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ABSTRACT

Neural random fields (NRFs), which are defined by using neural networks to
implement potential functions in undirected models, provide an interesting family
of model spaces for machine learning. In this paper we develop a new approach
to learning NRFs with inclusive-divergence minimized auxiliary generator - the
inclusive-NRF approach, for continuous data (e.g. images), with solid theoretical
examination on exploiting gradient information in model sampling. We show that
inclusive-NRFs can be flexibly used in unsupervised/supervised image generation
and semi-supervised classification, and empirically to the best of our knowledge,
represent the best-performed random fields in these tasks. Particularly, inclusive-
NRFs achieve state-of-the-art sample generation quality on CIFAR-10 in both
unsupervised and supervised settings. Semi-supervised inclusive-NRFs show
strong classification results on par with state-of-the-art generative model based
semi-supervised learning methods, and simultaneously achieve superior generation,
on the widely benchmarked datasets - MNIST, SVHN and CIFAR-10.

1 INTRODUCTION

One of the core research problems in machine learning is learning with probabilistic models, which
can be broadly classified into two classes - directed and undirected1 (Koller & Friedman, 2009).
Significant progress has been made recently on learning with deep generative models (DGMs), which
generally refer to models with multiple layers of stochastic or deterministic variables. There have
emerged a bundle of deep directed generative models, such as variational AutoEncoders (VAEs)
(Kingma & Welling, 2014), generative adversarial networks (GANs) (Goodfellow et al., 2014) and
so on. In contrast, undirected generative models (also known as random fields (Koller & Friedman,
2009), energy-based models (LeCun et al., 2006)) received less attention with slow progress. This is
presumably because fitting undirected models is more challenging than fitting directed models. In
general, calculating the log-likelihood and its gradient is analytically intractable, because it involves
the expectation with respect to (w.r.t.) the model distribution.

In this paper, we aims to advance the learning of neural random fields (RFs) which use neural
networks with multiple (deterministic) layers to define the potential function2 uθ(x) over observation
x with parameter θ. The probability distribution pθ(x) ∝ exp(uθ(x)) is then defined by normalizing
the exponentiated potential function. This type of RFs has been studied several times in different
contexts, once called deep energy models (DEMs) (Ngiam et al., 2012; Kim & Bengio, 2016),
descriptive models (Xie et al., 2016), generative ConvNet (Dai et al., 2014), neural random field
language models (Wang & Ou, 2017). For convenience, we refer to such models as neural random
fields (NRFs) in general.

An important method of maximum likelihood (ML) learning of random fields is called stochastic
maximum likelihood (SML) (Younes, 1989), which approximates the model expectations by Monte
Carlo sampling for calculating the gradient. A recent progress in learning NRFs as studied in
Kim & Bengio (2016); Xie et al. (2016); Wang & Ou (2017); Kuleshov & Ermon (2017) is to

1An easy way to tell an undirected model from a directed model is that an undirected model involves the
normalizing constant (also called the partition function in physics), while the directed model is self-normalized.

2Note that compared to modeling with multiple deterministic layers, modeling with multiple stochastic layers,
e.g. deep Boltzmann machines (DBMs) (Salakhutdinov & Hinton, 2009), presents much greater challenge for
model learning and thus yields inferior performance. This is observed in both directed and undirected models.
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pair the target random field pθ with an auxiliary directed generative model (often called generator)
qφ(x) parameterized by φ, which approximates sampling from the target random field. Learning
is performed by maximizing the log-likelihood of training data under pθ or some bound of the
log-likelihood, and simultaneously minimizing some divergence between the target random field pθ
and the auxiliary generator qφ. Different learning algorithms differ in the objective functions used
in the joint training of pθ and qφ, and thus have different computational and statistical properties
(partly illustrated in Figure 1). For example, minimizing the exclusive-divergence KL[qφ||pθ] ,∫
qφ log (qφ/pθ) w.r.t. φ, as employed in Kim & Bengio (2016), involves the intractable entropy

term and tends to enforce the generator to seek modes, yielding missing modes. There are also other
factors, e.g. modeling discrete or continuous data, different choices of the target RF and the generator,
which lead to different algorithms. We leave detailed comparison and connection of our approach
with existing studies to section 3 (related work).

In this paper, we propose to use inclusive-divergence minimized auxiliary generators (section 2.1).
And particularly for continuous data (e.g. images), we propose to use SGLD (stochastic gradient
Langevin dynamics (Welling & Teh, 2011)) and SGHMC (stochastic gradient Hamiltonian Monte
Carlo (Chen et al., 2014)) to exploit gradient information in model sampling with solid theoretical
examination (section 2.2). The new approach, abbreviated as the inclusive-NRF approach, offers
some advantages over previous methods. First, minimizing the inclusive-divergence KL[pθ||qφ] ,∫
pθ log (pθ/qφ) w.r.t. φ avoids the annoying entropy term and tends to drive the generator to

cover modes of the target density pθ. The SGLD/SGHMC sampling further pushes the samples
towards the modes of pθ. Presumably, this helps to produce Markov chains that mix fast between
modes and facilitate model learning. Second, the new approach enables us to flexibly use NRFs
in unsupervised/supervised image generation and semi-supervised classification (section 2.3), and
empirically to the best of our knowledge, represents the best-performed random fields in these tasks.

The main contributions of this paper can be summarized as follows:

• We develop the inclusive-NRF approach, which learns NRFs with inclusive auxiliary gener-
ators and particularly for continuous data, exploits gradient information in model sampling
with solid theoretical examination.
• Inclusive-NRFs achieve state-of-the-art sample generation quality, measured by both Incep-

tion Score (IS) and Frechet Inception Distance (FID). On CIFAR-10, we obtain unsupervised
IS 8.28 (FID 20.9) and supervised IS 9.06 (FID 18.1), both using unconditional generation.
• Semi-supervised inclusive-NRFs show strong classification results on par with state-of-

the-art DGM-based semi-supervised learning (SSL) methods, and simultaneously achieve
superior generation, on the widely benchmarked datasets - MNIST, SVHN and CIFAR-10.

2 THE INCLUSIVE-NRF APPROACH

Consider a random field for modeling observation x with parameter θ:

pθ(x) =
1

Z(θ)
exp [uθ(x)] (1)

where Z(θ) =
∫

exp(uθ(x))dx is the normalizing constant, uθ(x) is the potential function3 which
assigns a scalar value to each configuration of random variable x. The general idea of neural random
fields (NRFs) is to implement uθ(x) : Rdx → R, by a neural network, taking the multi-dimensional
x ∈ Rdx as input and outputting the scalar uθ(x) ∈ R. In this manner, we can take advantage of the
representation power of neural networks for RF modeling. It is usually intractable to maximize the
data log-likelihood logpθ(x̃) for observed x̃, since the gradient involves expectation w.r.t. the model
distribution, as shown below:

∇θ log pθ(x̃) = ∇θuθ(x̃)− Epθ(x) [∇θuθ(x)] (2)

2.1 INTRODUCING INCLUSIVE-DIVERGENCE MINIMIZED AUXILIARY GENERATORS

In this paper, we further develop NRF learning with auxiliary generators. We are mainly concerned
with modeling fixed-dimensional continuous observations x ∈ Rdx (e.g. images), and choose a

3Negating the potential function defines the energy function.
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Algorithm 1 Learning NRFs with inclusive auxiliary generators
repeat

Sampling: Draw a minibatchM =
{

(x̃i, xi, hi), i = 1, · · · |M|
}

from p̃(x̃)pθ(x)qφ(h|x) (see
Algorithm 2);
Updating:
Update θ by ascending: 1

|M|
∑

(x̃,x,h)∼M [∇θuθ(x̃)−∇θuθ(x)];
Update φ by ascending: 1

|M|
∑

(x̃,x,h)∼M∇φ log qφ(x, h);
until convergence

directed generative model, qφ(x, h) , q(h)qφ(x|h), for the auxiliary generator, which specifically is
defined as follows4:

h ∼ N (0, Ih),

x = gφ(h) + ε, ε ∼ N (0, σ2Iε),
(3)

where gφ(h) : Rdh → Rdx is implemented as a neural network with parameter φ, which maps the
latent code h to the observation space. Ih and Iε denote the identity matrices, with dimensionality
implied by h and ε respectively. Drawing samples from the generator qφ(x, h) is simple as it is just
ancestral sampling from a 2-variable directed graphical model.

