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ABSTRACT

Semi-supervised learning (SSL) is a study that efficiently exploits a large amount
of unlabeled data to improve performance in conditions of limited labeled data.
Most of the conventional SSL methods assume that the classes of unlabeled data
are included in the set of classes of labeled data. In addition, these methods do
not sort out useless unlabeled samples and use all the unlabeled data for learn-
ing, which is not suitable for realistic situations. In this paper, we propose an SSL
method called selective self-training (SST), which selectively decides whether to
include each unlabeled sample in the training process. It is also designed to be
applied to a more real situation where classes of unlabeled data are different from
the ones of the labeled data. For the conventional SSL problems which deal with
data where both the labeled and unlabeled samples share the same class cate-
gories, the proposed method not only performs comparable to other conventional
SSL algorithms but also can be combined with other SSL algorithms. While the
conventional methods cannot be applied to the new SSL problems where the sep-
arated data do not share the classes, our method does not show any performance
degradation even if the classes of unlabeled data are different from those of the
labeled data.

1 INTRODUCTION

Recently, machine learning has achieved a lot of success in various fields and well-refined datasets
are considered to be one of the most important factors (Everingham et al., 2010; Krizhevsky et al.,
2012; Russakovsky et al., 2015). Since we cannot discover the underlying real distribution of data,
we need a lot of samples to estimate it correctly (Nasrabadi, 2007). However, creating a large amount
of dataset requires a huge amount of time, cost and manpower (Odena et al., 2018).

Semi-supervised learning (SSL) is a method relieving the inefficiencies in data collection and an-
notation process, which lies between the supervised learning and unsupervised learning in that both
labeled and unlabeled data are used in the learning process (Chapelle et al., 2009; Odena et al.,
2018). It can efficiently learn a model from fewer labeled data using a large amount of unlabeled
data (Zhu, 2006). Accordingly, the significance of SSL has been studied extensively in the previ-
ous literatures (Zhu et al., 2003; Rosenberg et al., 2005; Kingma et al., 2014; Rasmus et al., 2015;
Odena, 2016). These results suggest that SSL can be a useful approach in cases where the amount
of annotated data is insufficient.

However, there is a recent research discussing the limitations of conventional SSL methods (Odena
et al., 2018). They have pointed out that conventional SSL algorithms are difficult to be applied to
real applications. Especially, the conventional methods assume that all the unlabeled data belong
to one of the classes of the training labeled data. Training with unlabeled samples whose class
distribution is significantly different from that of the labeled data may degrade the performance
of traditional SSL methods. Furthermore, whenever a new set of data is available, they should be
trained from the scratch using all the data including out-of-class1 data.

1The term out-of-class is used to denote the situation where the new dataset contains samples originated
from different classes than the classes of the old data. On the other hand, the term in-class is used when the
new data contain only the samples belonging to the previously observed classes.
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In this paper, we focus on the classification task and propose a deep neural network based approach
named as selective self-training (SST) to solve the limitation mentioned above. Unlike the conven-
tional self-training methods in (Chapelle et al., 2009), our algorithm selectively utilizes the unlabeled
data for the training. To enable learning to select unlabeled data, we propose a selection network,
which is based on the deep neural network, that decides whether each sample is to be added or not.
Different from (Wang et al., 2018), SST does not use the classification results for the data selection.
Also, we adopt an ensemble approach which is similar to the co-training method (Blum & Mitchell,
1998) that utilizes outputs of multiple classifiers to iteratively build a new training dataset. In our
case, instead of using multiple classifiers, we apply a temporal ensemble method to the selection net-
work. For each unlabeled instance, two consecutive outputs of the selection network are compared
to keep our training data clean. In addition, we have found that the balance between the number of
samples per class is quite important for the performance of our network. We suggest a simple heuris-
tics to balance the number of selected samples among the classes. By the proposed selection method,
reliable samples can be added to the training set and uncertain samples including out-of-class data
can be excluded.

SST is a self-training framework, which iteratively adopts the newly annotated training data (details
in Section 2.1). SST is also suitable for the incremental learning which is frequently used in many
real applications when we need to handle gradually incoming data. In addition, the proposed SST is
suitable for lifelong learning which makes use of more knowledge from previously acquired knowl-
edge (Thrun & Mitchell, 1995; Carlson et al., 2010; Chen & Liu, 2018). Since SSL can be learned
with labeled and unlabeled data, any algorithm for SSL may seem appropriate for lifelong learning.
However, conventional SSL algorithms are inefficient when out-of-class samples are included in the
additional data. SST only add samples having high relevance in-class data and is suitable for lifelong
learning. The main contributions of the proposed method can be summarized as follows:

• For the conventional SSL problems, the proposed SST method not only performs compara-
ble to other conventional SSL algorithms but also can be combined with other algorithms.

• For the new SSL problems, the proposed SST does not show any performance degradation
even with the out-of-class data.

• SST requires few hyper-parameters and can be easily implemented.
• SST is more suitable for lifelong learning compared to other SSL algorithms.

