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Abstract
Authorship Attribution (AA) aims to identify001
the authorship of texts by analyzing distinc-002
tive writing styles. While current AA meth-003
ods have yielded promising performance, these004
approaches commonly exhibit suboptimal per-005
formance in contexts where the subject matter006
varies significantly (i.e., topic-shift scenarios).007
This limitation stems from their inadequacy in008
differentiating between the topical content and009
the author’s stylistic signature. Additionally,010
existing studies predominantly focus on AA at011
an individual level, thereby neglecting the ex-012
ploration of regional-level AA, which could re-013
veal common linguistic patterns influenced by014
cultural and geographical factors. Addressing015
these gaps, this paper introduces ContratDis-016
tAA, a novel framework employing contrastive017
learning coupled with mutual information max-018
imization to segregate content from stylistic019
features in latent representations for AA tasks.020
Our comprehensive experimental evaluations021
reveal that ContratDistAA outperforms exist-022
ing state-of-the-art models in both individual023
and regional-level AA scenarios. This advance-024
ment not only enhances the accuracy of author-025
ship attribution but also expands its applicabil-026
ity to encompass regional linguistic analysis,027
thus contributing significantly to the broader028
field of computational linguistics.029

1 Introduction030

Motivation. Authorship Attribution (AA) is an031

extensively researched area (Zheng and Jin, 2023).032

The goal of AA is to identify the author of a piece033

of text based on distinctive linguistic characteris-034

tics inherent in their writing style. Applications035

of AA span a broad range of domains, including036

digital forensics (Iqbal et al., 2008) and plagiarism037

detection (Stamatatos and Koppel, 2011).038

Existing methods in AA can be broadly cat-039

egorized into two groups: traditional stylomet-040

ric approaches (Seroussi et al., 2011; Beven-041

dorff et al., 2019) and machine learning-based042

techniques (Zhang et al., 2018; Saedi and Dras, 043

2021). Traditional stylometric methods exploit fea- 044

tures such as word lengths, sentence lengths, and 045

function words to attribute authorship. Machine 046

learning-based methods, particularly deep learning 047

techniques, were leveraged to capture intricate pat- 048

terns in writing styles, often surpassing the perfor- 049

mance of stylometric methods (Rivera-Soto et al., 050

2021; Wang et al., 2023). 051

Despite these advancements, a significant chal- 052

lenge persists in scenarios involving a shift in 053

topics, particularly when the testing phase en- 054

compasses topics not present in the training 055

dataset (Sapkota et al., 2014; Hu et al., 2023). 056

TThis issue primarily arises from the conflation of 057

topic-related content and the author’s unique writ- 058

ing style. Consequently, standard stylistic features 059

employed in AA may inadvertently reflect topical 060

variations rather than the author’s stylistic nuances, 061

leading to inaccuracies in authorship determination 062

based solely on writing style. 063

Moreover, the majority of existing research in 064

AA predominantly concentrates on the individual 065

author level, thereby overlooking the potential of 066

regional-level AA. Exploring AA at the regional 067

level could reveal distinct linguistic styles shared 068

by authors within the same geographical region, 069

influenced by cultural nuances. For example, in 070

Singapore, the widespread use of English is distinc- 071

tively marked by local cultural influences and slang, 072

offering a unique dimension essential for effective 073

AA at a regional scale. This warrants further inves- 074

tigation to fully understand and utilize the nuances 075

of regional linguistic variations for the AA task. 076

Research Objectives. In this paper, we propose 077

ContrastDistAA, a novel AA approach that lever- 078

ages contrastive learning and mutual information to 079

disentangle topic and style information in the latent 080

space. This allows us to handle topic shift settings 081

and conduct AA at both individual and regional 082

levels. To facilitate our investigations, we construct 083
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a new dataset to support the regional-level AA task.084

