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Abstract

We develop a Frank-Wolfe algorithm with corrective steps, generalizing previous
algorithms including Blended Conditional Gradients, Blended Pairwise Conditional
Gradients, and Fully-Corrective Frank-Wolfe. For this, we prove tight convergence
guarantees together with an optimal face identification property. Furthermore,
we propose two highly efficient corrective steps for convex quadratic objectives
based on linear optimization or linear system solving, akin to Wolfe’s Minimum-
Norm Point algorithm, and prove finite-time convergence under suitable conditions.
Beyond optimization problems that are directly quadratic, we revisit two algorithms,
Split Conditional Gradient and Second-Order Conditional Gradient Sliding, which
can leverage quadratic corrections to accelerate the solution of their quadratic
subproblems. We show improved convergence rates for the first and prove broader
applicability for the second. Finally, we demonstrate substantial computational
speedups for Frank-Wolfe-based algorithms with quadratic corrections across the
considered problem classes.

1 Introduction

In this paper, we consider convex constrained optimization problems of the form

min
x∈X

f(x),

where X is a compact, convex set and f is a convex, differentiable function. A particularly interesting
family of first-order methods for this setting is the class of Conditional Gradient (CG) or Frank-Wolfe
(FW) methods [Levitin and Polyak, 1966, Frank and Wolfe, 1956]. One major advantage of these
methods is that they access X only through a Linear Minimization Oracle (LMO), which solves
linear subproblems over the set. The methods then construct solutions as convex combinations of
the vertices returned by the LMO. In particular, these methods avoid costly projection steps while
ensuring an O(1/t) convergence rate in general and linear convergence rates in specific settings.
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Over the years, several FW variants have been designed to exploit the so-called active set, i.e., the
vertices used to form the current iterate, the oldest and best-known variant being the Away-step
Frank-Wolfe (AFW) [Guélat and Marcotte, 1986]. By maintaining the convex combination, these
methods significantly reduce the number of LMO calls. Furthermore, they achieve accelerated
convergence rates on polytopes for sharp functions, whereas standard FW remains at a rate of Ω(1/t).
Additionally, they have been shown to produce sparse solutions (constructed as convex combinations
of a few iterates), which motivated strong interest in FW methods for sparse optimization and machine
learning applications. The Fully-Corrective Frank-Wolfe (FCFW) algorithm, presented in some
form in Wolfe [1976], Holloway [1974] and named in Lacoste-Julien and Jaggi [2015], drives the
corrective paradigm to its limit by computing a minimizer of the objective over the convex hull of the
active set after each FW step. Besides its favorable convergence properties and sparsity of solutions,
FCFW is also closely related to column-generation and cutting-plane methods [Vinyes and Obozinski,
2017, Zhou et al., 2018]. Nonetheless, FCFW is often computationally impractical since minimizing
over the convex hull of the active set can be computationally as hard as the original problem.

In this work, we generalize the idea of corrective steps on the active set to a new framework,
Corrective Frank-Wolfe (CFW), and design two new Quadratic Correction (QC) steps tailored to
quadratic objective functions. While many applications involve quadratic objectives, such as matrix
recovery [Garber et al., 2019], spectral clustering [Ding et al., 2022], and entanglement detection
[Liu et al., 2025], we also revisit two FW-based algorithms that benefit from QC and strengthen their
theoretical guarantees (with improved rates and applicability to new function classes).

Split Conditional Gradient (SCG) [Woodstock and Pokutta, 2025] tackles optimization problems over
finite intersections of convex sets via splitting, avoiding the potential intractable linear minimization
over the intersection. SCG is inspired by the Alternating Linear Minimization (ALM) algorithm
[Braun et al., 2023] and solves the problem by alternating between update steps for iterates on the
respective sets. Each iterate minimizes an auxiliary quadratic objective, incurring an increasing
penalty on the squared distance to the other iterate. Besides the computational benefits of the quadratic
corrections, we also prove a faster convergence rate for SCG.

