
d2(, Y )

]
. Here, p̃X is the probability density corresponding to the probability

measure P̃r defined by, P̃r (X ∈ X) =
∫
X
p̃X(Y )ωM(Y ) :=

∫
X

1
C pX(Y )w(Y )ωM(Y ), where, X

lies in the Borel σ-algebra over U and C =
∫
U
pX(Y )w(Y )ωM(Y ). Note that the constant C > 0,

since pX is a probability density, w > 0 andM is orientable. Thus, Ew
[
d2(, Y )

]
with respect to pX

is proportional to Ẽ
[
d2(, Y )

]
with respect to p̃X .

Now, we will state the following proposition (the proof is in the appendix section).

Proposition 2. (i) supp (pX) = supp (p̃X). (ii) wFE (X, w) = FE
(

X̃
)

.

Let {Xi}Ni=1 be samples drawn from pX and
{
X̃i

}N
i=1

be samples drawn from p̃X . In order to

compute wFM, we will now present an online algorithm (inductive FM Estimator – dubbed iFME).
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Given, {Xi}Ni=1 ⊂ U and {wi := w (Xi)}Ni=1 such that ∀i, wi > 0, the nth estimate, Mn of
wFM ({Xi} , {wi}) is given by the following recursion:

M1 = X1 Mn = ΓXn

Mn−1

(
wn∑n
j=1 wj

)
. (2)

In the above equation, ΓYX : [0, 1]→ U is the shortest geodesic curve from X to Y . Observe that, in
general wFM is defined with

∑N
i=1 wi = 1, but in above definition,

∑N
i=1 wi 6= 1. We can normalize

{wi} to get {w̃i} by w̃i = wi/ (
∑
i wi), but then Eq. 2 will not change as w̃n/

(∑n
j=1 w̃j

)
=

wn/
(∑n

j=1 wj

)
. This gives us an efficient inductive/recursive way to define convolution operation

onM. Now, we state that the proposed wFM estimator is consistent (the proof is in the appendix).

Proposition 3. Using the above notations and assumptions, let {Xi}Ni=1 be i.i.d. samples drawn
from pX onM. Let the wFE be finite. Then, MN converges a.s. to wFE as N →∞.

2.2 NONLINEAR OPERATION BETWEEN WFM-LAYERS FORM-VALUED DATA

In the traditional CNN model, we need a nonlinear function between two convolutional layers similar
to ReLU and softmax. As argued in Mallat (2016), any nonlinear function used in CNN is basically a
contraction mapping. Formally, let F be a nonlinear mapping from U to V . Let assume, U and V are
metric spaces equipped with metric dU and dV respectively. Then, F is a contraction mapping iff
∃c < 1 such that, dV (F (x), F (y)) ≤ c dU (x, y). F is a non-expansive mapping (Mallat, 2016) iff
dV (F (x), F (y)) ≤ dU (x, y).
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Figure 1: Schematic diagram of ManifoldNet

One can easily see that the popular choices for
nonlinear operations like ReLU, sigmoid are in
fact non-expansive mappings. Now, we will
show that the function wFM as defined in 1, is
a contraction mapping for non-trivial choices
of weights. Let {Xi}Ni=1 and {Yj}Mj=1 be the
two set of samples onM. Without any loss of
generality, assume N ≤M . We consider the set
UM = U × · · · × U︸ ︷︷ ︸

M times

. Clearly {Yj}Mj=1 ∈ U
M

and we embed {Xi}Ni=1 in UM as follows: we

construct
{
X̃i

}M
i=1

from {Xi}Ni=1 by defining X̃i = X(i−1)modN+1. Let us denote the embedding

by ι. Now, define the distance on UM as d
({

X̃i

}M
i=1

, {Yj}Mj=1

)
= maxi,j d (Xi, Yj). The choice

of weights for wFM is said to be trivial if one of the weights is 1 and hence the rest are 0.