We conduct extensive experiments to evaluate Con-085

trastDistAA against state-of-the-art baselines on086

both regional-level and individual-level AA tasks.087

Contributions. Our work makes the following088

contributions: (i) We introduce a new regional-089

level AA task and a dataset to support the evalu-090

ation of AA methods on this new task. (ii) We091

propose ContrastDistAA, which can disentangle092

content and style information to improve AA per-093

formance. (iii) We conduct extensive experiments094

to benchmark ContrastDistAA against state-of-the-095

art AA methods. Our experiment results demon-096

strate ContrastDistAA’s superior performance in097

both individual-level and regional-level AA tasks.098

This study not only fills a gap in the AA literature099

but also sheds light on the intricate interplay be-100

tween linguistic styles and cultural elements within101

the realm of AA, offering new perspectives and102

understanding in the field.103

2 Related Work104

2.1 Authorship Attribution105

AA has been extensively researched, with re-106

cent surveys providing comprehensive overviews107

of seminal works and advancements in the field108

(Zheng and Jin, 2023; Tyo et al., 2022). Re-109

searchers primarily relied on heuristic and statisti-110

cal approaches in the nascent stages of AA. These111

involved the usage of basic stylometric features112

such as word lengths, sentence lengths, and func-113

tion words (Neal et al., 2017; Ding et al., 2017).114

This phase evolved with the training of classical ma-115

chine learning algorithms as classifiers to link these116

stylometric features with author identities (Boen-117

ninghoff et al., 2019b,a; Theóphilo et al., 2019).118

The emergence of deep learning marked a signif-119

icant shift in AA, enabling the learning of more120

complex writing patterns (Shrestha et al., 2017; Hu121

et al., 2020; Jafariakinabad et al., 2019; Liu et al.,122

2021). The introduction of pre-trained language123

models like BERT (Devlin et al., 2019) further rev-124

olutionized AA, achieving state-of-the-art results125

through fine-tuning for specific AA tasks (Rivera-126

Soto et al., 2021; Manolache et al., 2021; Reimers127

and Gurevych, 2019; El Boukkouri et al., 2020).128

However, these techniques often performed poorly129

in topic-shift scenarios, where the topics under eval-130

uation during the testing phase are not represented131

in the training data (Altakrori et al., 2021). Our132

ContrastDistAA approach aims to overcome this133

challenge by employing contrastive learning and 134

mutual information to separate content (i.e., topic) 135

and linguistic style in latent space for AA. 136

2.2 Contrastive Learning 137

Contrastive Learning has emerged as a pivotal ap- 138

proach in forming embedding spaces, where it clus- 139

ters similar data points together while distancing 140

dissimilar ones. Its efficacy is particularly evident 141

in computer vision, as seen in the work of Chen 142

et al. (2020) with their data augmentation frame- 143

work, and He et al. (2020) through the Momen- 144

tum Contrast (MoCo) for enhanced representation 145

learning. In Natural Language Processing (NLP), 146

contrastive learning has been instrumental in refin- 147

ing sentence representations, exemplified by the 148

methodologies of Giorgi et al. (2021) and Gao 149

et al. (2022), which utilize contrastive loss for learn- 150

ing textual embeddings. Additionally, significant 151

progress has been made in formulating strategies 152

for generating positive and negative samples, with 153

Robinson et al. (2021) addressing the challenge of 154

hard negatives through user-controlled sampling. 155

2.3 Disentangled Representation Learning 156

Disentangled Representation Learning, a method 157

that isolates distinct attributes of data into separate 158

variables, has significantly influenced various fields. 159

In computer vision, it is exemplified by CycleGAN, 160

which uses latent embeddings for image translation 161

without paired examples (Zhu et al., 2020). In 162

speech processing, this approach involves using 163

mutual information minimization to separate voice 164

style from content (Yuan et al., 2021). In NLP, 165

models like ADNet, which combine motivational 166

and adversarial losses, effectively disentangle style 167

and meaning in text embeddings (Romanov et al., 168

2019). Notable developments include the multi- 169

decoder model of Fu et al. (2017) for text transfer 170

tasks with limited parallel corpora and Shen et al. 171

(2020)’s use of denoising objectives for sentence 172

reconstruction. Inspired by these advances, our 173

work adopts a similar approach to meticulously 174

disentangle content and style information in textual 175

data for the AA task. 176

3 Methodology 177

This section outlines our proposed model, Con- 178

trastDistAA, designed to learn a disentangled rep- 179

resentation of writing style for AA. As depicted 180

in Figure 1, ContrastDistAA is structured in two 181
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Figure 1: The architecture overview of ContrastDistAA model. The proposed models contains two-stages training
process: (i) training using contrastive loss, and (ii) training using both contrastive loss with disentanglement loss.