To prove the effectiveness of our proposed method, first, we conduct experiments comparing the
classification errors of SST and several other state-of-the-art SSL methods (Laine & Aila, 2016; Tar-
vainen & Valpola, 2017; Luo et al., 2017; Miyato et al., 2017) in conventional SSL settings. Second,
we propose a new experimental setup to investigate whether our method is more applicable to real-
world situations. The experimental setup in (Odena et al., 2018) samples classes among in-classes
and out-classes. In the experimental setting in this paper, we sample unlabeled instances evenly in
all classes. (details in Section 6.6 of the supplementary material). We evaluate the performance of
the proposed SST using three public benchmark datasets: CIFAR-10, CIFAR-100 (Krizhevsky &
Hinton, 2009), and SVHN (Netzer et al., 2011).

2 BACKGROUND

In this section, we introduce the background of our research. First, we introduce some methods of
self-training (McLachlan, 1975; Zhu, 2007; Zhu & Goldberg, 2009) on which our work is based.
Then we describe consistency regularization-based algorithms such as temporal ensembling (Laine
& Aila, 2016).

2.1 SELF-TRAINING

Self-training method has long been used for semi-supervised learning (McLachlan, 1975; Rosen-
berg et al., 2005; Zhu, 2007; Zhu & Goldberg, 2009). It is a resampling technique that repeatedly
labels unlabeled training samples based on the confidence scores and retrains itself with the selected
pseudo-annotated data. Our proposed method can also be categorized as a self-training method.
Figure 1 shows an overview of our SSL system. Since our proposed algorithm is based on the self-
training, we follow its learning process. This process can be formalized as follows. (i) Training a
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Figure 1: An overview of the proposed SST. Different shapes represent the input data with different
underlying distribution, and different colors (orange, blue, and green) are for different classes. In
the initial training dataset, only three classes with their corresponding distributions (#, 2, 4) exist
and are used for initial training. Then the unlabeled data which include unseen distribution (F, C)
are inputted to the classification as well as the selection network. At the bottom right, unlabeled
samples with higher selection network output values than a certain threshold are denoted by yellow
and selected to be included in the training process for the next iteration, while the remaining are not
used for training.

model with labeled data. (ii) Predicting unlabeled data with the learned model. (iii) Retraining the
model with labeled and selected pseudo-labeled data. (iv) Repeating the last two steps.

However, most self-training methods assume that the labeled and unlabeled data are generated from
the identical distribution. Therefore, in real-world scenarios, some instances with low likelihood ac-
cording to the distribution of the labeled data are likely to be misclassified inevitably. Consequently,
these erroneous samples significantly lead to worse results in the next training step. To alleviate this
problem, we adopt the ensemble and balancing methods to select reliable samples.

2.2 CONSISTENCY REGULARIZATION

Consistency regularization is one of the popular SSL methods and has been referred to many recent
researches (Laine & Aila, 2016; Miyato et al., 2017; Tarvainen & Valpola, 2017). Among them, Π
model and temporal ensembling are widely used (Laine & Aila, 2016). They have defined new loss
functions for unlabeled data. The Π model outputs f(x) and f̂(x) for the same input x by perturbing
the input with different random noise and using dropout (Srivastava et al., 2014), and then minimizes
the difference (‖f(x)− f̂(x)‖2) between these output values. Temporal ensembling does not make
different predictions f(x) and f̂(x), but minimizes the difference (‖ft−1(x)−ft(x)‖2) between the
outputs of two consecutive iterations for computational efficiency. In spite of the improvement in
performance, they require lots of things to consider for training. These methods have various hyper-
parameters such as ‘ramp up’, ‘ramp down’, ‘unsupervised loss weight’ and so on. In addition,
customized settings for training such as ZCA preprocessing and mean-only batch normalization
(Salimans & Kingma, 2016) are also very important aspects for improving the performance (Odena
et al., 2018).
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Algorithm 1 Training procedure of the proposed SST
Require: xi, yi: training data and label
Require: L, U : labeled and unlabeled datasets
Require: IU : set of unlabeled sample indices
Require: fn(·; θn), fcl(·; θc) and fsel(·; θs): trainable SST model
Require: α, ε, K, Kre: hyper-parameters, 0 ≤ α < 1, 0 ≤ ε < 1

1: randomly initialize θn, θc, θs
2: train fn(·; θn), fcl(·; θc) and fsel(·; θs) for K epochs using L
3: repeat
4: initialize rti = −1, IS = ∅
5: for each i ∈ IU do
6: rt−1

i ← rti , rti ← fcl(fn(xi; θn); θc), si ← fsel(fn(xi; θn); θs)

7: if rt−1
i 6= rti then

8: zi ← 0
9: end if

10: zi ← αzi + (1− α)si
11: if zi > 1− ε then
12: IS ← IS ∪ {i}
13: assign label for xi using ri
14: end if
15: end for
16: update US with data balancing
17: T ← L ∪ US
18: retrain fn(·; θn), fcl(·; θc) and fsel(·; θs) for Kre epochs using T
19: until stopping criterion is true

