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Abstract

We show that residual networks encode their input signals in the transient dynamics1

of the neurons in each layer. These representations are similar for inputs from2

the same class, and distinct for inputs from different classes. Based on the neural3

transient dynamics, we provide a sufficient criterion to determine the depth of such4

networks during training. This criterion is based on the convergence of the neural5

dynamics in the last two successive layers of the residual block. This method6

compresses the depth of the network and removes unnecessary deep layers.7

1 Introduction8

Residual networks (Resnets) [1] have been more successful in classification tasks in comparison9

with many other standard methods. This success is attributed to the skip connections between layers10

that facilitate the propagation of the gradient throughout the network, and in practice allow very11

deep networks to undergo a successful training. Apart from mitigating the gradient problem in deep12

networks, the skip connections introduce a dependency between variables in different layers that can13

be seen as a system state. This novelty provides an opportunity for interesting theoretical analysis of14

their functioning, and has been the underlying pillar for some interesting analysis of such networks15

from a dynamical system point of view [2, 3, 4, 5, 6, 7, 8].16

Some studies on Resnets have focused on tracking the features layer by layer [9, 10], and have chal-17

lenged the idea that deeper layers in neural networks build up abstract features that are different than18

those formed in lower layers. One supporting evidence for this challenge comes from lesion studies19

on Resnets [11] and Highway networks [12] which show that after the network is trained, perturbing20

the weights in the deep layers does not have a fundamental effect on the network performance, and21

therefore, does not bring the performance to chance level. However, changing the weights which22

are closer to initial layers, have a more damaging effect. Empirical studies in [9, 10] suggest an23

alternative explanation for feature formation in deep layers; that is, successive layers estimate the24

same features which, along the depth of the network, are more refined, and yield an estimate with25

smaller standard deviation than earlier layers. Our approach in this paper is similar to the latter26

studies, however, to understand the classification mechanism in Resnets, we focus on the role of the27

intrinsic dynamics of the residuals over different layers of the network. Our study supports the idea in28

[9, 10] by showing that features in different layers of a Resnet are formed by the transient dynamics29

of residuals that may converge to their steady state values if they are stable. Based on this finding, we30

suggest an algorithm that estimates the depth of the network adaptively during training.31

2 Neural dynamics in Resnets32

We consider a dense Resnet with N input dimensions, and arbitrary T layers with exactly N neurons33

at each layer. In this network, the activity of neuron i at layer t is represented as yi(t), and the34
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activity of all neurons in the same layer is represented by the vector y(t). After the integration35

of the output from layer t − 1, the output of layer t is represented by x(t). The components of36

these residuals y(t) are calculated based on a linear function of x(t), i.e. zi(t) =
∑N

i=1 wij(t)xj(t)37

followed by a nonlinear function f(zi). Any hidden layer t represents a sample of the dynamical38

states x after t steps. This implies that the network at different layers calculates samples of x(t).39

Input data is considered as the initial condition of the system, and is depicted by x(0). Interpreting40

the network as a dynamical system which evolves throughout the layers, the dynamics of neural41

activations are x(t + 1) = x(t) + y(t + 1), where y(t) is the output of the neurons, and in the42

rest of the paper, they are called "residuals". This equation implies a difference equation for the43

variable x(t), that is x(t+1)−x(t) = y(t+1). The left side of this equation resembles the forward44

Euler method of derivative of a continuous system, when the discretization step is equal to 1. This45

approximates a continuous system with dynamics that follow ẋi(t) = yi(t). The latter equation46

implies xi(t) =
∫ t

0
yi(τ)dτ + xi(0) where xi(0) stands for the input data that neuron i receives. In47

other words, x(t) sums up the input data as well as the activities of the neurons (residuals) over the48

layers. This signal feeds the next block in the network, or the classifier in the output layer.49

To study the properties of the neural activities in each layer that shape the cumulative signal x(t), we50

considered a 784 dimensional network with the MNIST dataset as inputs. After training a 15−layer51

Resnet using the back-propagation algorithm, we studied the dynamics of the residuals (the signal52

of neural activities from the input layer up to the last layer). We observed rapid changes in the first53

initial layers of the network, and more steady behavior close to the final layers (figure 1A, B, see also54