distinct phases. The initial phase employs super-182

vised contrastive loss to extract key stylistic fea-183

tures from labeled data. However, given the po-184

tential for content-related information to be inter-185

twined with style, thus impacting the robustness186

of AA models, the subsequent phase of Contrast-187

DistAA introduces a mutual information-based ap-188

proach. This technique aims to separate style and189

content representations in the latent space, thereby190

enhancing the effectiveness of contrastive learning191

by clearly differentiating between style and content-192

specific attributes, including topical elements.193

In subsequent sections, we will first review the194

contrastive learning component and the associated195

contrastive losses. This is followed by an intro-196

duction to mutual information, which is applied to197

disentangled representation learning for AA.198

3.1 Contrastive Learning199

Self-supervised representation learning has seen200

considerable progress in recent years, largely at-201

tributable to the application of contrastive learn-202

ing (Wu et al., 2018; Hénaff et al., 2020; Oord203

et al., 2018; Chen et al., 2020). The fundamental204

mechanism of contrastive learning involves draw-205

ing an anchor and a “positive” sample closer in an206

embedding space, while simultaneously distancing207

the anchor from multiple “negative” samples, thus208

yielding meaningful representations. Specifically209

for AA tasks, we define “positive pair” consists of210

a text sample authored by the same individual as211

the anchor within a minibatch. In contrast, “nega-212

tive pairs” are formed by aligning the anchor with213

randomly chosen samples from different authors214

within the same minibatch.215

The initial phase of ContrastDistAA involves 216

applying contrastive learning to train a style en- 217

coder, which extracts style features from texts au- 218

thored by individuals or authors from specific re- 219

gions. We utilize BERT (Devlin et al., 2019), ac- 220

claimed for its proficiency in capturing writing 221

styles, as the style encoder. This encoder trans- 222

forms discrete text into representations within la- 223

tent space. Following this, supervised contrastive 224

loss is applied to align representations of texts by 225

the same author or from the same region more 226

closely, while simultaneously distinguishing those 227

from different authors or regions. This methodol- 228

ogy enhances the style encoder’s ability to discern 229

and learn discriminative style representations. 230

3.1.1 Supervised Contrastive Loss for AA 231

In the ContrastDistAA model, we implement a 232

supervised contrastive loss for AA. Consider a 233

batch consisting of N textual samples from dis- 234

tinct authors. Let i ∈ I ≡ {1, 2, · · · , N} repre- 235

sent an individual sample in the minibatch, and 236

let A(i) ≡ I\{i} denote the set of other texts ex- 237

cluding i. The negative samples for anchor i, de- 238

noted as NEG(i) ≡ {neg ∈ A(i) : yneg ̸= yi}, 239

are those not sharing the same author as i, while 240

POS(i) ≡ {pos ∈ A(i) : ypos = yi} represents 241

the positive samples, sharing the same author as 242

i. The supervised contrastive loss is particularly 243

effective in scenarios where multiple samples be- 244

long to the same class, as it utilizes the available 245

labels (Khosla et al., 2021). The formulation of 246

the supervised contrastive loss for AA tasks is as 247

follows: 248

3



Lsup =
∑
i∈I

−1

|POS(i)|
∑

pos∈POS(i)

log
exp(zi · zpos/τ)∑

neg∈NEG(i)exp(zi·zneg/τ)