3 METHOD

In this section, we introduce our selective self-training (SST) method. The proposed model consists
of three networks as shown in the bottom part of Figure 1. The output of the backbone network is fed
into two sibling fully-connected layers —a classification network fcl(·; θc) and a selection network
fsel(·; θs), where θc and θs are learnable parameters for each of them. In this paper, we define the
classification result and the selection score as ri = fcl(fn(xi; θn); θc) and si = fsel(fn(xi; θn); θs),
respectively, where fn(·; θn) denotes the backbone network with learnable parameters θn. Note that
we define ri as the resultant label and it belongs to one of the class labels ri ∈ Y = {1, 2, · · · , C}.
The network architecture of the proposed model is detailed in Section 6.2 in the supplementary
material. As shown in Figure 1, the proposed SST method can be represented in the following four
steps. First, SST trains the network using a set of the labeled data L = {(xi, yi) | i = 1, · · · , L},
where xi and yi ∈ {1, 2, · · · , C} denote the data and the ground truth label respectively, which
is a standard supervised learning method. The next step is to predict all the unlabeled data U =
{xi | i = L+ 1, · · · , N} and select a subset of the unlabeled data {xi|i ∈ IS} whose data have high
selection scores with the current trained model, where IS denotes a set of selected sample indices
from IU = {L + 1, · · · , N}. Then, we annotate the selected samples with the pseudo-categories
evaluated by the classification network and construct a new training dataset T composed of L and
US = {(xi, ŷi)|i ∈ IS}. After that, we retrain the model with T and repeat this process iteratively.
The overall process of the SST is described in Algorithm 1 and the details of each of the four steps
will be described later.

3.1 SUPERVISED LEARNING

The SST algorithm first trains a model with supervised learning. At this time, the entire model (all
three networks) is trained simultaneously. The classification network is trained using the softmax
function and the cross-entropy loss as in the ordinary supervised classification learning task. In case
of the selection network, the training labels are motivated by discriminator of generative adversarial
networks (GAN) (Goodfellow et al., 2014; Yoo et al., 2017). When i-th sample xi with the class

4



Under review as a conference paper at ICLR 2019

label yi is fed into the network, the target for the selection network is set as:

gi =

{
1, if ri = yi for i ∈ IL
0, if ri 6= yi for i ∈ IL

(1)

where IL = {1, · · · , L} represents a set of labeled sample indices. The selection network is trained
with the generated target gi. Especially, we use the sigmoid function for the final activation and the
binary cross-entropy loss to train the selection network. Our selection network does not utilize the
softmax function because it produces a relative value and it can induce a high value even for an
out-of-class sample. Instead, our selection network is designed to estimate an absolute confidence
score using the sigmoid activation function. Consequently, our final loss function is a sum of the
classification loss Lcl and the selection loss Lsel:

Ltotal = Lcl + Lsel. (2)

3.2 PREDICTION AND SELECTION

After learning the model in a supervised manner, SST takes all instances of the unlabeled set U
as input and predicts classification result ri and the selection score si, for all i ∈ IU . We utilize
the classification result and selection score (ri and si) to annotate and choose unlabeled samples,
respectively. In the context of self-training, removing erroneously annotated samples is one of the
most important things for the new training dataset. Thus, we adopt temporal co-training and ensem-
ble methods for selection score in order to keep our training set from contamination. First, let rti and
rt−1
i be the classification results of the current and the previous iterations respectively and we utilize

the temporal consistency of these values. If these values are different, we set the ensemble score
zi = 0 to reduce uncertainty in selecting unlabeled samples. Second, inspired by (Laine & Aila,
2016), we also utilize multiple previous network evaluations of unlabeled instances by updating
the ensemble score zi = αzi + (1 − α)si, where α is a momentum weight for the moving aver-
age of ensemble scores. However, the aim of our ensembling approach is different from (Laine &
Aila, 2016). They want to alleviate different predictions for the same input, which are resulted from
different augmentation and noise to the input. However, our aim differs from theirs in that we are in-
terested in selecting reliable (pseudo-)labeled samples. After that, we select unlabeled samples with
high ensemble score zi. It is very important to set an appropriate threshold because it decides the
quality of the added unlabeled samples for the next training. If the classification network is trained
well on the labeled data, the training accuracy would be very high. Since the selection network is
trained with the target gi generated from the classification score ri, the selection score si will be
close to 1.0. We set the threshold to 1− ε and control it by changing ε. In this case, if the ensemble
score zi exceeds 1− ε, the pseudo-label of the unlabeled sample ŷi is set to the classification result
ri.

3.3 NEW TRAINING DATASET

When we construct a new training dataset, we keep the number of samples of each class the same.
The reason is that if one class dominates the others, the classification performance is degraded by the
imbalanced distribution (FernáNdez et al., 2013). We also empirically found that naively creating a
new training dataset fails to yield good performance. In order to fairly transfer the selected samples
to the new training set, the amount of migration in each class should not exceed the number of the
class having the least selected samples. We take arbitrary samples in every class as much as the
maximum number satisfying this condition. The new training set T is composed of both a set of
labeled samples L and a set of selected unlabeled samples US . The number of selected unlabeled
samples is the same for all classes.