Suppose that data D = {x̃1, · · · , x̃n}, consisting of n observations, are drawn from the true but
unknown data distribution p0(·). p̃(x̃) , 1

n

∑n
k=1 δ(x̃ − x̃k) denotes the empirical data distribu-

tion. Then we formulate the maximum likelihood learning of pθ(x) with the inclusive-divergence
minimized generator qφ(x) as optimizing5

min
θ
KL [p̃(x̃)||pθ(x̃)]

min
φ
KL [pθ(x)||qφ(x)]

(4)

The first line of Eq. (4) is equivalent to maximum likelihood training of the target RF pθ under the
empirical data p̃, which requires sampling from pθ. Simultaneously, the second line optimizes the
generator qφ to be close to pθ so that qφ becomes a good proposal for sampling from pθ. It can be
easily seen that the gradients w.r.t. θ and φ (to be ascended) are defined as follows:{

∇θ = Ep̃(x̃) [∇θ log pθ(x̃)] = Ep̃(x̃) [∇θuθ(x̃)]− Epθ(x) [∇θuθ(x)] ,

∇φ = Epθ(x) [∇φ log qφ(x)] = Epθ(x)qφ(h|x) [∇φ log qφ(x, h)] .
(5)

Both lines of Eq. (5) hold, as proved in Proposition 1 in the Supplement. In practice, we calculate
noisy gradient estimators, and apply minibatch based stochastic gradient descent (SGD) to solve the
optimization problem Eq. (4), as shown in Algorithm 1.

2.2 APPLYING SGLD/SGHMC FOR MODEL SAMPLING

In Algorithm 1, we need to draw samples from pθ(x)qφ(h|x) given current θ and φ. For continuous
observations, SGLD (stochastic gradient Langevin dynamics) (Welling & Teh, 2011) and SGHMC
(Stochastic Gradient Hamiltonian Monte Carlo) (Chen et al., 2014) sampling provide mechanisms for
exploiting (stochastic) gradients of the target density pθ(x)qφ(h|x), enabling efficient exploration of
the state space. We take the theoretical results about SGLD from Teh et al. (2016) and SGHMC from
Chen et al. (2014), which are briefly summarized in Theorem 1 in the Supplement, and apply them
in the sampling step in Algorithm 1. Denoting the target density as p(z;λ) with given λ, Theorem
1 shows that SGLD/SGHMC, by utilizing ∂

∂z log p(z;λ), yields a non-homogeneous Markov chain{
z(l), l ≥ 1

}
, which converges to the equilibrium distribution p(z;λ).

By letting z , (x, h), p(z;λ) , pθ(x)qφ(h|x), λ , (θ, φ)T in Theorem 1, we can perform the
sampling step in Algorithm 1 by running |M| parallel chains, each chain being executed as shown

4Note that during training, σ2 is absorbed into the learning rates and does not need to be estimated.
5Such optimization using two objectives is employed in a number of familiar learning methods, such as GAN

with logD trick (Goodfellow et al., 2014), wake-sleep algorithm (Hinton et al., 1995).
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Algorithm 2 Sampling from pθ(x)qφ(h|x)

1. Do ancestral sampling by the generator, namely first drawing h′ ∼ p(h′), and then drawing
x′ ∼ qφ(x′|h′);
2. Starting from (x′, h′) = z(0), run finite steps of SGLD/SGHMC (l = 1, · · · , L) to obtain
(x, h) = z(L), which we call sample revision, according to Eq. (11)/(12).
Return (x, h).

in Algorithm 2. In sample revision, the calculation of the gradient w.r.t. h, ∂
∂h log p(z;λ) =

∂
∂h log qφ(h|x) = ∂

∂h log qφ(h, x), is straightforward. For the gradient w.r.t. x, we have

∂

∂x
log p(z;λ) =

∂

∂x
log pθ(x) +

∂

∂x
log qφ(h, x)− ∂

∂x
log qφ(x) ≈ ∂

∂x
log pθ(x). (6)

The reason is that ∂
∂x log qφ(x) can be approximated by an unbiased estimate, as proved in Proposition

2 in the Supplement:
∂

∂x
log qφ(x) ≈ ∂

∂x
log qφ(h, x).

Therefore, we can use ∂
∂x log pθ(x)6 as an unbiased estimate of the gradient ∂

∂x log p(z;λ), and we
can apply Theorem 1 in the Supplement with tractable gradients w.r.t. both x and h.

Remarks. Intuitively, the generator gives a proposal (x′, h′), and then the system follows the gradients
of pθ(x) and qφ(h, x) (w.r.t. x and h respectively) to revise (x′, h′) to (x, h). The gradient terms pull
samples moving to low energy region of the random field and adjust the latent code of the generator,
while the noise term brings randomness. In this manner, we obtain Markov chain samples from
pθ(x)qφ(h|x). Note that finite steps in sample revision will produce biased estimates of the gradients
∇θ and∇φ in Eq. (5). We did not find this to pose problems to the SGD optimization in practice, as
similarly found in Bornschein & Bengio (2015) and Kuleshov & Ermon (2017), which work with
biased gradient estimators.

2.3 SEMI-SUPERVISED LEARNING WITH INCLUSIVE NRFS

In the following, we apply our inclusive-NRF approach in the SSL setting to show its flexibility. Note
that different models are needed in unsupervised and semi-supervised learning, because SSL needs to
additionally consider labels apart from observations.

Model definition. In semi-supervised tasks, we consider the following RF for joint modeling of
observation x ∈ Rdx and class label y ∈ {1, · · · ,K}:

pθ(x, y) =
1

Z(θ)
exp [uθ(x, y)] (7)

which is different from Eq.1 for unsupervised learning without labels. To implement the potential
function uθ(x, y), we consider a neural network Φθ(x) : Rdx → RK , with x as the input and the out-
put size being equal to the number of class labels, K. Then we define uθ(x, y) = onehot(y)TΦθ(x),
where onehot(y) represents the one-hot encoding vector for the label y. In this manner, the condi-
tional density pθ(y|x) is the classifier, defined as follows:

pθ(y|x) =
pθ(x, y)

pθ(x)
=

exp [uθ(x, y)]∑
y exp [uθ(x, y)]

(8)

which acts like multi-class logistic regression using K logits calculated from x by the neural net-
work Φθ(x). And we do not need to calculate Z(θ) for classification. The auxiliary generator is
implemented the same as in Eq. 3, i.e. an unconditional generator.

With the definition the joint density in Eq. 7, it can be shown that, with abuse of notation, the marginal
density pθ(x) = 1

Z(θ) exp [uθ(x)] where uθ(x) , log
∑
y exp [uθ(x, y)].