(1)249

where zi = StyleEncoder(xi), the · symbol250

denotes the inner product, τ ∈ R+ is a scalar tem-251

perature parameter, POS(i) ≡ {pos ∈ A(i) :252

ypos = yi} is the set of indices of all positive sam-253

ples distinct from i, and |POS(i)| is its cardinality.254

3.2 Mutual Information for Style-Content255

Disentanglement256

The style encoder, trained using supervised con-257

trastive loss, becomes proficient at extracting repre-258

sentations that encapsulate both style and content259

attributes. Therefore, to refine the style encoder’s260

focus on capturing writing style more distinctly,261

we integrate mutual information with contrastive262

learning. This synergy aims to separate style and263

content information within the latent space.264

Mutual information, a fundamental concept in265

information theory, measures the dependence be-266

tween two random variables. For our model, mu-267

tual information between style (z) and content (c)268

representations is crucial. Its mathematical def-269

inition involves the expectation of the logarithm270

of the ratio of the joint distribution of z and c to271

their respective marginal distributions, which can272

be expressed as follows:273

I(z; c) = Ep(z,c)[log
p(z, c)

p(z)p(c)
] (2)274

In practice, accurately calculating mutual infor-275

mation is challenging due to the intractability of276

the integral involved (Chen et al., 2016; Belghazi277

et al., 2018; Poole et al., 2019). To address this,278

we employ the Contrastive Log-ratio Upper Bound279

(CLUB) estimation method (Cheng et al., 2020).280

This approach is particularly suitable when condi-281

tional distributions such as p(z|c) or p(c|z) are not282

explicitly available. We approximate p(z|c) using283

a variational distribution qθ(z|c), parameterized by284

θ, leading to the definition of the variational CLUB285

term (vCLUB) as follows:286

In disentangled representation learning, a com-287

mon objective is to minimize the mutual infor-288

mation between varying types of embeddings,289

aligning with our training target (Poole et al.,290

2019). However, determining the exact value of291

mutual information presents challenges in prac- 292

tical settings, as the integral in Eq. 2 is often 293

intractable. To overcome this, several mutual 294

information estimation methods have been pro- 295

posed (Chen et al., 2016; Belghazi et al., 2018; 296

Poole et al., 2019). We employ the estimation 297

method known as the Contrastive Log-ratio Up- 298

per Bound (CLUB) (Cheng et al., 2020), which 299

is suitable for the scenario where the conditional 300

distributions p(z|c) or p(c|z) is not provided. A 301

variational distribution qθ(z|c) with parameter θ is 302

used to approximate p(z|c).Consequently, a varia- 303

tional CLUB term (vCLUB) is defined as follows: 304

IvCLUB(z; c) := Ep(z,c)[logqθ(z|c)]
−Ep(z)Ep(c)[logqθ(z|c)]

(3) 305

The unbiased estimator for vCLUB is derived 306

from a set of samples, effectively quantifying the 307

mutual information in a computationally feasible 308

manner. unbiased estimator for vCLUB with sam- 309

ple {zi, ci} is expressed as follows: 310

ÎvCLUB =
1

N2

N∑
i=1

N∑
j=1

[logqθ(zi|ci)− logqθ(zj |ci)]

=
1

N

N∑
i=1

[logqθ(zi|ci)−
1

N

N∑
j=1

logqθ(zj |ci)].

(4)

311

In summary, to facilitate style-content disentan- 312

glement in ContrastDistAA, we first deploy a con- 313

tent encoder, also a BERT model, to extract content 314

representations, denoted as c. Meanwhile, the pre- 315

trained style encoder from the first stage extracts 316

style representations, denoted as z. Each post i 317

thus has two distinct representations: the content 318

representation ci and the style representation si. 319

Here, we apply the vCLUB estimator to minimize 320

the mutual information between these content and 321

style representations, refining the distinctiveness 322

of each. Concurrently, the supervised contrastive 323

loss continues to enhance the style encoder’s abil- 324

ity to capture writing style nuances. During the 325

evaluation phase, only the style encoder is used to 326

extract style representations from posts authored by 327

individuals or from specific regions. The regional 328

or individual author style representations are then 329

calculated by averaging the post-style representa- 330

tions, facilitating a comprehensive and nuanced 331

assessment of writing styles. 332
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Dataset #Users #Train #Valid #Test

Regional Tweets 87,836 382,598 42,513 42,513
CCAT50 50 1,766 442 465
Twitter1000 1,000 6,000 2,000 2,000
IMDB62 62 37,200 12,400 12,400