3.4 RE-TRAINING

After combining the labeled and selected pseudo-labeled data, the model is retrained with the new
dataset for Kre epochs. In this step, the label for the selection network is obtained by a process
similar to Eq. (1). Above steps (except for Section 3.1) are repeated for M iterations until (near-)
convergence.
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Table 1: Ablation study with 5 runs on the CIFAR-10 dataset. ‘balance’ denotes the usage of data bal-
ancing scheme during data addition as described in Sec. 3.3, ‘ensemble’ is for the usage of previous
selection scores as in the 10th line of Algorithm 1, and ‘multiplication’ is the scheme of multiplying
top-1 softmax output of the classifier network to the selection score and use it as a new selection
score.

method balance ensemble multiplication error
supervised learning 18.97 ± 0.37%

SST

x x x 21.44 ± 4.05%
o x x 14.43 ± 0.43%
o o x 11.82 ± 0.40%
o o o 11.86 ± 0.15%

4 EXPERIMENTS

To evaluate our proposed SST algorithm, we conduct two types of experiments. First, we evaluate
the proposed SST algorithm for the conventional SSL problem where all unlabeled data are in-class.
Then, SST is evaluated with the new SSL problem where some of the unlabeled data are out-of-class.
In the case of in-class data, gradually gathering highly confident samples in U can help improve the
performance. On the other hand, in the case of out-of-class data, a strict threshold is preferred to
prevent uncertain out-of-class data from being involved in the new training set. Therefore, we have
experimented with decay mode that decreases the threshold in log-scale and fixed mode that fixes the
threshold in the way described in Section 4.2. We have experimented our method with 100 iterations
and determined epsilon by cross-validation in decay modes. In case of fixed modes, epsilon is fixed
and the number of iteration is determined by cross-validation. The details about the experimental
setup and the network architecture are presented in Section 6.1, 6.2 of the supplementary material.

4.1 CONVENTIONAL SSL PROBLEMS WITH IN-CLASS UNLABELED DATA

We experiment with a couple of simple synthetic datasets (two moons, four spins) and three popular
datasets which are SVHN, CIFAR-10, and CIFAR-100 (Netzer et al., 2011; Krizhevsky et al., 2014).
The settings of labeled versus unlabeled data separation for each dataset are the same with (Laine &
Aila, 2016; Miyato et al., 2017; Tarvainen & Valpola, 2017). More details are provided in Section
6.3 in the supplementary material. The experimental results of the synthetic datasets can be found in
Section 6.4 of the supplementary material.

4.1.1 ABLATION STUDY

We have performed experiments on CIFAR-10 dataset with the combination of three types of compo-
nents. As described in Table 1, these are whether to use data balancing scheme described in Section
3.3 (balance), whether to use selection score ensemble in the 10th line of Algorithm 1 (ensemble)
and whether to multiply the selection score with the top-1 softmax output of the classifier network
to set a new selection score for comparison with the threshold (multiplication). First, when SST
does not use all of these, the error 21.44% is higher than that of the supervised learning which does
not use any unlabeled data. This is due to the problem of unbalanced data mentioned in subsection
3.3. When the data balance is used, the error is 14.43%, which is better than the baseline 21.44%.
Adding the ensemble scheme results in 11.82% error, and the multiplication scheme shows a slight
drop in performance. Since all of the experiments use the same threshold, the number of candidate
samples to be added is reduced by the multiplication with the top-1 softmax output and the variation
becomes smaller because only confident data are added. However, we have not used the multiplica-
tion scheme in what follows because the softmax classification output is dominant in multiplication.
Therefore, we have used only balance and ensemble schemes in the following experiments.

4.1.2 EXPERIMENTAL RESULTS

Table 2 shows the experiment results of supervised learning, conventional SSL algorithms and the
proposed SST on CIFAR-10, SVHN and CIFAR-100 datasets. Our baseline model with supervised
learning performs slightly better than what has been reported in other papers (Laine & Aila, 2016;
Tarvainen & Valpola, 2017; Luo et al., 2017) because of our different settings such as Gaussian noise
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Figure 2: SST result on CIFAR-10, SVHN, and CIFAR-100 datasets with 5 runs. The x-axis is the
iteration, the blue circle is the average of the number of data used for training, and the red diamond
is the average accuracy.

Table 2: Classification error on CIFAR-10 (4k Labels), SVHN (1k Labels), and CIFAR-100 (10k
Labels) with 5 runs using in-class unlabeled data (* denotes that the test has been done by ourselves).

Method CIFAR-10 SVHN CIFAR-100
Supervised (sampled)* 18.97 ± 0.37% 13.45 ± 0.92% 40.24 ± 0.45%
Supervised (all)* 5.57 ± 0.07% 2.87 ± 0.06% 23.36 ± 0.27%
Mean Teacher (Tarvainen & Valpola, 2017) 12.31 ± 0.28% 3.95 ± 0.21% -
Π model (Laine & Aila, 2016) 12.36 ± 0.31% 4.82 ± 0.17% 39.19 ± 0.36%
TempEns (Laine & Aila, 2016) 12.16 ± 0.24% 4.42 ± 0.16% 38.65 ± 0.51%
TempEns + SNTG (Luo et al., 2017) 10.93 ± 0.14% 3.98 ± 0.21% 40.19 ± 0.51%*
VAT (Miyato et al., 2017) 11.36 ± 0.34% 5.42 ± 0.22% -
VAT + EntMin (Miyato et al., 2017) 10.55 ± 0.05% 3.86 ± 0.11% -
pseudo-label (Lee, 2013; Odena et al., 2018) 17.78 ± 0.57% 7.62 ± 0.29% -
Proposed method (SST)* 11.82 ± 0.40% 6.88 ± 0.59% 34.89 ± 0.75%
SST + TempEns + SNTG* 9.99 ± 0.31% 4.74 ± 0.19% 34.94 ± 0.54%

on inputs, optimizer selection, the mean-only batch normalizations and the learning rate parameters.
For all the datasets, we have also performed experiments with a model of SST combined with the
temporal ensembling (TempEns) and SNTG, labeled as SST+TempEns+SNTG in the table. For the
model, the pseudo-labels of SST at the last iteration is considered as the true class label. Figure 2
shows the number of samples used in the training and the corresponding accuracy on the test set for
each dataset.