6Note that ∂
∂x

log pθ(x) = ∂
∂x
uθ(x) does not require the calculation of the normalizing constant.
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Model learning. Suppose that among the data D = {x̃1, · · · , x̃n}, only a small subset of the
observations, for example the first m observations, have class labels, m� n. Denote these labeled
data as L = {(x̃1, ỹ1), · · · , (x̃m, ỹm)}. Then we can formulate the semi-supervised learning as
jointly optimizing 

min
θ
KL [p̃(x̃)||pθ(x̃)]− αd

∑
(x̃,ỹ)∼L

logpθ(ỹ|x̃)

min
φ
KL [pθ(x)||qφ(x)]

(9)

which are defined by hybrids of generative and discriminative criteria, similar to Zhu (2006);
Larochelle et al. (2012); Kingma et al. (2014). The hyper-parameter αd controls the relative weight
between generative and discriminative criteria. Similar to deriving Eq. (5), it can be easily seen that
the gradients w.r.t. θ and φ (to be ascended) are defined as follows:

∇semi
θ =Ep̃(x̃) [∇θlogpθ(x̃)] + αd

∑
(x̃,ỹ)∼L

∇θlogpθ(ỹ|x̃)

=Ep̃(x̃) [∇θuθ(x̃)]− Epθ(x) [∇θuθ(x)] + αd
∑

(x̃,ỹ)∼L

∇θlogpθ(ỹ|x̃)

∇semi
φ =Epθ(x) [∇φlogqφ(x)] = Epθ(x)qφ(h|x) [∇φlogqφ(x, h)]

(10)

In practice, we calculate noisy gradient estimators, and apply minibatch based stochastic gradient
descent (SGD) to solve the optimization problem Eq. (9), as shown in Algorithm 3 in the Supplement.
Apart from the basic losses as shown in Eq. (9), there are some regularization losses that are found to
be helpful to guide SSL learning and are presented in the Supplement. To conclude, we show that the
inclusive-NRF can be easily applied to SSL. To the best of our knowledge, there are no priori studies
in applying random fields to SSL. The semi-supervised inclusive-NRF model defined above is
novel itself for SSL.

3 RELATED WORK

Comparison and connection of our inclusive-NRF approach with existing studies are provided in the
following from three perspectives.

Learning NRFs with auxiliary generators. These studies are most relevant to this work, which
aims to learn NRFs. The classic method for learning RFs is the SML method (Younes, 1989), which
works with the single target model pθ. Compared to learning traditional RFs which mainly use
linear potential functions, learning NRFs which use NN based nonlinear potential functions, is more
challenging. A recent progress in learning NRFs as studied in Kim & Bengio (2016); Xie et al.
(2016); Wang & Ou (2017); Kuleshov & Ermon (2017) is to jointly train the target random field
pθ(x) and an auxiliary generator qφ(x). Different studies differ in the objective functions used in the
joint training, and thus have different computational and statistical properties.

• It is shown in Proposition 3 in the Supplement that learning in Kim & Bengio (2016)
minimizes the exclusive-divergence KL[qφ||pθ] w.r.t. φ, which involves the intractable
entropy term and tends to enforce the generator to seek modes, yielding missing modes. We
refer to this approach as exclusive-NRF.
• Learning in Wang & Ou (2017) and in this paper minimizes the inclusive-divergence
KL[pθ||qφ] w.r.t. φ. But noticeably, this paper presents our innovation in development
of NRFs for continuous data, which is fundamentally different from Wang & Ou (2017)
for discrete data. The target NRF model, the generator and the sampler are all different.
Wang & Ou (2017) mainly studies random field language models, using LSTM generators
(autoregressive with no latent variables) and employing Metropolis independence sampler
(MIS) - applicable for discrete data (natural sentences). In this paper, we mainly develop
random field models for continuous data (images), using latent-variable generators and
utilizing SGLD/SGHMC (with solid theoretical examination) to exploit gradient information
in the continuous space.
• In Xie et al. (2016), motivated by interweaving maximum likelihood training of the ran-

dom field pθ and the latent-variable generator qφ, a joint training method is introduced.
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Operationally, in learning θ and φ, this method also uses Langevin sampling to generate
samples. Two Langevin sampling steps are intuitively interleaved according to ∂

∂x log pθ(x)

and ∂
∂h log qφ(h, x) separately. This is different from our sampling step, which moves (h, x)

jointly, as theoretically justified in section 2.2. Let r(h, x) denote the distribution obtained
by running the interleaved Langevin transitions starting from (h, x) ∼ qφ(h, x). Interpreta-
tion presented in Xie et al. (2016) relates their method to the following joint optimization
problem: 

min
θ
{KL [p̃(x̃)||pθ(x̃)]−KL [r(h, x)||pθ(x)]}

min
φ
KL [r(h, x)||qφ(h, x)]

which is also different from ours as shown in Eq. (4). Thus, learning in Xie et al. (2016)
does not aim to minimize the inclusive-divergence KL[pθ||qφ] w.r.t. φ.

• Learning in Kuleshov & Ermon (2017) minimizes the χ2-divergence χ2[qφ||pθ] ,∫ (pθ−qφ)2
qφ

w.r.t. φ, which also tends to drive the generator to cover modes. But this
approach is severely limited by the high variance of the gradient estimator w.r.t. φ, and is
only tested on the simpler MNIST and Omniglot.

Additionally, different NRF studies also differ in models used in the joint training. For example,
the target NRF used in this work is different from those in previous studies Kim & Bengio (2016);
Wang & Ou (2017); Xie et al. (2016). The differences are: Kim & Bengio (2016) includes linear and
squared terms in uθ(x), Wang & Ou (2017) defines over sequences, and Xie et al. (2016) defines in
the form of exponential tilting of a reference distribution (Gaussian white noise). There exist different
choices for the generator, such as GAN models in Kim & Bengio (2016), LSTMs in Wang & Ou
(2017), or latent-variable models in both Xie et al. (2016) and this work. All are easy to do sampling.

Moreover, all the previous NRF studies examine unsupervised learning, and none shows application
or extension of their methods or models for semi-supervised learning.

Monte Carlo sampling. One step in our inclusive-NRF approach is to apply SGLD/SGHMC to
draw samples from the target density pθ, starting from the proposal sample from the generator.
Theoretically, improvements in NRF sampling methods could be potentially integrated into NRF
learning algorithms. For example, it is recently studied in Levy et al. (2018) to learn MCMC transition
kernels, also parameterized by neural networks, to improve the HMC sampling from the given target
distribution. Integration into learning NRFs is interesting but outside the scope of this paper.

Comparison and connection with GANs. On the one hand, there are some efforts that aim to
address the inability of GANs to provide sensible energy estimates for samples. The energy-based
GANs (Zhao et al., 2017) proposes to view the discriminator as an energy function by designing an
auto-encoder discriminator. The recent work in Dai et al. (2017a) connects Zhao et al. (2017) and
Kim & Bengio (2016), and show another two approximations for the entropy term. However, it is
known that as the generator converges to the true data distribution, the GAN discriminator converges
to a degenerate uniform solution. This basically afflicts the GAN discriminator to provide density
information, though there are some modifications. In contrast, our inclusive-NRFs, unlike GANs,
naturally provide (unnormalized) density estimate. Moreover, none of the above energy-related GAN
studies examine their methods or models for SSL, except in EBGAN which performs moderately.

On the other hand, there are interesting connections between inclusive-NRFs and GANs, as elaborated
in section 11 in the Supplement. When interpreting the potential function uθ(x) as the critic in
Wasserstein GANs, inclusive-NRFs seem to be similar to Wasserstein GANs. A difference is that
in optimizing θ in inclusive-NRFs, the generated samples are further revised by taking finite-step-
gradient of uθ(x) w.r.t. x. However, the critic in Wasserstein GANs can hardly be interpreted as an
unnormalized log-density. Thus strictly speaking, inclusive-NRFs are not GAN-like.