Additionally, we consider Second-Order Conditional Gradient Sliding (SOCGS) [Carderera and
Pokutta, 2020] which follows an inexact Newton approach, adapting the Conditional Gradient Sliding
(CGS) method of Lan and Zhou [2016] with a quadratic approximation of the original problem at each
iteration. The method enjoys very fast convergence rates and has been shown to outperform first-order
Frank-Wolfe variants on various problems. However, the main computational bottleneck of SOCGS
is solving the quadratic subproblems, which can be significantly accelerated using our proposed
quadratic corrections. Furthermore, we establish a global linear convergence rate of SOCGS for
generalized self-concordant functions [Sun and Tran-Dinh, 2019] without requiring global Lipschitz
smoothness or strong convexity.

Related work

The literature on Frank-Wolfe methods is vast, and we only cover a few related methods here; for
a more comprehensive overview, we refer to Braun et al. [2022]. The corrective framework is
inspired by ideas from Blended Conditional Gradients (BCG) [Braun et al., 2019] and Blended
Pairwise Conditional Gradients (BPCG) [Tsuji et al., 2022]. Furthermore, Lacoste-Julien and Jaggi
[2015] present, besides the already mentioned AFW and FCFW, Pairwise Frank-Wolfe (PFW)
and an approximate variant of FCFW. Additionally, they introduce a generalized version of the
Minimum-Norm Point (MNP) algorithm [Wolfe, 1976] for corrections in approximate FCFW, called
MNP-Correction. Finally, we follow the idea of Braun et al. [2017] to introduce a lazified variant of
the corrective step framework.

Contributions

Our contributions can be summarized as follows:

Corrective Frank-Wolfe We introduce Corrective Frank-Wolfe (CFW), a new framework for FW
variants that perform corrective steps on the active set and prove linear convergence for smooth, sharp
functions over polytopes. We show that active-set-based methods like AFW, BCG, and BPCG fit into
the corrective step framework. Furthermore, we introduce a lazified variant of CFW, which avoids
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LMO calls during iterations with corrective steps. Lastly, we prove that CFW identifies the optimal
face of a polytope in finite time under strict complementarity.

Quadratic corrections We introduce two new quadratic correction steps tailored for quadratic
objective functions. The first one, QC-LP, is a direct linear program solving the quadratic problem
over the convex hull of the active set via relaxed optimality conditions. The second type, QC-MNP,
is a specialized variant of the Minimum-Norm Point (MNP) algorithm [Wolfe, 1976], solving the
quadratic problem over the affine hull. Both steps are approximate variants of an FCFW step, but
require only solving a linear program or linear system, respectively. Additionally, we propose a
hybrid method that combines these corrections with the local pairwise steps of BPCG [Tsuji et al.,
2022], yielding a highly efficient update scheme for quadratic problems. Finally, we show that CFW
with QC-LP and QC-MNP converges in finite time.

Theoretical results for SCG and SOCGS Besides the practical benefits of the new quadratic
corrections for SCG and SOCGS, we also present new theoretical results. First, we prove that SCG
converges for a smaller step size, yielding a faster rate of O(1/

√
t) compared to the original rate

of O(log(t)/
√
t) provided in Woodstock and Pokutta [2025]. This closes the gap to the complexity

bound of O(1/
√
t) for the underlying non-smooth problem [Yudin, 1983]. Second, we show that

the Projected Variable-Metric method in SOCGS converges globally for generalized self-concordant
functions.

Experiments We demonstrate the excellent computational benefits of the new quadratic corrections
on a variety of problems, including sparse regression, entanglement detection, projections onto
the Birkhoff polytope, and tensor completion problems. Further experiments show that quadratic
corrections also improve the convergence of ALM and SCG. For SOCGS, the quadratic corrections
enable us to solve the quadratic subproblem efficiently.

Preliminaries

Let X be a compact convex set with diameter D def
= maxx,y∈X ∥x− y∥, X ∗ be the set of minimizers

of f over X , and V (X ) be the set of extreme points of X . If X is a polytope, we denote its pyramidal
width by δ [Lacoste-Julien and Jaggi, 2015] and the minimal face containing X ∗ by F∗. Strict
complementarity holds if there exists ρ > 0 such that for all x∗ ∈ X ∗ and v ∈ V (X ), we have

⟨∇f(x∗),v − x∗⟩
{
⩾ ρ if v ∈ V (X ) \ F∗,

= 0 if v ∈ V (X ) ∩ F∗.