CIFAR-10: The baseline network yields the test error of 18.97% and 5.57% when trained with 4,000
(sampled) and 50,000 (all) labeled images respectively. The test error of our SST method reaches
11.82% which is comparable to other algorithms while SST+TempEns+SNTG model results 1.83%
better than the SST-only model.

SVHN: The baseline model for SVHN dataset is trained with 1,000 labeled images and yields the
test error of 13.45%. Our proposed method has an error of 6.88% which is relatively higher than
those of other SSL algorithms. Performing better than SST, SST+TempEns+SNTG reaches 4.74%
of error which is worse than that of TempEns+SNTG model. We suspect two reasons for this. The
first is that SVHN dataset is not well balanced, and the second is that SVHN is a relatively easy
dataset, so it seems to be easily added to the hard labels. With data balancing, the SST is still worse
than other algorithms. More details are provided in Section 6.5 in the supplementary material. We
think this phenomenon owes to the use of hard labels in SST where incorrectly estimated samples
deteriorate the performance.

CIFAR-100 : While the baseline model results in 40.24% of error rate through supervised learning
with sampled data, our method performs with 34.89% of error, enhancing the performance by 5.3%.
We have observed that the performance of TempEns+SNTG is lower than TempEns, and when
TempEns+SNTG is added to SST, performance is degraded slightly. Although TempEng+SNTG
shows better performance than TempEng without augmentation in (Luo et al., 2017), its performance
is worse than that of TempEng with augmentation in our experiment. 2. The reason for this can be

2We have reproduced tempEns+SNTG model with a Pytorch implementation, and have verified of its per-
formance on CIFAR-10 and SVHN akin to what is reported in (Luo et al., 2017). However, for CIFAR-100
dataset, since the experimental result when data augmentation is not used is not reported, we thus report our
reproduced result.
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(a) (b)

(c) (d)

Figure 3: Result of new SSL problems on CIFAR-10 dataset with 5 runs. (a) number of data with
iteration in decay mode (b) accuracy with iteration in decay mode (c) number of data with iteration in
fixed mode(d) accuracy with iteration in fixed mode. % means the ratio of the number of non-animal
classes in the unlabeled data.

Table 3: Classification error for new SSL problems on CIFAR-10 and CIFAR-100 dataset with 5
runs. ’%’ means the ratio of the number of non-animal classes.

dataset CIFAR-10 CIFAR-100
method SST(decay) SST(fixed) SST(decay) SST(fixed)
supervised 22.27 ± 0.47% 34.62 ± 1.14%
0% 14.99 ± 0.54% 17.84 ± 0.39% 28.01 ± 0.44% 32.16 ± 0.64%
25% 17.93 ± 0.33% 18.38 ± 5247% 29.94 ± 0.45% 32.28 ± 0.58%
50% 20.91 ± 0.53% 19.04 ± 0.63% 31.78 ± 0.62% 32.6 ± 0.67%
75% 22.72 ± 0.42% 20.07 ± 0.98% 34.44 ± 0.85% 32.32 ± 0.52%
100% 26.78 ± 1.35% 20.24 ± 0.15% 37.17 ± 1.08% 32.62 ± 0.63%

conjectured that the hyper-parameter in the current temporal ensembling and SNTG may not have
been optimized.

4.2 NEW SSL PROBLEMS WITH OUT-OF-CLASS UNLABELED DATA

We have experimented with the following settings for real-world applications. The dataset is cat-
egorized into six animal and four non-animal classes as similarly done in (Odena et al., 2018). In
CIFAR-10, 400 images per animal class are used as the labeled data (total 2,400 images for 6 animal
classes) and a pool of 20,000 images with different mixtures of both animal and non-animal classes
are experimented as an unlabeled dataset. In CIFAR-100, 5,000 labeled data (100 images per animal
class) and a total of 20,000 unlabeled images of both classes with different mixed ratios are utilized.
Unlike the experimental setting in (Odena et al., 2018), we have experimented according to the ratio
(%) of the number of out-of-class data in the unlabeled dataset. More details are provided in Section
6.6 in the supplementary material.

As mentioned in Section 4, in the presence of out-of-class samples, a strict threshold is required. If
all of the unlabeled data is assumed to be in-class, the decay mode may be a good choice. However,
in many real-applications, out-of-class unlabeled data is also added to the training set in the decay
mode and causes poor performance. In avoidance of such matter, we have experimented on a fixed
mode of criterion threshold on adding the unlabeled data. Unlike the decay mode that decrements the
threshold value, SST in the fixed mode sets a fixed threshold at a reasonably high value throughout
the training. Our method in the fixed mode should be considered more suitable for real-applications
but empirically shows lower performances in Figure 3 and Table 3 than when running in the decay
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mode. The difference between the decay mode and the fixed mode are an unchangeable ε and the
initial ensemble.