4 EXPERIMENTS

We conduct a series of experiments to evaluate the performances of our approach (inclusive-NRFs)
and various existing methods on synthetic and real-world datasets for both unsupervised and semi-
supervised learning tasks, with both visual and numerical evaluation. We refer to the Supplement for
experimental details and additional results.
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(a) Training data (b) GAN generation (c) WGAN-GP generation (d) Exc. NRF generation

(e) Inc. NRF generation (f) Inc. NRF revision
(g) Exc. NRF potential (h) Inc. NRF potential

Figure 1: Comparison of different methods over GMM synthetic data. Stochastic generations from
GAN with logD trick, WGAN-GP, Exclusive-NRF, Inclusive-NRF generation (i.e. sampling from
the auxiliary generator) and Inclusive-NRF revision (i.e. after performing sample revision over
samples from the auxiliary generator), are shown in (b)-(f) respectively. Inclusive-NRF generation
and inclusive-NRF revision are two manners to generate samples, given a trained NRF. For both
manners, the NRF model is trained with the sample revision step. Each generation contains 1,000
samples. The learned potentials uθ(x) from exclusive and inclusive NRFs are shown in (g) and (h)
respectively, where the red dots indicate the mean of each Gaussian component. Inclusive NRFs are
clearly superior in learning data density and sample generation.

4.1 GMM SYNTHETIC EXPERIMENT

The synthetic data consist of 1,600 training examples generated from a 2D Gaussian mixture model
(GMM) with 32 equally-weighted, low-variance (σ = 0.1) Gaussian components, uniformly laid out
on four concentric circles as in Figure 1(a). The data distribution exhibits many modes separated
by large low-probability regions, which makes it suitable to examine how well different learning
methods can deal with multiple modes. For comparison, we experiment with GAN with logD trick
(Goodfellow et al., 2014) and WGAN-GP (Gulrajani et al., 2017) for directed generative model,
exclusive-NRF (Kim & Bengio, 2016) and inclusive-NRF for undirected generative model.

Figure 1 visually shows the generated samples from the trained models using different methods. Table
1 reports the “covered modes” and “realistic ratio” as numerical measures of how the multi-modal
data are fitted, similarly as in Dumoulin et al. (2017). The main observations are as follows. (1)
GAN suffers from mode missing, generating realistic but not diverse samples. WGAN-GP increases
“covered modes” but decreases “realistic ratio”. Inclusive-NRF performs much better than both GAN
and WGAN-GP in sample generation. (2) Inclusive-NRF outperforms exclusive-NRF in both sample
generation and density estimation. (3) After revision, samples from inclusive-NRF become more like
real samples, achieving the best in both “covered modes" and “realistic ratio” metrics.

4.2 IMAGE GENERATION ON CIFAR-10

We examine both unsupervised and supervised learning over the widely used real-world dataset
CIFAR-10 Krizhevsky (2009) for image generation. To evaluate generation quality quantitatively, we
use inception score (IS) Salimans et al. (2016), and Frechet inception distance (FID) Heusel et al.
(2017). Table 2 reports the inception score and FID for state of the art methods, for both unsupervised
and supervised settings. The supervised learning of inclusive-NRF is conducted as a special case of
semi-supervised learning over all labeled images (m = n), which uses unconditional generation. We
use ResNet in this experiment, see section 12.2 in the Supplement for experimental details.
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Table 1: Numerical evaluations over the GMM (32 components) synthetic data. The “covered modes”
metric is defined as the number of covered modes by a set of generated samples. The “realistic ratio”
metric is defined as the proportion of generated samples which are close to a mode. The measurement
details are presented in section 12.1 in the Supplement. Mean and SD are from 10 independent runs.

Methods covered modes realistic ratio

GAN with logD trick 22.25 ± 1.54 0.90 ± 0.01
WGAN-GP (Gulrajani et al., 2017) 27.81 ± 1.40 0.74 ± 0.04
Exclusive-NRF (Kim & Bengio, 2016) 28.14 ± 0.68 0.73 ± 0.03
Inclusive-NRF generation 29.52 ± 0.54 0.84 ± 0.01
Inclusive-NRF revision 30.75 ± 0.43 0.97 ± 0.01

Table 2: Inception score (IS) and FID on CIFAR-10 for unsupervised and supervised learning.

Methods Unsupervised Supervised
IS FID IS FID

DCGAN (Radford et al., 2015) 6.16± 0.07 6.58
Improved-GAN (Salimans et al., 2016) 8.09± 0.07
WGAN-GP (Gulrajani et al., 2017) 7.86± 0.07 8.42± 0.10
SGAN (Huang et al., 2017) 8.59± 0.12
DFM (Warde-Farley & Bengio, 2017) 7.72± 0.13
CT-GAN (Wei et al., 2018) 8.12± 0.12 8.81± 0.13
Fisher-GAN (Mroueh & Sercu, 2017) 7.90± 0.05 8.16± 0.12
BWGAN (Adler & Lunz, 2018) 8.26± 0.07
SNGAN (Miyato et al., 2018) 8.22± 0.05 21.7± 0.21

Inclusive-NRF generation 8.28± 0.09 20.9± 0.25 9.06± 0.10 18.1± 0.23

From the comparison results in Table 2, it can be seen that the proposed inclusive-NRF model
achieves the best inception score over CIFAR-10, to the best of our knowledge, in both unsupervised
and supervised settings. Some generated samples are shown in Figure 5(c)(d) for unsupervised and
supervised settings respectively. We also show in the Supplement the capability of inclusive-NRFs in
latent space interpolation (section 14) and conditional generation (section 15).

4.3 SEMI-SUPERVISED LEARNING RESULTS

For semi-supervised learning, we consider the three widely used benchmark datasets, namely MNIST
(LeCun et al., 1998), SVHN (Netzer et al., 2011), and CIFAR-10 (Krizhevsky, 2009). As in previous
work, we randomly sample 100, 1,000, and 4,000 labeled samples from MNIST, SVHN, and CIFAR-
10 respectively during training, and use the standard data split for testing. See section 12.3 in the
Supplement for experimental details. We also provide a SSL toy experiment in section 13 in the
Supplement to help understanding how semi-supervised inclusive-NRF works.

It can be seen from Table 3 that semi-supervised inclusive-NRFs produce strong classification results
on par with state-of-art DGM-based SSL methods. See Figure 5(a)(b) in the Supplement for generated
samples. Bad-GANs achieve better classification results, but as indicated by the low inception score,
their generation is much worse than semi-NRF-IAGs. In fact, among DGM-based SSL methods,
inclusive-NRFs achieve the best performance in sample generation. This is in contrast to the
conflict of good classification and good generation, as observed in GAN-based SSL (Salimans
et al., 2016; Dai et al., 2017b). It is analyzed in Dai et al. (2017b) that good GAN-based SSL requires
a bad generator7. This is embarrassing and in fact obviates the original idea of generative SSL -
successful generative training, which indicates good generation, provides regularization for finding
good classifiers (Zhu, 2006; Larochelle et al., 2012). In this sense, Bad-GANs could hardly be
classified as a generative SSL method.

7This analysis is based on using the (K + 1)-class GAN-like discriminator objective for SSL. To the best
of our knowledge, the conflict does not seem to be reported in previous generative SSL methods Zhu (2006);
Larochelle et al. (2012) which use the K-class classifier like in semi-supervised inclusive-NRFs.
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Table 3: Comparison with state-of-the-art methods on three benchmark datasets. “CIFAR-10 IS”
means the inception score for samples generated by SSL models trained on CIFAR-10. “†” is obtained
by running the released code accompanied by the corresponding papers. “-” means the results are not
reported in the original work and without released code. “/” means not applicable, e.g. the models
cannot generate samples stochastically. “‡” uses image data augmentation which significantly helps
classification performance. The upper/lower blocks show generative/discriminative SSL methods
respectively.