Proposition 4. For all nontrivial choices of {αi}Ni=1 and {βj}Mj=1 satisfying the convexity constraint
, ∃c < 1 such that,

d
(

wFM
(
{Xi}Ni=1 , {αi}

N
i=1

)
,wFM

(
{Yj}Mi=1 , {βj}

M
i=1

))
≤ c d

(
ι
(
{Xi}Ni=1

)
, {Yj}Mj=1

)
(3)

2.3 THE INVARIANT (LAST) LAYER

We will form a deep network by cascading multiple wFM blocks each of which acts as a convolution-
type layer. Each convolutional-type layer is equivariant to the group action, and hence at the end
of the cascaded convolutional layers, the output is equivariant to the group action applied to the
input of the network. Let d be the number of output channels each of which outputs a wFM, hence
each of the channels is equivariant to the group action. However, in order to build a network
that yields an output which is invariant to the group action, we now seek the last layer (i.e., the
analogue to a linear classifier) to be invariant to the group action. The last layer is thus constructed
as follows: Let {Z1, · · · , Zd} ⊂ M be the output of d channels and Mu = FM

(
{Zi}di=1

)
=
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wFM
(
{Zi}di=1 , {1/d}

d
1

)
be the unweighted FM of the outputs {Zi}di=1. Then, we construct a layer

with d outputs whose ith output oi = d (Mu, Zi). Let c be the number of classes for the classification
task, then, a fully connected (FC) layer with inputs {oi} and c output nodes is build. A softmax
operation is then used at the c output nodes to obtain the outputs {yi}ci=1. In the following proposition
we claim that this last layer with {Zi}di=1 inputs and {yi}ci=1 outputs is group invariant.

Proposition 5. The last layer with {Zi}di=1 inputs and {yi}ci=1 outputs is group invariant.

In Fig. 1 we present a schematic of ManifoldNet depicting the different layers of processing the
manifold-valued data as described above in Sections 2.1-2.3.

3 EXPERIMENTS

In this section we present performance of the ManifoldNet framework on several standard computer
vision problems. The breadth of application coverage here includes classification and reconstruction
problems. We begin with a video classification problem and then present a reconstruction problem
using an auto-encoder-decoder set up.

3.1 VIDEO CLASSIFICATION

We start by using the method in Yu & Salzmann (2017) which we summarize here. Given a video
with dimensions F × 3×H ×W of F frames, 3 color channels and a frame size of H ×W , we can
apply a convolution layer to obtain an output of size F × C ×H ′ ×W ′ consisting of C channels
of size H ′ ×W ′. We compute the covariance matrix of the channels to obtain a sequence of F
symmetric positive (semi) definite matrices of size C × C.

Covariance 
Matrices 

C × C C × C C × C C × C

...

[ , ,… , ] ∈y1 y2 yn R
n

 
 

= d( ,FM({ }))yi xi xi

wFM({ }, { })xi wi

.

.

Text

C × C C × C C × C

C × C C × C

Figure 2: SPD-TCN Network Architec-
ture

From here we can apply a series of temporal ManifoldNet
wFMs to transform the F × C × C input to a temporally
shorter F ′ × K × C × C output, where K is the num-
ber of wFM channels. Within the temporal ManifoldNet
wFMs we use a simple weight normalization to ensure
that the weights are within [0, 1], and for the weights wi
of any output channel we add a weight penalty of the form
(
∑
wi − 1)2 to the loss function to ensure that we obtain

a proper wFM. We then reshape this to F ′K × C × C
and pass it through an invariant final layer (section 2.3) to
obtain a vector of size F ′K. Finally, a single FC+SoftMax
layer is applied to produce a classified output. We call
this the SPD temporal convolutional architecture network
(SPD-TCN). Figure 2 illustrates the network architecture
described above. In general, the SPD-TCN tends to per-
form very well on video classification tasks while using very few parameters, and runs efficiently due
to the wFM structure.

time (s) orientation (◦)Mode # params. / epoch 30-60 10-15 10-15-20

SPD-TCN 738 ∼ 2.7 1.00± 0.00 0.99± 0.01 0.97± 0.02
SPD-SRU 1559 ∼ 6.2 1.00± 0.00 0.96± 0.02 0.94± 0.02
TT-GRU 2240 ∼ 2.0 1.00± 0.00 0.52± 0.04 0.47± 0.03