We denote the active set, i.e., the set of vertices used by an FW algorithm, by S ⊂ X . For a given
weight vector λ, we denote the weight of an atom v ∈ S by λv. For a given convex combination
x =

∑
v∈S λvv, we denote the corresponding weight vector by λ(x)

def
= λ. Furthermore, we denote

the convex hull of S by conv(S), the affine hull of S by aff(S), and the boundary of a set M by ∂M .

Let f : X → R be a differentiable, convex function. The function f is L-smooth if

f(y)− f(x) ⩽ ⟨∇f(x),y − x⟩+ L

2
∥y − x∥2 ∀x,y ∈ X .

The function f is µ-strongly convex if

f(y)− f(x) ⩾ ⟨∇f(x),y − x⟩+ µ

2
∥y − x∥2 ∀x,y ∈ X .

In the following, we will use the notion of sharpness, generalizing strong convexity. Let f∗ denote
the optimal value of f over X . A proper convex function f is (c, θ)-sharp with c > 0 and θ ∈ (0, 1]
if for all x ∈ X ,

c
(
f(x)− f∗)θ ⩾ min

y∈X∗
∥x− y∥ .

In particular, a µ-strongly convex function is
(√

2√
µ ,

1
2

)
-sharp over any compact set.
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2 Corrective Frank-Wolfe

We now present the Corrective Frank-Wolfe (CFW) algorithm in Algorithm 1, its convergence
analysis, and specialized corrections for quadratic objectives.

CFW provides a general framework for FW methods that perform corrective steps on the active
set. Unlike approximate FCFW, CFW does not perform an FW step in each iteration but instead
compares the so-called local pairwise gap ⟨∇f(xt),at − st⟩ with the global Frank-Wolfe gap
⟨∇f(xt),xt − vt⟩ to decide whether to perform a corrective step or an FW step. Algorithm 2
is a template for corrective steps that ensures convergence of CFW.

Algorithm 1 Corrective Frank-Wolfe (CFW)

Require: convex smooth function f , starting point x0 ∈ V (X ).
1: S0 ← {x0}
2: for t = 0 to T − 1 do
3: at ← argmaxv∈St

⟨∇f(xt),v⟩ ▷ away vertex
4: st ← argminv∈St

⟨∇f(xt),v⟩ ▷ local FW
5: vt ← argminv∈V (X )⟨∇f(xt),v⟩ ▷ global FW
6: if ⟨∇f(xt),at − st⟩ ⩾ ⟨∇f(xt),xt − vt⟩ then
7: xt+1, St+1 ← CS(St,xt,at, st)
8: else
9: γt ← argminγ∈[0,1] f(xt − γ(xt − vt))

10: xt+1 ← xt − γt(xt − vt)
11: St+1 ← St ∪ {vt}
12: end if
13: end for

Algorithm 2 Corrective Step CS(S,x,a, s)

Require: S ⊂ X , x,a, s ∈ X
Return: S′ ⊆ S, x′ ∈ conv(S′) satisfying

(i) f(x′) ⩽ f(x) and S′ ⊊ S or ▷ drop step
(ii) f(x)− f(x′) ⩾ ⟨∇f(x),a−s⟩2

2LD2 ▷ descent step

A corrective step is either a descent step that yields sufficient primal progress or a drop step that
decreases the size of the active set without increasing the objective value. In contrast to approximate
FCFW, we omit any conditions on the away gap and compare the primal progress only to the local
pairwise gap rather than the global FW step. The update steps in BCG, BPCG, and FCFW meet the
criteria of a corrective step. The proof is given in Section A.
Proposition 1. Algorithm 3, Algorithm 4, and the simplex gradient descent step from Braun et al.
[2019] satisfy the criteria of Algorithm 2.

Algorithm 3 Local Pairwise Step LPS(S,x,a, s)

Require: S ⊂ X , x,a, s ∈ X
Return: S′,x′

1: γ∗ ← argminγ∈[0,λa(x)] f(x+ γ(s− a))

2: x′ ← x+ γ∗(s− a)

3: S′ ←
{
S \ {a} if γ∗ = λa(x),

S otherwise.