Methods error (%) error (%) error (%) IS
MNIST SVHN CIFAR-10 CIFAR-10

CatGAN (Springenberg, 2016) 1.91 ± 0.10 - 19.58 ± 0.46 3.57 ± 0.13†

SDGM (Maaloe et al., 2016) 1.32 ± 0.07 16.61 ± 0.24 - -
Ladder network (Rasmus et al., 2015) 1.06 ± 0.37 - 20.40 ± 0.47 /
ADGM (Maaloe et al., 2016) 0.96 ± 0.02 22.86 - -
Improved-GAN (Salimans et al., 2016) 0.93 ± 0.07 8.11 ± 1.3 18.63 ± 2.32 3.87 ± 0.03
EBGAN (Zhao et al., 2017) 1.04 ± 0.12 - - -
ALI (Dumoulin et al., 2017) - 7.42 ± 0.65 17.99 ± 1.62 -
Triple-GAN (Li et al., 2017) 0.91 ± 0.58 5.77 ± 0.17 16.99 ± 0.36 5.08 ± 0.09
Triangle-GAN (Gan et al., 2017) - - 16.80 ± 0.42 -
BadGAN (Dai et al., 2017b) 0.80 ± 0.10 4.25 ± 0.03 14.41 ± 0.30 3.46 ± 0.11†

Sobolev-GAN (Mroueh et al., 2018) - - 15.77 ± 0.19 -
Semi-supervised inclusive-NRF 0.97 ± 0.10 5.84 ± 0.15 15.12 ± 0.36 7.72 ± 0.09

Results below this line cannot be directly compared to those above.

VAT small (Miyato et al., 2017) 1.36 6.83 14.87 /
Π model‡ (Laine & Aila, 2017) - 4.82 ± 0.17 12.36 ± 0.31 /
Temporal Ensembling‡ (Laine & Aila, 2017) - 4.42 ± 0.16 12.16 ± 0.31 /
Mean Teacher‡ (Tarvainen & Valpola, 2017) - 3.95 ± 0.19 12.31 ± 0.28 /
VAT+EntMin‡ (Miyato et al., 2017) - 3.86 10.55 /
CT-GAN‡ (Wei et al., 2018) 0.89 ± 0.13 - 9.98 ± 0.21 /

Finally, note that some discriminative SSL methods, as listed in the lower block in Table 3 also produce
superior performances, by utilizing data augmentation and consistency regularization. However, these
methods are unable to generate (realistic) samples. It can be seen that discriminative SSL methods
utilize different regularization from generative SSL methods and cannot be directly compared to
generative SSL methods. Their combination, as an interesting future work, could yield further
performance improvement.

4.4 ABLATION STUDY

We report the results of ablation study of our inclusive-NRF method on CIFAR-10 in Table 4. In this
experiment, we use the standard CNN (Miyato et al., 2018) for unsupervised learning and the same
networks as those used in Table 3 for semi-supervised learning. See section 12.4 in the Supplement
for experimental details. We analyze the effects of different settings in model training, such as
using SGLD or SGHMC and the revision step L = 1/5/10 used. For each training setting, we also
compare the two manners to generate samples - whether applying sample revision or not in inference
(generating samples) given a trained NRF, as previously illustrated in Figure 1 over synthetic GMM
data. The main observations are as follows.

First, given a trained NRF, after revision (i.e. following the gradient of the RF’s potential uθ(x)
w.r.t. x), the quality (IS) of samples is always improved, as shown by the consistent IS improvement
from the second column (generation) to the third (revision). This is in accordance with the results in
the GMM synthetic experiments. Moreover, noting that in revision, it is the the estimated density
pθ that guides the samples towards low energy region of the random field. This demonstrates one
benefit of random field modeling, which, unlike GANs, can learn density estimate about the
data manifold.

Second, a row-wise reading of Table 4 reveals that with more revision steps and using SGHMC in
training, the SSL classification performance is improved. Utilizing SGHMC in inclusive-NRFs to

9
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Table 4: Ablation study of our inclusive-NRF method on CIFAR-10, regarding the effects of using
SGLD or SGHMC in training and of applying sample revision in inference (generating samples).
Mean and SD are from 5 independent runs for each training setting. In each training setting, for
unsupervised learning, two manners to generate samples given a trained NRF are compared, as
previously illustrated in Figure 1 over synthetic GMM data. We examine generated samples (i.e.
directly from the generator) and revised samples (i.e. after sample revision) respectively, in term of
inception scores (IS). For semi-supervised learning, we examine the classification error rates.

Training
Setting

Unsupervised Semi-supervised
Generation IS Revision IS error (%)

SGLD L = 1 7.47± 0.15 7.53± 0.13 17.08± 0.39
SGLD L = 5 7.44± 0.16 7.49± 0.12 16.15± 0.44
SGLD L = 10 7.43± 0.18 7.50± 0.13 15.60± 0.31
SGHMC L = 10 7.46± 0.12 7.57± 0.10 15.12± 0.36

exploit gradient information with momentum yields better performance than simple SGLD as used
in Xie et al. (2016). It is also found that more revision steps in model training do not significantly
improve unsupervised IS. So we can use L = 1 in unsupervised learning for generation, which can
reduce the computational cost.

5 DISCUSSION AND CONCLUSION

In this paper we develop the inclusive-NRF approach, which learns NRFs with inclusive auxiliary
generators and particularly for continuous data, exploits gradient information in model sampling
with solid theoretical examination. Extensive empirical evaluations show that inclusive-NRFs
obtain state-of-the-art sample generation quality and achieve strong semi-supervised learning results
on par with state-of-the-art DGMs. The superior performances presumably are attributed to the
two distinctive features in inclusive-NRFs - introducing the inclusive-divergence minimized
auxiliary generator and utilizing sample revision by SGLD/SGHMC. Intuitively, the revised
samples from the RF will guide the training of the generator, and subsequently the generator will
propose samples for the RF to sense the data manifold. This forms positive interactions between the
random field and the generator, which enables successful joint training of both models.

The new approach enables us to flexibly use NRFs in unsupervised, supervised and semi-supervised
settings and successfully train them in a black-box manner. Interesting future work will consider
inclusive-NRFs in more challenging tasks, e.g. unsupervised and semi-supervised learning with
sequential data (e.g. speech, language, video, etc.).
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Supplement for
“Learning Neural Random Fields with Inclusive

Auxiliary Generators”

6 PROOF OF PROPOSITION 1

Proposition 1. Both lines of Eq.(5) for gradient calculations hold.

Proof. The first line of Eq.(5) can be obtained by directly taking derivative of KL [p̃(x̃)||pθ(x̃)] w.r.t.
θ, as shown below,

∂

∂θ
KL [p̃(x̃)||pθ(x̃)] =

∂

∂θ

∫
p̃(x̃) log

p̃(x̃)

pθ(x̃)
dx̃ = −

∫
p̃(x̃)

∂

∂θ
log pθ(x̃)dx̃,

and then applying the basic formula of Eq. (2).

For the second line, by direct calculation, we first have

Eqφ(h|x) [∇φ log qφ(h|x)] =

∫
qφ(h|x)qφ(h|x)−1∇φqφ(h|x)dh

=

∫
∇φqφ(h|x)dh = ∇φ

∫
qφ(h|x)dh = ∇φ1 = 0.

Then combining ∂
∂φKL [pθ(x)||qφ(x)] = −Epθ(x) [∇φ log qφ(x)] and

∇φ log qφ(x) = Eqφ(h|x) [∇φ log qφ(x)] = Eqφ(h|x) [∇φ log qφ(x, h)−∇φ log qφ(h|x)]

= Eqφ(h|x) [∇φ log qφ(x, h)] .

will give the second line of Eq.(5).

7 SGLD/SGHMC

Theorem 1. Denote the target density as p(z;λ) with given λ. Assume that one can compute a noisy,
unbiased estimate ∆(z, ξ;λ) to the gradient ∂

∂z log p(z;λ), where ξ is an auxiliary random variable
which contains all the randomness involved in constructing the estimate, namely E [∆(z, ξ;λ)] =
∂
∂z log p(z;λ). Assume the stability Assumptions 4 in Teh et al. (2016) holds.