TT-LSTM 2304 ∼ 2.0 1.00± 0.00 0.51± 0.04 0.37± 0.02
SRU 159862 ∼ 3.5 1.00± 0.00 0.75± 0.19 0.73± 0.14

SPDNet 110000 ∼ 30.2 1.00± 0.03 0.49± 0.02 0.39± 0.01
LSTM 252342 ∼ 4.5 0.97± 0.01 0.71± 0.07 0.57± 0.13

Table 1: Comparison results on Moving MNIST

We tested the SPD-TCN on the
Moving MNIST dataset (Srivas-
tava et al., 2015). Recently, in
Chakraborty et al. (2018) au-
thors developed a manifold val-
ued recurrent network architec-
ture, dubbed SPD-SRU, which
produced state-of-the-art clas-
sification results on Moving
MNIST dataset in comparison to LSTM (Hochreiter & Schmidhuber, 1997), SRU (Oliva et al.,
2017), TT-LSTM and TT-GRU (Yang et al., 2017) networks. For the LSTM and SRU networks,
convolution layers are also used before the recurrent unit. We will compare directly with the results
presented in Chakraborty et al. (2018). For details of the various architectures used please see section
5 of Chakraborty et al. (2018). We will also compare with Huang & Van Gool (2017) , which proposes
a set of layers for learning SPD matrices, dubbed SPDNet. When using SPDNet we first downsample
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the videos to 20× 20 frames and compute the covariance matrix of the frames, which is then fed to
an architecture similar to that of the emotion recognition experiment of Huang & Van Gool (2017)
Specifically, we use three blocks of BiMap/ReEig layers, since such a configuration gave the best
validation performance. The transformation sizes for these blocks are set to 400× 200, 200× 100
and 100× 50 respectively. The Moving MNIST data generated in Srivastava et al. (2015) consists of
1000 samples, each of 20 frames. Each sample shows two randomly chosen MNIST digits moving
within a 64× 64 frame, with the direction and speed of movement fixed across all samples in a class.

The speed is kept the same across different classes, but the digit orientation will differ across two
different classes. We summarize the 10-fold cross validation results for several orientation differences
between classes in Table 1. For this experiment the SPD-TCN will consist of a single wFM layer
with kernel size 5 and stride 3 returning 8 channels, making for an 8 × 8 covariance matrix. We
then apply three temporal SPD wFM layers of kernel size 3 and stride 2, with the following channels
1 → 4 → 8 → 16, i.e. after these three temporal SPD wFMs we have 16 temporal channels. This
16× 8× 8 is used as an input to the invariant final layer to get a 16 dimensional output vector, which
is transformed by a FC+SoftMax layer to obtain the output.

3.2 DIMENSIONALITY REDUCTION
Gr(k;n)

wFM

wFM

Recon.

using
principal
subspaces,

ffig

of ffig

n
efi
o

denoted by
{efi

}

DecoderEncoder

Weighted FM

Figure 3: Pictorial description of autoencoder+iFME

Here we present experiments demonstrating
the applicability of the theory layed out in
Section 2 to the case of linear dimensional-
ity reduction, specifically principal compo-
nent analysis (PCA), which is the workhorse
of many machine learning algorithms. In
Chakraborty et al. (2017), authors presented
an online subspace averaging algorithm for
construction of principal components via in-
trinsic averaging on the Grassmannian. In this section, we achieve the intrinsic Grassmann averaging
process in the framework of ManifoldNet to compute the principal subspaces and achieve the dimen-
sionality reduction. In the context of DNNs, dimensionality reduction is commonly achieved via an
autoencoder architecture. More recently, DNNs have shown promising results when the data manifold
is intrinsically non-linear, as in the case of natural images. In the deep learning community this has
become a field in its own right, known as representation learning or feature learning (Bengio et al.,
2013) with works including Vincent et al. (2010), Kingma & Welling (2013) Oord et al. (2016), Van
Den Oord et al. (2016)), Kingma & Dhariwal (2018). Many of these architectures are modifications
of the traditional autoencoder network, which involves learning an identity map through a small latent
space. In our application, we modify the traditional autoencoder model by adding a ManifoldNet
layer to perform a learned linear dimensionality reduction in the latent space, although in principal,
our techniques can be applied to most autoencoder based models such as the variational autoencoders.
To compute a linear subspace in the ManifoldNet framework we use an intrinsic averaging scheme
on the Grassmannian. A point on the Grassmannian Gr(k, n) corresponds to k-dimensional subspace
of Rn and thus can be specified by an orthonormal basis X . Chakraborty et al. (2017) proposed
an efficient intrinsic averaging scheme on Gr(k, n) that converges to the k-dimensional principal
subspace of a normally distributed dataset in Rn. In the ManifoldNet framework we can modify
this technique to learn a wFM of points on the Grassmannian that corresponds to a subspace of the
latent space which minimizes the reconstruction error by using a Grassmannian averaging layer that
learns the weights in the wFM. This essentially will give us a lower dimensional representation of
the samples after projecting them on to the learned subspace. Note that combining the convergence
proof in Chakraborty et al. (2017) and Proposition 2 (ii), we claim that the wFM learned using the
ManifoldNet asymptotically converges to the principal subspace. Now, we give a detailed description
of our experimental setup to show the applicability of ManifoldNet to dimensionality reduction.