Algorithm 4 Fully-Corrective Step FCS(S)

Require: S ⊂ X
Return: S′,x′

1: x′ ← argminx∈conv(S) f(x)

2: S′ ← {v ∈ S | λv(x
′) > 0}

This result enables designing new corrective steps without theoretical verification. The conditions of
a drop step can be verified easily at runtime. For the descent step, one can compare the primal value
of the new point with the result of the local pairwise step. If neither of the conditions is met, one can
perform the local pairwise step, which provides an inexpensive fallback option. Furthermore, one can
also use hybrid methods that combine different steps to balance computational effort and progress.
Remark 1. The result of Proposition 1 also applies to AFW if the gap comparison in Algorithm 1 uses
the away gap instead of the local pairwise gap. We choose the pairwise gap since it can be computed
with the same complexity and leads to fewer FW steps.

4



2.1 Convergence analysis

In the following, we will state two convergence results for CFW and its lazified variant, as well as a
result on active set identification. The proofs are independent of the specific implementation of the
corrective step, thereby simplifying the verification of these properties for new variants.
Theorem 2. Let X be a convex feasible set with diameter D and f be a convex, L-smooth function
over X . Consider the sequence {xt}Tt=0 ⊂ X obtained by Algorithm 1. Then we have

f(xT )− f∗ ⩽
4LD2

T
. (1)

If additionally f is (c, 1
2 )-sharp and X is a polytope with pyramidal width δ, then

f(xT )− f∗ ⩽ (f(x0)− f∗) exp(−cf,XT ), (2)

where cf,X
def
= min

{
1
4 ,

δ2

16Lc2D2

}
.

The proof is given in Section A.

The CFW algorithm needs to call the LMO at each iteration to compare the FW gap with the local
pairwise gap, even if the FW step is not taken after all. We follow the approach of Braun et al. [2017]
and adopt a lazified version of CFW to avoid this requirement.

The Lazified Corrective Frank-Wolfe (LCFW) method replaces the FW gap with an estimate Φt,
which is updated if the gap becomes smaller than Φt/J for some parameter J ⩾ 1. The convergence
results are stated in Theorem 3, and we present its proof together with the algorithm in Section B.
Theorem 3. Let X be a convex feasible set with diameter D and f be a convex, L-smooth function
over X . Consider the sequence {xt}Tt=0 ⊂ X obtained by the Algorithm 7. Then we have

f(xT )− f∗ = O
(
1

T

)
. (3)

If additionally f is (c, 1
2 )-sharp and X is a polytope with pyramidal width δ, then

f(xT )− f∗ = O (exp(−aT )) , (4)
for some constant a > 0 independent of T .

Finally, we state a theorem that ensures identification of the optimal face by CFW in finite time
under strict complementarity. Identifying the optimal face F∗ of X is crucial, as it simplifies the
optimization problem to one over F∗ instead of X . An early result by Guélat and Marcotte [1986]
proves this property for AFW under the additional assumption of strong convexity of f . Bomze et al.
[2020] extend this result to AFW for general convex functions and Wirth et al. [2025] prove the same
result for BPCG. The proof of Theorem 4 is given in Section A.
Theorem 4. Let X be a polytope and let f be a convex, L-smooth function over X . Assume that
strict complementarity holds. Consider the sequence {xt}Tt=0 generated by Algorithm 1. Then there
exists an iteration T̃ such that

xt ∈ F∗ for all t ⩾ T̃ .

2.2 Quadratic corrections

In this section, we introduce two types of corrective steps for the CFW algorithm that are especially
suited for quadratic problems: Quadratic Correction LP (QC-LP) and Quadratic Correction MNP (QC-
MNP). Here, we assume that f is a convex quadratic function, i.e., can be written as f(x) =
1
2 ⟨x,Ax⟩+ ⟨b,x⟩+ c, where A is a symmetric positive semidefinite matrix. This can be extended
to general finite-dimensional Hilbert spaces, in which case A is a symmetric linear operator.