Table 1: Statistics of datasets

4 Experiments333

4.1 Experimental Settings334

Datasets. To evaluate ContrastDistAA effectively335

on both individual and regional AA tasks, we uti-336

lize four datasets in our experiments. The statistical337

distributions of the datasets are shown in Table 1.338

Regional Tweets: This dataset, aimed at ex-339

ploring regional writing styles, comprises English340

tweets from Southeast Asia, collected using the341

Twitter API from 2021 to 2022. It includes 425,111342

tweets from 87,836 users across six regions: Singa-343

pore, Kuala Lumpur, Manila, Jakarta, Hanoi, and344

Bangkok. The selection criteria focused on En-345

glish tweets with more than three words for better346

data quality. The dataset is divided into training,347

validation, and testing sets in an 8:1:1 ratio.348

CCAT50: A subset of the Reuters Corpus and a349

prominent resource in AA research, the CCAT50350

dataset (Liu et al., 2012) focuses on the top 50351

contributors in the CCAT (corporate/industrial)352

subtopic. It consists of 5,000 texts (50 per author)353

divided into distinct training, validation, and testing354

sets following a 6:2:2 ratio, based on the processed355

version by (Tyo et al., 2022).356

Twitter1000: Derived from a larger Twitter357

dataset used in AA research (Shrestha et al., 2017;358

Schwartz et al., 2013), Twitter1000 includes tweets359

from the top 1,000 authors by volume, with 100360

tweets randomly selected from each. The dataset361

is organized into training, validation, and testing362

subsets, also following a 6:2:2 ratio.363

IMDB62: Recognized for long-text AA stud-364

ies (Seroussi et al., 2014), the IMDB62 dataset in-365

cludes contributions from 62 authors, each provid-366

ing 1,000 texts. Similar to the others, this dataset367

is partitioned into training, validation, and testing368

sets in a 6:2:2 ratio.369

Evaluation Metrics. Following existing AA stud-370

ies, we adopt Macro-F1 and Micro-F1 as the evalu-371

ation metrics in our experiments.372

4.2 Baselines 373

We benchmark our model against commonly used 374

and state-of-the-art AA models. These baselines 375

are trained or fine-tuned to perform both the 376

regional-level and individual-level AA tasks. 377

LR-Stylo: This logistic regression model, lever- 378

aging stylometric features as inputs, is grounded in 379

prior research (Sari, 2018; Aborisade and Anwar, 380

2018). Based on (Fabien et al., 2020), it uses ten 381

different stylometric features like text length and 382

word count for classification. 383

LR-TF-IDF: Employing Term Frequency - In- 384

verse Document Frequency (TF-IDF) at the word 385

level, this logistic regression classifier follows the 386

approach of (Fabien et al., 2020). Pre-processing 387

includes stemming and stop-word removal before 388

constructing the TF-IDF features. 389

LR-Char: This model uses character N-gram- 390

based features, shown to be effective in AA 391

(Bischoff et al., 2020; Shrestha et al., 2017; Al- 392

takrori et al., 2021). Following (Tyo et al., 2022), 393

the logistic regression classifier is trained with a 394

mix of character N-gram, part-of-speech N-gram, 395

and summary statistics. 396

LSTM: An LSTM model, inspired by recent 397

studies (Oliva et al., 2022), incorporates a dense 398

layer followed by a max pooling layer. It focuses 399

on the hidden states of the LSTM for AA tasks. 400

BertAA: Utilizing a pre-trained BERT language 401

model, BertAA (Fabien et al., 2020) is fine-tuned 402

specifically for AA, integrating a dense layer and 403

softmax activation function for AA classification. 404

DistilBert: Known for its efficiency as a com- 405

pact language model, DistilBERT (Sanh et al., 406

2019) is fine-tuned for AA tasks. 407

Roberta: Employing the Roberta model (Liu 408

et al., 2019), we follow the original hyperparame- 409

ters and fine-tune it on AA datasets over a specific 410

number of epochs. 411

4.3 Implementation. 412

Our experiments were carried out on a system oper- 413

ating on Ubuntu 20.04.3 LTS, equipped with robust 414

hardware specifications including 24 CPU cores, 415

128 GB of RAM, and a base clock speed of 2.9 416

GHz. To facilitate efficient training of the pre- 417

trained models, Nvidia GTX 3090 graphics cards 418

were utilized. BERT, with its pre-trained weights, 419

served dual roles as both the style and content en- 420

coders in our experiment, which was divided into 421

two distinct stages. 422
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Regional Tweet CCAT50 Twitter1000 IMDB62