[13] for more details on the layer-dependent dynamics of the residuals and their fixed points). The55

dynamics of the residuals do not change significantly after the 6th layer (figure 1A), and the standard56

deviation of the trajectories for different samples approaches zero thereafter (figure 1B). This implies57

that different trajectories for each sample converge to the same fixed point.
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Figure 1: A: Mean of the residuals for 200 samples of each class from the MNIST dataset as a
function of network depth (extracted from [13]). B: Standard deviation of the residuals (extracted
from [13]). C: Distance matrix for 200 samples for each class, normalized by the number of samples.
D: Dimensionality reduction of the cumulative signals for each class, at the final layer of the network,
before the classifier.

58

In order to show the similarities and differences of the internal dynamics corresponding to each class,59

we compared the l2 distance between neural trajectories of all neurons for 200 examples from each60

class. As illustrated in figure 1C, trajectories within each class have a smaller l2 distance compared61
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with trajectories for samples from different classes. This shows that the network specifies different62

forms of neural trajectories for inputs from each class, that are distinct from each other. Moreover,63

in order to generalize the classification performance for inputs from the same class, this difference64

for those trajectories is less, meaning that inputs from the same class are more similar. To compare65

the cumulative signal x(t) among different classes, at the final hidden layer of the Resnet before the66

classifier, we employed the t-SNE algorithm [14] to visualize the properties of these high dimensional67

signals in a two-dimensional plot. As depicted in figure 1D, signals corresponding to different classes68

are mapped and clustered in different regions of the two-dimensional space. This reflects how Resnets69

encode inputs in different and distinct forms of their neural transient (layer-dependent) dynamics70

(even though residuals for different classes converge to identical values in this particular example).71

3 Compressing network’s depth72

In the MNIST network example, we observed that the neural trajectories (residuals) show less73

variabilities at deeper layers, some of which have already converged to their steady state values74

(figure 1A, B). Under this condition, the cumulative signal x(t) receives similar components in75

successive deep layers, and hence no new information about the variabilities in neural trajectories76

are encoded in this signal. In other words, almost always constant numbers (due to convergence) are77

added to this signal without providing new information about the input-induced neural transitions.78

Therefore, after achieving this state of neural transient dynamics, it seems viable to stop the forward79

propagation of information, and cut the extra layers of the network without losing much information80

in the cumulative signal. This provides the basis for an algorithm that adaptively sets the depth of the81

network considering the difference between neural activities of the last two successive layers of the82

network. The algorithm as such is the following:83

while loss function is not minimum do
for each epoch of the training data do

residuals of the last hidden layer in the block→ r1
residuals of the second last hidden layer in the block→ r2
if l1 norm for r1 − r2 < threshold then

remove the layer corresponding to r1
end

end
end

84

which compares the l1 norm of the difference between the neural activities of the last two layers85

[13]. If this difference is less than a threshold, the activities of the neurons could be considered86

approximately identical. If this condition is fulfilled, the last layer of the network is removed. To87

compress the network as much as possible, this algorithm was applied on the MNIST network with88

shared weights between layers [6], and resulted in a 5-layer network (for threshold = 0.01) without89

any significant changes in the classification accuracy. Note that the convergence criterion for the90

residuals is a sufficient condition to remove the last hidden layer, not a necessary condition. This91

means that even shallower networks might still be able to classify the inputs with the same accuracy,92

however, our algorithm does not provide the necessary conditions to achieve the same level of93

accuracy for those cases. This algorithm is more efficient than fully training shallower networks first,94

and then adding extra layers to compensate for a high-value loss function and retraining the network.95

4 Conclusion96

In this letter, we showed the importance of neural transient dynamics on input classification in Resnets.97

It was demonstrated here that the cumulative signal of the residuals has a distinct state for each98

input class, in a high dimensional state space of the neural network. Also, the neural trajectories99

across layers are similar for inputs of the same class while different for inputs from two distinguished100

classes. This form of input representation in the transient dynamics of neural trajectories in Resnets101

can potentially underlie more efficient methods of training in the future. Based on the convergence of102

the neural dynamics to a steady state, we proposed an algorithm that determines the sufficient number103

of layers for the network during training. This can be considered as network depth compression104

without losing the classification accuracy significantly.105
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