The quadratic corrections are inspired by FCFW, which solves the minimization prob-
lem minx∈conv(S) f(x) in each iteration. Unfortunately, minimizing quadratic functions over poly-
topes such as conv(S) is computationally demanding (we discuss this in Remark 2). To circumvent
this difficulty, the QC algorithms instead exploit the finiteness of the active set S and relax this
problem into minimizing the function f over the affine hull of S,

min
x∈aff(S)

f(x)

(
⩽ min

x∈conv(S)
f(x)

)
, (5)

and then reconstruct a point in conv(S).
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Solving the minimization problem over the affine hull Let x∗
aff ∈ argminx∈aff(S) f(x). First-

order optimality conditions imply that ⟨∇f(x∗
aff),d⟩ = 0 for any feasible direction d. The feasible

directions in aff(S) are spanned by d = v − w for v,w ∈ S. Thus, the first-order optimality
conditions are equivalent to the system of equalities,

⟨∇f(x∗
aff),v −w⟩ = 0 ∀ v,w ∈ S,

which is equivalent to the gradient at x∗
aff being orthogonal to the affine space. Writing x∗

aff as an
affine combination of the atoms in S yields ∇f(x∗

aff) = Ax∗
aff + b = A

∑
v∈S λv(x

∗
aff)v + b =

AVλ(x∗
aff) + b. By fixing an anchor w ∈ S, we obtain a linear system,

⟨AVλ+ b,v −w⟩ = 0 ∀ v ∈ S \ {w},
∑
v∈S

λv = 1. (6)

Remark 2. Applying first-order optimality conditions to x∗
conv ∈ argminx∈conv(S) f(x) with the

barycentric coordinates yields ⟨AVλ+ b,v −Vλ⟩ ⩾ 0 for all v ∈ S, which is a quadratic
inequality system in λ that can be as hard to solve as the original problem. However, if x∗

conv lies in
the relative interior of conv(S), these quadratic inequalities simplify to linear equalities as in (6).

The linear system (6) is equivalent to the KKT conditions of (5) and thus sufficient. As formalized
in the following proposition, an affine minimizer exists if the linear term b yields no descent in any
direction in the affine hull in which f is not curved. Otherwise, the problem is unbounded and the
system is infeasible. The proof is given in Section C.2.
Proposition 5. Equation (6) is feasible if and only if b ⊥ span(S) ∩ ker(A). In particular, it is
feasible if A is positive definite.

Quadratic correction through Linear Programs To ensure that the new weights λ are non-
negative, we consider two approaches. The QC-LP approach enforces this directly, yielding

⟨AVλ+ b,v −w⟩ = 0 ∀ v ∈ S \ {w},
∑
v∈S

λv = 1, λ ⩾ 0. (7)

The LP is only feasible if the affine minimizer exists and lies in conv(S). Otherwise, we perform a
local pairwise step as a computationally cheap fallback option. The method is stated in Algorithm 5.

Algorithm 5 Quadratic Correction LP

Require: S ⊂ X , x,a, s ∈ X
Return: S′,x′

λ′ ← Solve (7)
if feasible then ▷ FCFW step

x′ ←
∑

v∈S λ′
vv

S′ ← S
else ▷ Fallback step

S′,x′ ← LPS(S,x,a, s)
end if

Algorithm 6 Quadratic Correction MNP

Require: S ⊂ X , x,a, s ∈ X
Return: S′,x′

λ̃← Solve (6)
if feasible then

if λ̃ ⩾ 0 then ▷ FCFW step
x′ ←

∑
v∈S λ̃vv

S′ ← S
else ▷ MNP step

τ ← min
{

λv(x)

λv(x)−λ̃v

∣∣∣λ̃v < λv(x)
}

x′ ←
∑

v∈S(τ λ̃v + (1− τ)λv(x))v
S′ ← {v ∈ S | λv(x

′) > 0}
end if

else ▷ Fallback step
S′,x′ ← LPS(S,x,a, s)

end if

Quadratic correction through the Minimum-Norm-Point algorithm The second approach,
QC-MNP, is inspired by the Minimum-Norm-Point algorithm in Wolfe [1976]. Instead of enforcing
the non-negativity directly, one considers the line segment between the weights of the current point
and the affine minimizer. If at least one of the new weights is negative, we perform a ratio test to find
the intersection of the line segment with the |S|-simplex. This step will drop at least one atom from
the active set, improving sparsity. However, it can happen that this atom belongs to the optimal face.
Unlike the MNP-Correction step from Lacoste-Julien and Jaggi [2015], QC-MNP will stop after a
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single truncation, alleviating the need to solve multiple linear systems in a single iteration. This also
avoids dropping more than one atom per iteration, which can be problematic in some cases. As for
QC-LP, we perform a local pairwise step if there is no affine minimizer. The standard implementation
of QC-MNP is presented in Algorithm 6, and we derive a more efficient variant for the case of
multiple affine minimizers in Section C.1.