For a sequence of asymptotically vanishing time-steps {δl, l ≥ 1} (satisfying
∑∞
l=1 δl = ∞ and∑∞

l=1 δ
2
l < ∞), an i.i.d. sequence η(l), and an independent and i.i.d. sequence ξl of auxiliary

random variables, l ≥ 1, the SGLD iterates as follows, starting from z(0):

z(l) = z(l−1) +
δl
2

∆(z(l−1), ξl;λ) +
√
δlη

(l), η(l) ∼ N (0, I), l = 1, · · · (11)

Starting from z(0) and v(0) = 0, the SGHMC iterates as follows:v(l) = βv(l−1) +
δl
2

∆(z(l−1), ξl;λ) +
√
δlη

(l), η(l) ∼ N (0, I)

z(l) = z(l−1) + v(l), l = 1, · · ·
(12)

Then in both cases, the non-homogeneous Markov chain
{
z(l), l ≥ 1

}
converges to the equilibrium

distribution p(z;λ).
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8 PROOF OF PROPOSITION 2

Proposition 2. Let z , (x, h), p(z;λ) , pθ(x)qφ(h|x), λ , (θ, φ)T in Theorem 1. The initial value
(x(0), h(0)) is obtained from ancestral sampling by the generator. The SGLD/SGHMC as shown in
Eq.(11)/(12) iteratively generates (x(m), h(m)), m = 1, · · · . Then, ∂

∂x(m) log qφ(h(m), x(m)) is an
unbiased estimate of the gradient ∂

∂x(m) log qφ(x(m)), m = 0, 1, · · · .

Proof. Note that Langevin dynamics and Hamiltonian dynamics are reversible Neal (2011). Thus the
SGLD/SGHMC transitions Eq.(11)/(12) satisfy the detailed balance condition:

π(h(m−1), x(m−1))K(h(m), x(m)|h(m−1), x(m−1)) = π(h(m), x(m))K(h(m−1), x(m−1)|h(m), x(m)),

where π(·) denotes the target density, and K(·|·) denotes the transition kernel. Also note that
Eh∼qφ(h|x)

[
∂
∂x log qφ(h, x)

]
= ∂

∂x log qφ(x). Thus if we show that h(m) is indeed drawn from
qφ(h(m)|x(m)) during sample revision, m = 0, 1, · · · , then the unbiasedness will hold.

Denote by π(m)(h(m), x(m)) the state-occupation density at step m. Then we need to show that
π(m)(h(m)|x(m)) actually follows π(h(m)|x(m)), i.e. qφ(h(m)|x(m)), m = 0, 1, · · · .

First, it is obvious that this holds for (h(0), x(0)). Then, we proceed by mathematical induction.
Suppose π(m−1)(h(m−1)|x(m−1)) = π(h(m−1)|x(m−1)). Then we have

π(m−1)(h(m−1), x(m−1))K(h(m), x(m)|h(m−1), x(m−1))

=π(m−1)(h(m−1), x(m−1))
π(h(m), x(m))

π(h(m−1), x(m−1))
K(h(m−1), x(m−1)|h(m), x(m)).

(13)

Integrating out (h(m−1), x(m−1)) from both sides of Eq.13, we obtain

π(m)(h(m), x(m)) = π(h(m), x(m))
∑

x(m−1)

π(m−1)(x(m−1))

π(x(m−1))
K(x(m−1)|h(m), x(m))

= π(h(m), x(m))
∑

x(m−1)

π(m−1)(x(m−1))

π(x(m−1))
K(x(m−1)|x(m))

where the second equality, i.e. K(x|h′, x′) = K(x|x′), holds because in the SGLD/SGHMC
transitions Eq.(11)/(12), generating next step x only depends on current x′ and is independent of
current h′. Then we have

π(m)(h(m)|x(m)) = π(h(m)|x(m))
π(x(m))

π(m)(x(m))

∑
x(m−1)

π(m−1)(x(m−1))

π(x(m−1))
K(x(m−1)|x(m))

= π(h(m)|x(m))

where the second equality holds because we have

π(x(m))

π(m)(x(m))

∑
x(m−1)

π(m−1)(x(m−1))

π(x(m−1))
K(x(m−1)|x(m))

=
1

π(m)(x(m))

∑
x(m−1)

π(m−1)(x(m−1))
K(x(m−1)|x(m))π(x(m))

π(x(m−1))

=1

Thereby, we show h(m) ∼ π(h(m)|x(m)), i.e. qφ(h(m)|x(m)). This concludes the inductive step.

9 SEMI-SUPERVISED LEARNING WITH INCLUSIVE-NRFS

Apart from the basic losses, as shown in Eq.10, in applying inclusive-NRFs in SSL, there are some
regularization losses that are helpful to guide the semi-supervised learning.
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Algorithm 3 Semi-supervised learning of inclusive-NRFs
repeat

Sampling:
Draw a unsupervised minibatch U ∼ p̃(x̃)pθ(x)qφ(h|x) and a supervised minibatch S ∼ L;
Updating:
Update θ by ascending:
1
|U|
∑

(x̃,x,h)∼U [∇θuθ(x̃)−∇θuθ(x)] + αd
1
|S|
∑

(x̃,ỹ)∼S [∇θlogpθ(ỹ|x̃)]

− 1
|U|
∑

(x̃,x,h)∼U

[
αc∇θH(pθ(y|x̃)) + αp∇θ [uθ(x̃)]

2
]
;

Update φ by ascending:
1
|U|
∑

(x̃,x,h)∼U ∇φlogqφ(x, h);
until convergence

Confidence loss. Similar to Springenberg (2016); Li et al. (2017), we add the minimization of the
conditional entropy of pθ(y|x̃) averaged over training data to the loss w.r.t. θ (i.e. the first line in
Eq.9) as follows:

Lc(θ) = Ep̃(x̃) [H(pθ(y|x̃))] = −Ep̃(x̃)
[∑

y
pθ(y|x̃) log pθ(y|x̃)

]
In this manner, we encourage the classifier pθ(y|x) derived from the RF to make classifications
confidently. In practice, we use stochastic gradients of Lc(θ) over minibatches in optimizing θ, as
shown in Algorithm 3.

Potential control loss. For random fields, the data log-likelihood logpθ(x̃) is determined relatively
by the potential value uθ(x̃). To avoid the potential values not to increase unreasonably, we could
control the squared potential values, by minimizing:

Lp(θ) = Ep̃(x̃) [uθ(x̃)]
2

In this manner, the potential values would be attracted to zeros. In practice, we use stochastic
gradients of Lp(θ) over minibatches in optimizing θ, as shown in Algorithm 3.

10 PROOF OF PROPOSITION 3

Proposition 3. For the RF as defined in Eq. 1, we have the following evidence upper bound:

logpθ(x̃) = U(x̃; θ, φ)−KL(qφ(x)||pθ(x)) ≤ U(x̃; θ, φ),

U(x̃; θ, φ) , uθ(x̃)−
(
Eqφ(x) [uθ(x)] +H [qφ(x)]

)
.

Proof. Note that logpθ(x̃) = uθ(x̃) − logZ(θ). And we have the following lower bound on Z(θ)

logZ(θ) = log
∫

exp(uθ(x))dx = log
∫
qφ(x) exp(uθ(x))

qφ(x)
dx ≥

∫
qφ(x)log exp(uθ(x))

qφ(x)
dx. This can

be also seen from: ∫
qφ(x)uθ(x)dx =

∫
qφ(x)logpθ(x)dx+ logZ(θ)

=−KL(qφ(x)||pθ(x)) + logZ(θ) +

∫
qφ(x)logqφ(x)dx.