Setting a threshold value for the fixed mode is critical for a feasible comparison against the decay
mode. Figure 3 shows the average of the results obtained when performing SST five times for each
ratio in CIFAR-10. As shown in Figure 3(a), as the number of iteration increases, the threshold in the
decay mode decreases and the number of additional unlabeled data increases. Obviously, while the
different percentage of the non-animal data inclusion show different trends of training, in the cases of
0 ∼ 75% of non-animal data included in the unlabeled dataset, the additionally selected training data
shows an initial increase at 30th ∼ 40th iteration. On the other hand, when the unlabeled dataset is
composed of only the out-of-class data, selective data addition of our method initiates at 55th ∼ 65th

training iteration. This tendency has been observed in previous researches on classification problems
and we have set the threshold value fixed at a value between two initiating points of data addition
as similarly done in the works of(Viola & Jones, 2001; Zhang & Viola, 2008). We have set the fixed
threshold based on 47th iteration (between 40 and 55). For a more reliable selection score, we have
not added any unlabeled data to the new training set and have trained our method with the labeled
data only for 5 iterations.

As it can be seen in Table 3, in the case of SST in the decay mode, the performance has been
improved when the unlabeled dataset consists only in-class animal data, but when the unlabeled
pool is filled with only out-of-class data, the performance is degraded. For the case of SST with a
fixed threshold value, samples are not added and the performance was not degraded at 100% non-
animal ratio as shown in Figure 3(c). Furthermore, at 0% of out-of-class samples in the pool, there
is a more improvement in the performance than at 100 % of out-of-class samples while still being
inferior to the improvement than the decay mode. Because less but stable data samples are added
by SST with a fixed threshold, the performance is improved for all the cases compared to that of
supervised learning. Therefore, it is more suitable for real applications where the origin of data is
usually unknown.

5 CONCLUSION

We proposed selective self-training (SST) for semi-supervised learning (SSL) problem. Unlike con-
ventional methods, SST selectively samples unlabeled data and trains the model with a subset of the
dataset. Using selection network, reliable samples can be added to the new training dataset. In this
paper, we conduct two types of experiments. First, we experiment with the assumption that unla-
beled data are in-class like conventional SSL problems. Then, we experiment how SST performs for
out-of-class unlabeled data.

For the conventional SSL problems, we achieved competitive results on several datasets and our
method could be combined with conventional algorithms to improve performance. The accuracy of
SST is either saturated or not depending on the dataset. Nonetheless, SST has shown performance
improvements as a number of data increases. In addition, the results of the combined experiments
of SST and other algorithms show the possibility of performance improvement.

For the new SSL problems, SST did not show any performance degradation even if the model is
learned from in-class data and out-of-class unlabeled data. Decreasing the threshold of the selection
network in new SSL problem, performance degrades. However, the output of the selection network
shows different trends according to in-class and out-of-class. By setting a threshold that does not
add out-of-class data, SST has prevented the addition of out-of-class samples to the new training
dataset. It means that it is possible to prevent the erroneous data from being added to the unlabeled
dataset in a real environment.
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6 SUPPLEMENTARY MATERIAL

6.1 THE BASIC SETTINGS OF OUR EXPERIMENTS

The basic settings of our experiments are as follows. Different from (Laine & Aila, 2016; Luo et al.,
2017), we use stochastic gradient descent (SGD) with a weight decay of 0.0005 as an optimizer.
The momentum weight for the ensemble of selection scores is set to α = 0.5. Also, we do not apply
mean-only batch normalization layer (Salimans & Kingma, 2016) and Gaussian noise. We follow the
same data augmentation scheme in (Laine & Aila, 2016) consisting of horizontal flips and random
translations. However, ZCA whitening is not used. In the supervised learning phase, we train our
model using batch size 100 for 300 epochs. After that, in the retraining phase, we train using the
same batch size for 150 epochs with the new training dataset. The learning rate starts from 0.1. In
the supervised learning phase, it is divided by 10 at the 150-th and 225-th epoch. In the retraining
phase, it is divided by 10 at the 75-th and 113-th epoch.
The number of training iteration and thresholding ε are very important parameters in our algorithm
and have a considerable correlation with each other. In the first experiment, the iteration number
remains fixed and the growth rate of ε is adjusted so that the validation accuracy saturates near the
settled iteration number. While the validation accuracy is evaluated using the cross-validation, we
set the number of training iteration to be 100 so that the model is trained enough until it saturates. ε
is increased in log-scale and begins at a very small value (10−5) where no data is added. The growth
rate of ε is determined according to when the validation accuracy saturates. The stopping criterion
is that the accuracy of the current iteration reaches the average accuracy of the previous 20 steps.
If the stopping iteration is much less than 100 times, the ε growth rate should be reduced so that
the data is added more slowly. If the stopping iteration significantly exceeds 100 iterations, the ε
growth rate should be increased so that the data is added more easily. We allow 5 iterations as a
deviation from 100 iterations and the growth rate of ε is left unchanged in this interval. As a result,
the ε is gradually increased in log-scale by 10 times every 33 iterations in CIFAR-10 and SVHN. In
the case of CIFAR-100, the ε is increased by 10 times in log-scale every 27 iterations. In the second
experiment, we leave the ε fixed and simply train the model until the stopping criteria are satisfied.
Other details are the same as those of the first experiment.