Method Macro F1 Micro F1 Macro F1 Micro F1 Macro F1 Micro F1 Macro F1 Micro F1

LR-Stylo 0.176 0.251 0.013 0.037 0.019 0.035 0.013 0.037
LR-TF-IDF 0.402 0.446 0.554 0.554 0.566 0.566 0.554 0.554
LR-Char 0.252 0.308 0.180 0.209 0.077 0.128 0.503 0.503
LSTM 0.186 0.290 0.244 0.274 0.124 0.126 0.307 0.326
BertAA 0.433 0.472 0.518 0.512 0.226 0.249 0.627 0.654
DistilBERT 0.407 0.449 0.453 0.447 0.213 0.242 0.402 0.441
Roberta 0.476 0.522 0.466 0.497 0.622 0.626 0.735 0.749

ContrastDistAA 0.510 0.550 0.578 0.584 0.960 0.961 0.813 0.816
ContrastDistAA (w/o dist) 0.505 0.508 0.552 0.566 0.960 0.916 0.803 0.816

Table 2: Macro and Micro F1 scores for baselines and ContrastDistAA on four benchmark datasets.
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Figure 2: t-SNE visualization of posts from Regional Tweets and CCAT50. Specifically, we select 100 posts from
each region in the Regional Tweets dataset and 50 posts from each author in CCAT50. The top three visualizations
display the posts from Regional Tweets, while the bottom three pertain to CCAT50.

We train ContrastDistAA in two stages. In the423

first stage, the style encoder was the sole focus,424

trained using supervised contrastive loss over 30425

epochs. The subsequent stage marked the joint426

training of both the content and style encoders.427

This phase, extending for an additional 20 epochs,428

employed supervised contrastive loss alongside a429

mutual information estimator. The implementation430

of the mutual information estimator was based on431

the source code1 provided by (Cheng et al., 2020).432

Consistency in training parameters was maintained433

throughout, with a learning rate set at 1e-3 and a434

batch size of 32 for both stages. This setup ensured435

a balanced and rigorous training process for the436

1https://github.com/Linear95/CLUB

ContrastDistAA model. 437

4.4 Experiment Results 438

In our study, the efficacy of the ContrastDistAA 439

model was thoroughly assessed on both regional 440

and individual-level datasets, with its performance 441

benchmarked against a range of established base- 442

line models. The comparative results, evaluated 443

using F1 scores, are detailed in Table 2. 444

The ContrastDistAA model consistently exhib- 445

ited superior performance across these datasets. 446

For instance, within the Regional Tweets dataset, 447

it attained a Micro F1 score of 0.55, represent- 448

ing a notable 7% improvement compared to the 449

next closest model, BertAA. In the context of the 450

CCAT50 dataset, ContrastDistAA surpassed all 451
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baselines in every evaluated metric, achieving a452