Furthermore, it can be seen that learning in Kim & Bengio (2016) amounts to optimizing the following
evidence upper bound:

max
θ

min
φ
U(x̃; θ, φ),

which is unfortunately not revealed in this manner in Kim & Bengio (2016).
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11 CONNECTION BETWEEN INCLUSIVE-NRFS AND GANS

Note that for the generator as defined in Eq. 3, we have the following joint density

logqφ(x, h) = − 1

2σ2
||x− gφ(h)||2 + constant.

The generator parameter φ is updated according to Eq. 5, which is rewritten as follows:

Epθ(x)qφ(h|x) [∇φlogqφ(x, h)] = 0

Specifically, we draw (h′, x′) ∼ qφ and then perform one-step SGLD to obtain (h, x). To simply the
analysis of the connection, suppose h ≈ h′, x′ ≈ gφ(h′) ≈ gφ(h). Then we have

x = x′ +
δ1
2

[
∂

∂x
logpθ(x)

]∣∣∣∣
x=x′

+
√
δ1η

(1), η(1) ∼ N (0, I)

x− gφ(h) ≈ δ1
2

[
∂

∂x
logpθ(x)

]∣∣∣∣
x=gφ(h)

=
δ1
2

[
∂

∂x
uθ(x)

]∣∣∣∣
x=gφ(h)

(14)

The gradient in the updating step in Algorithm 1 becomes:

∇φlogqφ(x, h) =
1

σ2

[
∂

∂φ
gφ(h)

]
[x− gφ(h)]

≈ 1

σ2

[
∂

∂φ
gφ(h)

]
δ1
2

[
∂

∂x
uθ(x)

]∣∣∣∣
x=gφ(h)

=
1

σ2

δ1
2

[
∂

∂φ
uθ(gφ(h))

]
where ∂

∂φgφ(h) is a matrix of size dim(φ)× dim(x). Therefore, the inclusive-NRF Algorithm 1 can
be viewed to perform the following steps:

1. Draw an empirical example x̃ ∼ p0.

2. Draw h ∼ p(h), x′ = gφ(h), and generate x by one-step-gradient according to Eq. 14.

3. Update θ by ascending: ∇θuθ(x̃)−∇θuθ(x).

4. Update φ by descending: − ∂
∂φuθ(gφ(h)).

Now suppose that we interpret the potential function uθ(x) as the discriminator in GANs (or the
critic in Wasserstein GANs), which assign high scalar scores to empirical samples x̃ ∼ p0 and low
scalar scores to generated samples x. Then, the inclusive-NRF training could be viewed as playing a
two-player minimax game:

min
φ

max
θ
Ex̃∼p0 [uθ(x̃)]− Eh∼p(h) [uθ(gφ(h))] , (15)

except that in optimizing θ, the generated sample are further revised by taking one-step-gradient of
uθ(x) w.r.t. x (as shown in the above Step 2). The discriminator uθ is trained to discriminate between
empirical samples and generated samples, while the generator qφ is trained to fool the discriminator
by assigning higher scores to generated samples. From the above analysis, we find some interesting
connections between inclusive-NRFs and existing studies in GANs.

• The optimization shown in Eq. 15 is in fact the same as that in Wasserstein GANs (Theorem
3 in Arjovsky et al. (2017)), except that in Wasserstein GANs, the critic uθ(x) is constrained
to be 1-Lipschitz continuous. So hopefully we can improve the inclusive-NRF training by
constraining the discriminator uθ(x) to be 1-Lipschitz continuous, e.g. by utilizing the re-
cently developed technique of spectral normalization of weight matrices in the discriminator
as in Miyato et al. (2018).
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• To optimize θ, the generated sample is obtained by taking one-step-gradient of uθ(x) w.r.t. x.
The tiny perturbation guided by the gradient to increase the score for the generated sample
in fact creates an adversarial example. A similar idea is presented in Liu & Hsieh (2018)
that when feeding real samples to the discriminator, 5 steps of PGD (Projected Gradient
Descent) attack is taken to decrease the score to create adversarial samples. It is shown in
Liu & Hsieh (2018) that training the discriminator with adversarial examples significantly
improves the GAN traning. Hopefully in training the discriminator in inclusive-NRFs, the
adversarial attack could be increasing scores for generated samples, or decreasing scores for
real samples, or a mixed one.

• The above analysis assume the use of one-step SGLD. It can be seen that running finite steps
of SGLD in sample revision in fact create adversarial samples to fool the discriminator.

12 DETAILS OF EXPERIMENTS

12.1 GMM SYNTHETIC EXPERIMENT

In the GMM experiment, we use the following procedure to estimate the metrics “covered modes”
and “realistic ratio” for each trained model.

1. Stochastically generate 100 samples.

2. A mode is defined to be covered (not missed) if there exist generated samples located closely
to the mode (with squared distance < 0.02), and those samples are said to be realistic.

3. Count how many modes are covered and calculate the proportion of realistic samples.

4. Repeat the above steps 100 times and perform averaging.

For each method, we independently train 10 models and calculate the mean and standard deviation
(SD) across the 10 independent runs.

The network architectures and hyperparameters are the same for all methods, as listed in Table 5.
We use SGLD Welling & Teh (2011) for inclusive-NRFs on this synthetic dataset, with empirical
revision hyperparameters δl = 0.01.

12.2 IMAGE GENERATION ON CIFAR-10

Network architectures. For convenience, we refer to the two neural networks in implementing
the potential uθ and the generator qφ in NRFs as the potential network and the generator network,
respectively. For comparison of different methods, we use the same network architectures as in Table
4 in (Miyato et al., 2018) (ResNet using spectral normalization) for unsupervised learning of NRFs.
For supervised learning, we use the semi-supervised inclusive-NRF Algorithm 3 over all labeled
images. The difference in network architectures used for semi-supervised and unsupervised learning
of inclusive-NRFs is that for SSL, the output layer of the potential network contains K = 10 scalar
units, while a single scalar output unit is used for unsupervised learning.

Hyperparameters. We use Adam optimizer with the hyperparameter (β1 = 0, β2 = 0.9 and
α = 0.0003 for random fields, α = 0.0001 for generators). For sample revision for inclusive-NRFs,
we empirically choose SGLD with L = 1 (δl = 0.003). More revision steps do not significantly
improve unsupervised IS, as discussed in section 4.4 Note that we use the potential control loss in
both unsupervised (αp = 0.1) and supervised (αd = 1, αp = 0.1) settings, which is found beneficial
for stable training.

Evaluation. Figure 5(c)(d) show the generated samples from inclusive-NRFs for unsupervised and
supervised settings respectively. We compute inception score (IS) and Frechet inception distance
(FID) in the same way as in Miyato et al. (2018). We trained 10 models with different random seeds,
and then generate 5000 images 10 times and compute the average inception score and the standard
deviation. We compute FID between the true distribution and the generated distribution empirically
over 10000 (test set) and 5000 samples.
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12.3 SEMI-SUPERVISED EXPERIMENT ON MNIST, SVHN AND CIFAR-10

The network architectures (taken from the released code from Salimans et al. (2016) and widely
used in Li et al. (2017); Dai et al. (2017b)) and hyperparameters for semi-supervised inclusive-
NRFs on MNIST, SVHN and CIFAR-10 are listed in Table 6, Table 7 and Table 8 respectively.
We use SGHMC for semi-supervised inclusive-NRFs for all three datasets, with empirical revision
hyperparameters (β = 0.5, δl = 0.003) for MNIST and CIFAR-10, and (β = 0.5, δl = 0.01) for
SVHN. The confidence loss is employed for semi-supervised inclusive-NRFs on MNIST and SVHN,
and the potential control loss is employed on CIFAR-10.

Figure 5(a)(b) show the generated samples from semi-supervised inclusive-NRFs trained over SVHN
and CIFAR-10 respectively.