Both QC-LP and QC-MNP are corrective steps in the sense of Algorithm 2. Furthermore, an affine
minimizer is guaranteed to exist if the current iterate lies in the optimal face.
Proposition 6. QC-LP and QC-MNP satisfy the criteria of corrective steps in Algorithm 2.

Proposition 7. Let X be a polytope and F∗ be the minimal face of X containing the optimal
points X ∗. If S ⊂ F∗, then argminx∈aff(S) f(x) ̸= ∅. If additionally there exists x∗ ∈ X ∗ with
x∗ ∈ conv(S), then x∗ ∈ argminx∈aff(S) f(x).

We would like to emphasize that the sizes of the linear system and the LP do not depend on the
ambient dimension but only on the size of the active set. Furthermore, similarly to Besançon et al.
[2025], we can cache the scalar products ⟨v,Aw⟩ and ⟨b,v⟩ for v,w ∈ S, accelerating the setup of
the linear system and LP while only marginally increasing storage.
Remark 3. The linear system in (6) is usually not symmetric, which can be problematic for solvers
like Conjugate Gradient (CG). However, subtracting W⊤Aw1⊤λ = W⊤Aw from (6) yields the
equivalent symmetric system

W⊤AWµ = −W⊤(Aw + b), (8)

where the matrix W has columns v −w for v ∈ S \ {w}. The new weights are then given by

λv =

{
1− 1⊤µ if v = w,

µv otherwise.

Finally, we come to the main result of this section. As seen in Theorem 4, CFW identifies the optimal
face of a polytope in finitely many iterations if strict complementarity holds. This is crucial for
fully-corrective steps as they converge to an optimal solution if the optimal face is identified and the
convex hull of the active set contains at least one solution. Thus, CFW with QC-LP, QC-MNP or
FCFW converges to an optimal solution in finitely many iterations. The proof is given in Section C.2.
Theorem 8. Let X be a polytope and let f be a convex, quadratic function over X , i.e., f(x) =
1
2 ⟨x,Ax⟩ + ⟨b,x⟩ + c where A is a symmetric positive semidefinite matrix. Assume that strict
complementarity holds. Consider the sequence {xt}Tt=0 generated by Algorithm 1 with Algorithm 4,
Algorithm 5, or Algorithm 8. Then, there exists an iteration T̃ such that xT̃ ∈ X ∗.

3 Accelerated algorithms through quadratic corrections

In this section, we leverage quadratic corrections for two classes of algorithms that require solving
quadratic subproblems and provide additional theoretical results that might be of independent interest.

3.1 Split Conditional Gradient

A key limitation of Frank-Wolfe methods is their reliance on a Linear Minimization Oracle. This
becomes particularly problematic for optimization over intersections of convex sets, where no
efficient procedure for linear minimization is generally available. Braun et al. [2023] introduced
the Alternating Linear Minimization (ALM) method for finding a point in the intersection of two
convex sets P and Q, drawing a parallel with von Neumann’s alternating projection. ALM alternates
between Frank-Wolfe steps, solving minx∈P,y∈Q ∥x− y∥2, and therefore avoids projections in an
FW-like manner. Woodstock and Pokutta [2025] extended their approach to optimization problems
over intersections by penalizing the distance,

min
x∈P,y∈Q

Fλ(x,y) = f

(
x+ y

2

)
+

λ

2
∥x− y∥2.

Their method, Split Conditional Gradient (SCG), performs parallel FW steps on both sets and can
therefore be easily extended to use corrective steps. Particularly, if the original objective is linear or
quadratic, one can leverage quadratic corrections.
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Independently of CFW, we prove a tighter convergence rate for the original SCG. Woodstock and
Pokutta [2025] prove that the primal gap of Fλ converges at a rate of O

(
log t/

√
t
)
. By analyzing

a different auxiliary objective, we show that replacing the step size γt =
2√
t+2

by the smaller step

size γt =
2√

t+2 log(t+2)
improves the convergence rate of SCG to O

(
1/
√
t
)
. The proof for the more

general case of finite intersections over Hilbert spaces is provided in Section D.