6.2 NETWORK STRUCTURE

We used two types of networks. The network for training the synthetic dataset is shown in Table 7
and consists of two hidden layers with 30 nodes. The network structure for CIFAR-10, SVHN, and
CIFAR-100 consists of convolutions, and its structure is shown in Table 5. We used standard batch
normalization (Ioffe & Szegedy, 2015) and Leaky ReLU (Maas et al., 2013) with 0.1.

Table 4: Network structure for synthetic datasets.
Type Filter Shape Output Size
input (x,y) point 2

fully connected 2 × 30 30
fully connected 30 × 30 30

classification outputs 30 × classes (softmax) classes
selecting outputs 30 × 1 (sigmoid) 1

6.3 DATA DETAILS

We have experimented with CIFAR-10, SVHN, and CIFAR-100 datasets that consist of 32 × 32
pixel RGB images. CIFAR-10 and SVHN have 10 classes and CIFAR-100 has 100 classes. Overall,
standard data normalization and augmentation scheme are used. For data augmentation, we used
random horizontal flipping and random translation by up to 2 pixels. In the case of SVHN, random
horizontal flipping is not used. To show that the SST algorithm is comparable to the conventional
SSL algorithms, we experimented with the popular setting (Laine & Aila, 2016; Miyato et al., 2017;
Tarvainen & Valpola, 2017). The validation set in the cross-validation to obtain the reduction rate
of epsilon is extracted from the training set by 5000 images. After the epsilon is obtained, all the
training datasets are used. The following is the standard labeled/unlabeled split.
CIFAR-10 : 4k labeled data ( 400 images per class ), 46k unlabeled data ( 4,600 images per class ),
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Table 5: Network structure for CIFAR-10, SVHN, and CIFAR-100 datasets.
Type Filter Shape / pad Output Size
input RGB channel images 32 × 32 × 3

conv2d 3 × 3 × 3 × 128 / same 32 × 32 × 128
conv2d 3 × 3 × 128 × 128 / same 32 × 32 × 128
conv2d 3 × 3 × 128 × 128 / same 32 × 32 × 128

pool maxpool 2 × 2 16 × 16 × 128
dropout p = 0.5 16 × 16 × 128
conv2d 3 × 3 × 128 × 256 / same 16 × 16 × 256
conv2d 3 × 3 × 256 × 256 / same 16 × 16 × 256
conv2d 3 × 3 × 256 × 256 / same 16 × 16 × 256

pool maxpool 2 × 2 8 × 8 × 256
dropout p = 0.5 8 × 8 × 256
conv2d 3 × 3 × 256 × 512 / valid 6 × 6 × 512
conv2d 3 × 3 × 512 × 256 / same 6 × 6 × 256
conv2d 3 × 3 × 256 × 128 / same 6 × 6 × 128

pool average pool 6 × 6 1 × 1 × 128
classification outputs 128 × classes (softmax) 1 × 1 × classes

selecting outputs 128 × 1 (sigmoid) 1 × 1 × 1

and 10k test data.
SVHN : 1k labeled data ( 100 images per class), 72,257 unlabeled data (it is not well balanced), and
26,032 test data.
CIFAR-100 :10k labeled data (100 images per class ), 40k unlabeled data ( 400 images per class ),
and 10k test data.

6.4 SYNTHETIC DATASETS

(a) (b)

Figure 4: Synthetic datasets (Top : Two moons, Bottom : 4 spins) (a): training dataset (black point :
unlabeled data point, color point : labeled data point), (b) test dataset result.

As synthetic datasets, two moons and 4 spins were tested in the same manner as SNTG(Luo et al.,
2017). Each dataset has 6,000 training and 6,000 test samples. In the case of two moons, there are
two classes y ∈ {0, 1}, and in case of 4 spins, y ∈ {0, 1, 2, 3}. In 6,000 training data, there are 12
labeled data and 5,988 unlabeled data. Thus, for two moons, each class has 6 points and for 4 spins,
each class has 3 points. Because the number of labeled datapoints are too small, random sampling
can lead to sample similar points. Therefore, we randomly sampled the labeled data with a constraint
that the Euclidian distance of each data point is greater than 0.7. For these datasets, total iteration
was performed 50 times, and the ε was increased from 10−7 to 10−4.5 on a log scale.
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iter = 31 iter = 36 iter = 41 iter = 46 iter = 50

Figure 5: Synthetic datasets (Two moons) Top : training dataset, Bottom : test result

iter = 36 iter = 39 iter = 41 iter = 46 iter = 50

Figure 6: Synthetic datasets (Four spin) Top : training dataset, Bottom : test result

Figure 4 shows the basic setting of the synthetic dataset, and Figure 5 and 6 show the progress of
the SST algorithm. The SST algorithm improves performance by gradually expanding certain data
in a synthetic dataset.

6.5 FURTHER EXPERIMENTS

CIFAR-10 : When the network were trained with 1k and 2k images, the test error were 38.71% and
26.99% respectively. The test errors in the SST algorithm were 23.15% and 15.72%, the SST has
better performance than Π model but worse than Mean Teacher in 1k test. In 2k test, the SST has
better performance than Π model and similar with Mean Teacher.