3.2.1 VIDEO RECONSTRUCTION EXPERIMENT

A traditional convolutional autoencoder performs non-linear dimensionality reduction by learning an
identity function through a small latent space. A common technique used when the desired latent
space is smaller than the output of the encoder is to apply a fully connected layer to match dimensions.
We replace this fully connected layer by a weighted subspace averaging and projection block, called
the Grassmann averaging layer. Specifically, we compute the wFM of the output of the encoder to
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get a subspace in the encoder output space. We then project the encoder output onto this space to
obtain a reduced dimensionality latent space. In general this offers a significant parameter reduction
while also increasing the reconstruction error performance of the autoencoder and giving realistic
reconstructions. We call an autoencoder with the Grassmann averaging block

                 a)                                b)                                      c)

Figure 4: Reconstruction of select movie frames (a) orig-
inal frame (b) using PCA (c) using iFME+autoencoder

an autoencoder+iFME network, as shown
in Fig. 3. In the experiments we com-
pare this to other dimensionality reduc-
tion techniques, including regular autoen-
coders that use fully connected layers to
match encoder and latent space dimen-
sions. We begin by testing on a 1000
frame color sample of video from the 1964
film “Santa Clause Conquers the Martians”
of frame size 320 × 240. Here we use
an 8 layer encoding-decoding architecture
with Conv → ELU → Batchnorm lay-
ers, with the final layer applying a sigmoid
activation to normalize pixel values. The
encoder returns a feature video consisting
of 128 channels of size 120 for a dimen-
sion of 1000 × 15360. We compare a fully connected layer to a Grassmann averaging layer, both
mapping to a desired latent space of dimension 1000× 20. The per pixel average reconstruction error
for the Grassmann block network is 0.0110, compared to 0.0122 for the fully connected network,
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Figure 5: Computation time vs. error toler-
ance plot comparison between autoencoder and
iFME+autoencoder

representing an improvement of 10.9%.
We also observe a parameter reduction of
46%, which can be attributed to the number
of parameters in the large fully connected
layer. In Fig. 5, the computation time is
plotted against error tolerance for the au-
toencoder and the iFME+autoencoder. We
can see that iFME+autoencoder achieves
faster convergence than autoencoder. It is
possible to obtain a low reconstruction er-
ror on autoencoding tasks and still observe
low visual quality reconstructions. To en-
sure this is not the case we run the same ex-
periment on 300 frames of the 1280× 720
short film 1, with a latent space frame di-
mension of 300x50. In Fig. 4 we compare
the visual quality of our autoencoder to that
of PCA with 50 principcal components, i.e., we reduce the dimension from 1280× 720× 3 to 50.
The entire sample reconstruction is shown in 2 (in the same order as in Fig. 4).