Theorem 9. Let f : Rn → R be convex and L-smooth, P,Q ⊂ Rn be non-empty compact and
convex sets with diameters DP and DQ such that P ∩ Q ̸= ∅. For t ⩾ 0, set λt = ln(t + 2),
(x∗

t ,y
∗
t ) ∈ argmin(x,y)∈P×Q Fλt

(x,y). For γt = 2√
t+2 ln(t+2)

, the iterates of Algorithm 9 satisfy

0 ⩽ Fλt(xt,yt)− Fλt(x
∗
t ,y

∗
t ) ⩽

(DP +DQ)
2(L+ 1) +

√
2cf√

t+ 2
(9)

for all t ⩾ 0, where cf = max(x,y),(x̃,ỹ)∈P×Q f
(
x+y
2

)
− f

(
x̃+ỹ
2

)
<∞.

3.2 (Second-Order) Conditional Gradient Sliding

Another class of algorithms that benefit from quadratic corrections is sliding methods, specifically
Conditional Gradient Sliding (CGS) [Lan and Zhou, 2016] and Second-Order Conditional Gradient
Sliding (SOCGS) [Carderera and Pokutta, 2020]. These methods reduce the number of first-order
oracle calls by iteratively solving quadratic problems with a FW variant. While the original papers
considered vanilla FW and AFW steps, one can use quadratic corrections to accelerate the inner steps.

Unlike regular FW variants, CGS requires only O(1/
√
ε) instead of O(1/ε) gradient calls to achieve

ε-optimality, matching existing lower bounds. SOCGS achieves a linear rate for strongly convex
functions over polytopes, replacing the Euclidean projection subproblem in CGS with a projected
variable-metric problem. The convergence of CGS and SOCGS was analyzed on globally smooth,
strongly convex functions. We extend this rate to generalized self-concordant functions, a detailed
description is given in Section E.

Theorem 10. Let X be a compact convex set of diameter D and f be a (M,ν)-generalized self-
concordant function with ν ⩾ 2 such that f is strongly convex on dom(f) ∩ X if ν = 3. Given a
starting point x0 ∈ X ∩ dom(f), the Algorithm 11 with a step size γk guarantees for all k ⩾ 0:

f(xk+1)− f(x∗) ⩽ (1− c(γk)) (f(xk)− f(x∗)) ,

where c(γk) < 1 is a constant depending on the step size γk.

4 Experiments

In this section, we present numerical experiments on two classical quadratic problems and on two
applications of quadratic corrections to SCG and SOCGS. In all experiments, we use a hybrid of
BPCG and QC steps, performing a QC step whenever N new atoms have been added to the active set.
In the first two experiments, we compare QC-LP and QC-MNP with four baselines: FW, AFW, PFW,
and BPCG. For SCG and SOCGS, we compare against the original used FW variant and BPCG, to
demonstrate the effectiveness of the quadratic corrections. Additional details and further experiments
are provided in Section F. All runs were executed on a cluster with Intel Xeon Gold 6338 CPUs at 2
GHz and 12 GB RAM, with time and iteration limits chosen according to problem size.

4.1 Regression over the K-Sparse polytope

In the first experiment, we consider a sparse regression problem over the K-Sparse polytope, PK(τ) =
B1(τK) ∩ B∞(τ). The problem is to minimize f(x) =

∑m
i=1(⟨x,ai⟩ − yi)

2 = ∥Ax− y∥22 over
PK(τ) given data points {(ai, yi)}mi=1 ⊂ Rn × R. We generated synthetic normally distributed ai
and yi with n = 500, m = 10000 and K ∈ {5, 20}, and used a fixed interval length of N = 10 for
the quadratic correction steps. As shown in Figure 1, all methods except FW converge linearly, with
QC-LP and QC-MNP providing a substantial acceleration for both instances. For smaller values of
K, the benefit of QC is more pronounced as the optimal face contains more atoms and therefore the
active set is larger. Both QC methods reach optimality significantly faster than the baselines.
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Figure 1: Sparse regression over the K-Sparse polytope for K ∈ {5, 20}