12.4 ABLATION STUDY OF INCLUSIVE-NRFS ON CIFAR-10

For unsupervised learning, we use the same networks as in Table 3 in Miyato et al. (2018) (s-
tandard CNN using spectral normalization). We use Adam optimizer with the hyperparameter
(α = 0.0002, β1 = 0, β2 = 0.9). For semi-supervised learning, the experimental setting is the same
as in section 12.3 including the networks, number of labels, etc. For different revision steps, we
use (δl = 0.003) for SGLD, and (β = 0.5, δl = 0.003) for SGHMC. The potential control loss is
employed in both unsupervised (αp = 0.1) and semi-supervised (αd = 100, αp = 0.1) learning.

13 SSL TOY EXPERIMENT

In Figure 2, we present the performance of semi-supervised inclusive-NRFs for SSL on a synthetic
dataset, which emphasizes that inclusive-NRFs can provide (unnormalized) density estimates for
pθ(x), pθ(x, y = 1) and pθ(x, y = 2). In contrast, the use of GANs as general purpose probabilistic
generative models has been limited by the difficulty in using them to provide density estimates or
even unnormalized potential values for sample evaluation.

The dataset is a 2D GMM with 16 Gaussian components, uniformly laid out on two concentric circles.
The two circles represent two different classes, each class with 4 labeled data and 400 unlabeled data.
The network architectures are the same as in Table 5, except that the neural network which implement
the potential function uθ(x, y) for SSL now has two units in the output.

(a) Training data (b) Learned uθ(x) (c) Learned uθ(x, y = 1) (d) Learned uθ(x, y = 2)

Figure 2: SSL toy experiment based on semi-supervised inclusive-NRFs. Each class has 4 labeled
points, red dots for class 1 and blue for class 2. The learned potentials for uθ(x), uθ(x, y = 1) and
uθ(x, y = 2) are shown in (b)(c)(d) respectively.

14 LATENT SPACE INTERPOLATION

Figure 3 shows that the auxiliary generator smoothly outputs transitional samples as the latent code
h moves linearly in the latent space. The interpolated generation demonstrates that the model has
indeed learned an abstract representation of the data.
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Figure 3: Latent space interpolation with inclusive-NRFs on MNIST. The leftmost and rightmost
columns are from stochastic generations x1 with latent code h1 and x2 with h2. The columns in
between correspond to the generations from the latent codes interpolated linearly from h1 to h2.

Figure 4: Conditional generated samples from semi-supervised inclusive-NRFs trained on MNIST.
Due to sample revision, the background pixels are not purely black.

15 CLASS-CONDITIONAL GENERATION

Figure 4 shows class-conditional generation results on MNIST with semi-supervised inclusive-NRFs.
Notice that the generator does not explicitly include class labels, thus it is unable to perform class-
conditional generation directly. However, the random field has modeling of pθ(x, y), based on which
we can perform class-conditional generation as follows:

1. Generate a sample x unconditionally, by ancestral sampling with the generator.
2. Predict the label y for the sample x by the random field;
3. Starting from x, running SGLD/SGHMC revision with pθ(x|y) as the target density by

fixing y. The resulting samples could be viewed as conditional generations, according to
Theorem 1.
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(a) (b)

(c) (d)

Figure 5: Generated samples from semi-supervised inclusive-NRFs (i.e. trained for SSL) on SVHN
and CIFAR-10 are shown in (a) and (b) respectively. Generated samples from unsupervised and
supervised training of inclusive-NRFs on CIFAR-10 are shown in (c) and (d) respectively.
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Table 5: Network architectures and hyperparameters for the 2D GMM data.

Random Field Generator
Input 2-dim data Noise h (2-dim)

MLP 100 units, Leaky ReLU MLP 50 units, ReLU
MLP 100 units, Leaky ReLU MLP 50 units, ReLU

MLP 1 unit, Linear MLP 2 units, Linear

Batch size 100
Number of iterations 160,000
Leaky ReLU slope 0.2

Learning rate 0.001
Optimizer Adam (β1 = 0.5, β2 = 0.9)

Sample revision steps L = 10

Table 6: Network architectures and hyperparameters for semi-supervised inclusive-NRFs on MNIST

Random Field Generator
Input 28× 28 Gray Image Noise h (100-dim)

MLP 1000 units, Leaky ReLU, Weight norm MLP 500 units, Sotfplus, Batch norm
MLP 500 units, Leaky ReLU, Weight norm MLP 500 units, Sotfplus, Batch norm
MLP 250 units, Leaky ReLU, Weight norm MLP 784 units, Sigmoid
MLP 250 units, Leaky ReLU, Weight norm
MLP 250 units, Leaky ReLU, Weight norm

MLP 10 units, Linear, Weight norm

Batch size 100
Number of epochs 200
Leaky ReLU slope 0.2

Learning rate 0.001
Optimizer Adam (β1 = 0.0, β2 = 0.9)

Sample revision steps L = 20
α in SSL αd = 10, αc = 10, αp = 0

Table 7: Network architectures and hyperparameters for semi-supervised inclusive-NRFs on SVHN

Random Field Generator
Input 32× 32 Colored Image Noise h (100-dim)

3× 3 conv. 64, Leaky ReLU, Weight norm MLP 8192 units, ReLU, Batch norm
3× 3 conv. 64, Leaky ReLU, Weight norm Reshape 512× 4× 4
3× 3 conv. 64, Leaky ReLU, Weight norm 5× 5 deconv. 256, ReLU, Stride=2

stride=2, dropout2d=0.5 5× 5 deconv. 128, ReLU, Stride=2
3× 3 conv. 128, Leaky ReLU, Weight norm 5× 5 deconv. 3, Tanh, Stride=2
3× 3 conv. 128, Leaky ReLU, Weight norm
3× 3 conv. 128, Leaky ReLU, Weight norm

stride=2, dropout2d=0.5
3× 3 conv. 128, Leaky ReLU, Weight norm
1× 1 conv. 128, Leaky ReLU, Weight norm
1× 1 conv. 128, Leaky ReLU, Weight norm

MLP 10 units, Linear, Weight norm

Batch size 100
Number of epochs 400
Leaky ReLU slope 0.2

Learning rate 0.001
Optimizer Adam (β1 = 0.0, β2 = 0.9)

Sample revision steps L = 10
α in SSL αd = 10, αc = 10, αp = 0
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Table 8: Network architectures and hyperparameters for semi-supervised inclusive-NRFs on CIFAR-
10

Random Field Generator
Input 32× 32 Colored Image Noise h (100-dim)

3× 3 conv. 128, Leaky ReLU, Weight norm MLP 8192 units, ReLU, batch norm
3× 3 conv. 128, Leaky ReLU, Weight norm Reshape 512× 4× 4
3× 3 conv. 128, Leaky ReLU, Weight norm 5× 5 deconv. 256, ReLU, Stride=2

stride=2, dropout2d=0.5 5× 5 deconv. 128 ReLU, stride=2
3× 3 conv. 256, Leaky ReLU, Weight norm 5× 5 deconv. 3, Tanh, Stride=2
3× 3 conv. 256, Leaky ReLU, Weight norm
3× 3 conv. 256, Leaky ReLU, Weight norm

stride=2, dropout2d=0.5
3× 3 conv. 512, Leaky ReLU, Weight norm
1× 1 conv. 256, Leaky ReLU, Weight norm
1× 1 conv. 128, Leaky ReLU, Weight norm

MLP 10 units, Linear, Weight norm

Batch size 100
Number of epochs 600
Leaky ReLU slope 0.2

Learning rate 0.001
Optimizer Adam (β1 = 0.0, β2 = 0.9)

Sample revision steps L = 10
α in SSL αd = 100, αc = 0, αp = 0.1
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