significant 16% improvement in Micro F1 scores.453

The model also demonstrated exceptional perfor-454

mance on the Twitter1000 dataset, registering a455

substantial 29% increase in F1 scores. Further-456

more, on the IMDB62 dataset, ContrastDistAA457

achieved a 6.7% improvement in performance, in-458

dicative of its robustness even in the presence of459

textual complexity. These results collectively af-460

firm the ContrastDistAA model’s capability in ef-461

fectively discerning writing styles at both regional462

and individual levels, thereby establishing it as a463

state-of-the-art benchmark in the AA tasks.464

Interestingly, we also noted that the models’ F1465

scores are generally lower for the Regional Tweets466

dataset, suggesting the difficulty of the region-level467

AA task. The individual authors typically have468

more distinct and consistent writing styles com-469

pared to a group of authors from a region. This470

uniqueness in individual writing styles makes it471

easier for models to attribute authorship accurately,472

leading to higher F1 scores. In contrast, regional-473

level AA deals with broader, less distinct writing474

styles shared by a group, which can be more chal-475

lenging to differentiate.476

4.5 Ablation Study477

We also conduct an ablation study, which aimed to478

assess the impact of the dual-stage training process479

on ContrastDistAA. This study involved compar-480

ing the model’s performance after the initial train-481

ing phase, which utilized solely contrastive loss,482

against its performance following the second train-483

ing stage that integrated both contrastive and disen-484

tanglement losses. The results, detailed in last two485

rows of Table 2, emphasize the significant contri-486

bution of representation disentanglement learning487

to the model’s efficacy.488

Crucially, the findings reveal that ContrastDis-489

tAA demonstrates an improvement in F1 scores490

when the disentanglement loss is incorporated in491

the second training stage, compared to the model492

trained only with contrastive loss. This improve-493

ment underscores the value of the second training494

stage in enhancing the model’s capability. By ef-495

fectively separating content-related elements from496

style-related information in the training process,497

the model becomes more adept at isolating and rec-498

ognizing distinctive stylistic features inherent to499

different regional writings. This separation is key500

to the improved performance, illustrating the effec-501

tiveness of the comprehensive two-stage training502

approach in ContrastDistAA. 503

4.6 Qualitative Analysis 504

To demonstrate the efficacy of ContrastDistAA, 505

we employed the t-SNE algorithm (Van der Maaten 506

and Hinton, 2008) to visually represent post style 507

embeddings in two-dimensional space. This vi- 508

sualization aimed to show how different training 509

methodologies influence the distribution of post 510

representations. We selected 100 posts from each 511

region in the Regional Tweets dataset and 50 posts 512

per author from the CCAT50 dataset, extracting 513

their latent representations using three approaches: 514

(i) BERT in its basic form, (ii) a style encoder 515

trained with contrastive loss, and (iii) a style en- 516

coder trained using both contrastive loss and mu- 517

tual information. 518

Figure 2 presents these representations. The first 519

three visualizations pertain to posts from the Re- 520

gional Tweets dataset, while the latter three focus 521

on the CCAT50 dataset. Notably, with the applica- 522

tion of contrastive loss, distinct clusters emerge, in- 523

dicating the style encoder’s ability to capture style 524

information effectively. However, challenges are 525

evident, such as the central clustering in Figure 2 526

(b), reflecting the limitations of contrastive learning 527

with complex samples. The incorporation of mu- 528

tual information for disentangling content and style 529

in latent space results in more distinct clustering 530

patterns, as seen in Figure 2 (c). This suggests that 531

the integration of both contrastive and disentangle- 532

ment learning notably enhances the style encoder’s 533

capability to discern style information, thereby im- 534

proving its application in AA tasks. 535

4.7 Case Studies for Regional AA 536

To highlight the unique writing styles prevalent in 537

different regions, we conducted a linguistic analy- 538

sis of posts from these areas. This involved select- 539

ing three posts from each region and calculating the 540

cosine similarity between their representations and 541

the corresponding regional style representations, 542

providing insights into how closely these posts 543

align with predominant regional writing styles. 544

Our analysis revealed distinct linguistic features 545

characteristic of each region, often embodied in 546

specific words or expressions that encapsulate re- 547

gional nuances and evoke emotional responses. For 548

instance, authors from Bangkok frequently con- 549

clude sentences with unique words such as “kub”, 550

“naka”, “krub”, or “na” adding an expressive and 551

emotive quality to their writing. In Jakarta, au- 552
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Regions Sentences Similarity

Bangkok
1. @USER thank u naa 0.825

2. @USER You’re very welcome I feel honored and very happy . ka pleading_face two_hearts 0.977

3. @USER You make all of us lazy people feel ashamed on a Sunday morning na krub . 0.990

Hanoi
1. isit Indonesian #Booth in Ly Thao To Park , DATE 0.995

2. Those light is fierce ! #welldone @USER Trang Tien Plaza HTTPURL 0.996

3. try some coconut coffee hot_beverage USER Cong Caphe HTTPURL 0.996

Jakarta
1. @USER Serem amat :loudly_crying_face: 0.991

2. @USER batman who laughs lumayan lah atleast 0.951

3. Mantul the babbies nyusul the daddies 0.992

Manila
1. Salamat sa live selling at unboxing ! Lol char . Love you bestie ! Congratulations ! HTTPURL 0.996