Table 6: Classification error on CIFAR-10 (1k and 2k Labels) with 5 runs using in-class unlabeled
data

Method CIFAR-10 (1k) CIFAR-10 (2k)
supervised (sampled) 38.71± 0.47% 26.99± 0.79%

Π model (Laine & Aila, 2016) 27.36± 1.20% 18.02± 0.60%
Mean Teacher (Tarvainen & Valpola, 2017) 21.55± 1.48% 15, 73± 0.31%

Proposed method (SST) 23.15± 0.61% 15.72± 0.50%

SVHN : For the balancing experiments, in SVHN, 1,000 images are used as the labeled data and
45,000 balanced unlabeled images are used. As a result, the SST is still worse than other algorithms.
As mentioned in Section 4.1, we think that incorrectly estimated samples by SST deteriorate the
performance.
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Table 7: Classification error on SVHN (balanced & all unlabeled data) with 5 runs using in-class
unlabeled data.

Method SVHN (balanced) SVHN (all)
supervised (sampled) 13.45± 0.92%

Π model (Laine & Aila, 2016) 5.09± 0.31% 4.82± 0.17%
TempEns (Laine & Aila, 2016) 5.01± 0.15% 4.42± 0.16%

Proposed method (SST) 6.75± 0.28% 6.88± 0.59%

6.6 DATA SETTING FOR NEW SSL PROBLEM

(Odena et al., 2018) adds only four unlabeled classes and tests according to the radio of unlabeled
class. For example, at 50%, two classes are in-class, and two classes are out-of-class. However, we
experimented with the ratio of the number of non-animal data. Thus at 50% in CIFAR-10, unlabeled
data consists of 50% in-class and 50% out-of-class. The data for each ratio are shown in Table 8,
and the data category for animal and non-animal is shown in Table 9.

Table 8: Number of each class data for new SSL problems.

Dataset Ratio Labeled data Unlabeled data
Animal Animal Non-Animal

CIFAR-10

0% 400 3334 or 3333 0
25% 400 2500 1250
50% 400 1667 or 1666 2500
75% 400 834 or 833 3750
100% 400 0 5000

CIFAR-100

0% 100 400 0
25% 100 300 100
50% 100 200 200
75% 100 100 300
100% 100 0 400

Table 9: Data category for new SSL problems.
Type Animal Non-Animal

CIFAR-10 (CLASS) bird, cat, deer, dog, frog, horse airplane, automobile, ship, truck

CIFAR-100 (SUPERCLASS)

aquatic mammals, fish, flowers, food containers,
insects, large carnivores, fruit and vegetables,

large omnivores and herbivores, household electrical devices,
medium-sized mammals, household furniture,
non-insect invertebrates, large man-made outdoor things,

people, reptiles, large natural outdoor scenes,
small mammals trees, vehicles 1, vehicles 2

6.7 OTHER ALGORITHMS FOR NEW SSL PROBLEMS

Table 10 shows the results of a general test on other algorithms. First, self-training (McLachlan,
1975; Zhu, 2007; Zhu & Goldberg, 2009) without threshold does not improve performance even at
0%, and performance at 100% is degraded. When SST is applied to the softmax output as a threshold
without selection network, the performance is improved at 0%, but the performance is degraded at
100%. Although the threshold was 0.9999, unlabeled data was added in 100% of the non-animal
data.

6.8 NEW SSL PROBLEMS IN CIFAR-100

In the new SSL problem, the experiment in decay mode is to find a gap between two initiating points
of data addition in 0 ∼ 75% of non-animal data and 100% of non-animal data. In our experiment,
the growth rate of epsilon in CIFAR-10 is applied to CIFAR-100. (The smaller the growth rate of
epsilon, the less the difference in ε between iterations. Therefore, although the difference in the ε
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Table 10: Other algorithms for new SSL problems of increased classes with 5 runs.
method self-training SST (softmax) SST (sigmoid)
supervised 22.27± 0.47%
0% 21.97± 0.24% 18.27± 0.52% 17.84± 0.39%
25% 22.80± 0.39% 18.35± 0.86% 18.38± 0.52%
50% 23.93± 0.71% 18.72± 0.36% 19.04± 0.63%
75% 25.45± 0.47% 20.33± 0.82% 20.07± 0.98%
100% 27.31± 0.57% 20.71± 0.19% 20.24± 0.15%

(a) (b)

(c) (d)

Figure 7: Result of new SSL problems on CIFAR-100 dataset with 5 runs. (a) number of data with
iteration in decaying threshold (b) accuracy with iteration in decaying threshold (c) number of data
with iteration in fixed threshold (d) accuracy with iteration in fixed threshold. % means the ratio of
non-animal classes in the unlabeled data.

between intervals is the same, depending on the growth rate of ε, the difference in the iteration can be
greater.) In the case of 0 ∼ 75%, the number of data shows a slight increase from about 30 iterations.
On the other hand, in the case of 100%, selected samples are added from about 40 iterations. The
fixed threshold set to the threshold of 35 iterations. In the decay mode, the performance is much
improved at 0%, and at 100%, the performance is degraded. On the other hand, in the fixed mode,
there was no performance degradation from 0% to 100%. In CIFAR-100, the difference between
0% and 100 % is less than CIFAR-10, because the gap between animal and non-animal is small and
additional data is small. Figure 7 shows the experimental results.
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