4 CONCLUSIONS
In this paper, we presented a novel deep network called ManifoldNet suited for processing manifold-
valued data sets. Inputs to the ManifoldNet are manifold-valued and not real or complex-valued
functions defined on non-Euclidean domains. Our key contributions are: (i) A novel deep network to
be perceived as a generalization of the CNN to the case when the input data are manifold-valued using
purely intrinsic operations on the manifold where the data reside. (ii) Analogous to convolutions in
vector spaces – which can be computed using the weighted mean – we present wFM operations on
the manifold and prove the equivariance of the wFM to natural group operations admitted by the
manifold. This equivariance allows us to share the learned weights within a layer of the ManifoldNet.
(iii) An efficient recursive wFM estimator that is provably convergent is presented. (iv) Experimental
results demonstrating the efficacy of the ManifoldNet for, (a) video classification and (b) principal
component computation from videos and reconstruction are also presented.

1https://www.youtube.com/watch?v=t1hMBnIMt5I
2https://streamable.com/3yqrx
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5 APPENDIX

Proposition 2. (i) supp (pX) = supp (p̃X). (ii) wFE (X, w) = FE
(

X̃
)

.

Proof. Let X ∈ supp (pX), then, pX (X) > 0. Since, w(X) > 0, hence, p̃X (X) > 0 and thus,
X ∈ supp (p̃X). On the other hand, assume X̃ to be a sample drawn from p̃X . Then, either
pX

(
X̃
)

= 0 or pX
(
X̃
)
> 0. If, pX

(
X̃
)

= 0, then, p̃X
(
X̃
)

= 0 which contradicts our

assumption. Hence, pX
(
X̃
)
> 0, i.e., X̃ ∈ supp (pX). This concludes the proof of part (i).

Let X and X̃ be theM valued random variable following pX and p̃X respectively. We define the
weighted Fréchet expectation (wFE) of X as:

wFE (X, w) = argmin
Y ∈M

∫
M
w(X)d2(X,Y )pX(X)ωM(X)

Observe,

Ew
[
d2(, Y )

]
:=

∫
U

w(X)d2(X,Y )pX(X)ωM(X)

= C

∫
U

d2(X,Y )p̃X(X)ωM(X)

= C Ẽ
[
d2(, Y )

]
. (4)

Hence, we get FE
(

X̃
)

= wFE (X, w), as C is independent of the choice of Y , which concludes the
proof of part (ii). �

Proposition 3. Using the notations and assumptions used in the paper, let {Xi}Ni=1 be i.i.d. samples
drawn from pX onM. Let the wFE be finite. Then, MN converges a.s. to wFE as N →∞.

Proof. Using Proposition 2, we know that ∃ p̃X such that, wFE (X, w) = FE
(

X̃
)

. Thus, it is
enough to show the consistency of our proposed estimator when weights are uniform. In order to
prove the consistency, we will split the proof into two cases namely, manifolds with (i) non-positive
sectional curvature and (ii) non-negative sectional curvature. The reason for doing this split is so that
we can use existing theorems in literature for proving the result. We will use the theorems proved
in Sturm (2003) and Bonnabel (2013) for manifolds with non-positive and non-negative sectional
curvatures respectively. Note that the proof holds only for manifolds with a uniform sign of sectional
curvatures.

Theorem 6 (M has non-negative sectional curvature). Using the above notations, if ∃A > 0 such
that, d (Mn, Xn+1) ≤ A for all n. Then, MN converges a.s. to wFE as N → ∞ (see Bonnabel
(2013) for the proof).

Theorem 7 (M has non-positive sectional curvature). Using the above notations MN converges a.s.
to wFE as N →∞ (see Sturm (2003) for the proof).

�

Proposition 5. The last layer with {Zi}di=1 inputs and {yi}ci=1 outputs is group invariant.

Proof. Using the above construction, let W ∈ Rc×d and b ∈ Rc be the weight matrix and bias
respectively of the FC layer. Then,

y = F
(
WTo + b

)
= F

(
WT d (Mu, Z) + b

)
, (5)

where, F is the softmax function. In the above equation, we treat d (Mu, Z) as the vector
[d (Mu, Z1) , · · · , d (Mu, Zd)]

t. Observe that, g.Mu = FM
(
{g.Zi}di=1

)
. As each of the d channels
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is group equivariant, Zi becomes g.Zi. Because of the property of the distance under group action,
d (g.Mu, g.Zi) = d (Mu, Zi). Hence, one can see that if we change the inputs {Zi} to {g.Zi}, the
output y will remain invariant. �
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