2. Wow , salamat po sa Dios To God be the Glory sparkles Are Your Prayers Heard #PureDoc-
trinesOfChrist HTTPURL

0.996

3. DATE nabudol ako sa film life . Excited for youuuuuu . @USER Stay Broke , Shoot Film .
HTTPUR . HTTPURL

0.959

Singapore
1. STOp . the tarot card readings gotta STOOOOOOOop pls lah 0.857

2. So much things on my mind rn ! Inshallah all goes well 0.651

3. @USER i no have scandal lehhh u my one and only 0.984

Kuala
Lumpur

1. Pusing lah kot mana pun , no one else is calling it democratic . Except PN of course 0.908

2. Say goodbye to grainy spycam footage . Tak main lah video quality Nokia 0.501

3. adut saya order 138 utk pastikan bontot staff saya 8p m 5pm tak ke Pavilion 0.964

Table 3: Examples showcasing the unique writing expressions (highlighted in yellow) from each region. The
similarity score is the cosine similarity between the post representation and the region style embedding.

thors use expressions like "lumayan" to indicate a553

moderate experience, "seem amat" for excitement,554

and "mantul" to denote something extraordinary,555

showcasing the rich and diverse writing style of556

this region. Hanoi’s writing style, influenced by557

the modern Latin script and its use of diacritical558

marks, often features Vietnamese words without559

these marks. This use reflects a blend of traditional560

and contemporary linguistic practices, allowing for561

effective communication while honoring the lin-562

guistic heritage and subtleties of the region. These563

findings underscore the distinct linguistic identities564

of each region, as mirrored in their writing styles.565

5 Conclusion566

In this study, we introduced ContrastDistAA, a567

model designed to effectively separate content and568

style information, thereby enhancing AA perfor-569

mance. A significant contribution of our research570

is the introduction of the regional-level AA task,571

along with a dedicated dataset to evaluate AA meth-572

ods in this new context. Through comprehensive573

experiments, ContrastDistAA was benchmarked574

against state-of-the-art AA techniques, demonstrat-575

ing its superior performance in both individual- 576

level and regional-level AA tasks. 577

The results from our case studies indicate that 578

ContrastDistAA is adept at identifying unique lin- 579

guistic features indicative of regional writing styles. 580

Specifically, the contrastive learning and represen- 581

tation disentanglement approach have helped to 582

effectively segregate content from stylistic features 583

for AA tasks. This capability is crucial for un- 584

derstanding how linguistic styles and cultural in- 585

fluences interplay in AA. Our research addresses 586

a previously unexplored aspect of AA and offers 587

fresh perspectives on the relationship between lin- 588

guistic styles and cultural elements. 589

For future work, we will focus on further explor- 590

ing regional and cultural writing styles. We aim 591

to include a broader range of cultural characteris- 592

tics and regional diversity, thereby enhancing the 593

understanding of AA in diverse linguistic and cul- 594

tural contexts. This ongoing research will continue 595

to expand the horizons of AA, contributing to a 596

deeper understanding of the intricate relationship 597

between authorship, language, and culture. 598
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6 Limitations599

This study makes noteworthy contributions to the600

field of Authorship Attribution (AA), but it also601

acknowledges two key limitations. The first limita-602

tion pertains to the methodology of obtaining style603

representations for regions and authors, which is604

based on averaging post representations. This ap-605

proach, while practical, is susceptible to the clus-606

ter center shift problem, especially when outliers607

are included in the calculations. Outliers can sig-608

nificantly skew the average, leading to potential609

misrepresentations of the typical writing style of a610

region or an author.611

The second limitation is the geographical scope612

of the dataset used. The Regional Tweets dataset613

is confined to six regions within Southeast Asian614

countries, which, while providing valuable regional615

insights, limits the broader applicability and gener-616

alizability of the study’s findings. To enhance the617

scope and robustness of future research in AA, it618

would be beneficial to include more diverse regions619

from various countries and cultural areas. This620

expansion would offer a more comprehensive un-621

derstanding of the diverse linguistic and stylistic622

nuances that characterize writing styles globally,623

and contribute to the development of AA meth-624

ods that are universally relevant and sensitive to625

regional and cultural variations.626
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