4.2 Entanglement detection

Certifying the entanglement of quantum states is a fundamental challenge in quantum information
theory. Shang and Gühne [2018] use Gilbert’s algorithm [Gilbert, 1966], a simplified FW method,
together with a heuristic LMO for computing the minimal distance of a given state to the set of
separable quantum states. Liu et al. [2025] extend their approach to general FW methods and propose
an approximate LMO with a provable multiplicative error. For our experiments, we consider a family
of 3 × 3 entangled states proposed in Horodecki [1997] and use a fixed interval length of N = 1
for QC-MNP and N = 10 for QC-LP. A complete description of the setup as well as results for
noisy states are given in Section F. The results for a ∈ {0.25, 0.5} are shown in Figure 2. We use a
logarithmic scale on the horizontal axis to visualize the differences between the methods more clearly.
QC-MNP shows a drastic initial acceleration, solving the problem to optimality in a fraction of the
iterations and time of the other baselines. The LP in the QC-LP is rarely feasible, leading to pairwise
steps and thus a similar trajectory to BPCG. FW and PFW perform worse than the other baselines in
terms of time due to the high number of LMO calls.

Figure 2: Entanglement detection for a ∈ {0.25, 0.5}

4.3 Projection onto intersections with Split Conditional Gradient

In this experiment, we use SCG to project onto the intersection of the Birkhoff polytope B(n), the
set of all n × n doubly stochastic matrices, and a shifted ℓ2 ball. For the shift, we sample a point
on a face of B(n) and move the center of the ball from there in the direction of the normal vector
of the face. The shift is parametrized by c ∈ [0, 1] and q ∈ [0, 1]; a complete description is given
in the appendix. The objective is given by f(X) = 1

n2 ∥X−X0∥2F where X0 ∈ Rn×n is sampled
with uniformly distributed entries. The results for n ∈ {300, 500} using c = 0.9, q = 0.1 and N = 1
are given in Figure 3. We compare the hybrid methods QC-MNP and QC-LP with BPCG and the
FW variant from [Woodstock and Pokutta, 2025]. The split approach, with its dynamically changing
objective, makes this problem more difficult than the previous ones. Both QC methods hit numerical
precision limits on these instances and would need adjusted tolerances for longer runs. Nevertheless,
QC-MNP and QC-LP outperform BPCG for n = 500 and achieve similar results for n = 300. The
FW variant from [Woodstock and Pokutta, 2025] performs the worst on both instances.
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Figure 3: Projection onto the intersection of the Birkhoff polytope and a shifted ℓ2 ball for dimension
n ∈ {300, 500}

4.4 Projecting with quadratic corrections in Second-Order Conditional Gradient Sliding

In the last experiment, we solve a logistic regression problem over the ℓ1 ball with SOCGS. The
objective is to minimize f(x) = 1

m

∑m
i=1 ln

(
1 + exp(−yi ⟨x, zi⟩)

)
+ 1

2m ∥x∥
2. The labels yi ∈

{−1, 1} and feature vectors zi ∈ Rn are taken from the gisette training dataset [Guyon et al.,
2007], with n = 5000 and m = 6000. Recall that each iteration of SOCGS corresponds to solving
an outer problem and an inner problem. We use the BPCG step for the outer problem and compare
BPCG, QC-MNP, and QC-LP for the inner step. Additionally, we also test AFW for the inner step
as proposed in [Carderera and Pokutta, 2020]. The results for k ∈ {50, 200} inner iterations are
depicted in Figure 4. All methods follow an identical trajectory in the initial phase, indicating that
SOCGS chooses only the outer step. Once the distance to the optimum is sufficiently small, the QC
methods exhibit substantial improvements over BPCG in both instances. Further analysis reveals
that QC-MNP and QC-LP perform more FW steps than BPCG on the inner problem by avoiding
additional pairwise steps, which yields a drastic initial decrease in primal values and the FW gap. For
longer runs of the inner problem, i.e., larger k, the acceleration of the QC methods is less pronounced,
yielding a similar performance as AFW. The hybrid method with QC-MNP performs more quadratic
corrections than QC-LP, yielding more significant acceleration but also longer runs in wall-clock
time.

Figure 4: Logistic regression over the ℓ1-ball for maximum number of inner steps k ∈ {50, 200}

5 Conclusion

In this paper, we present a new framework for conditional gradient methods, Corrective Frank-
Wolfe, that uses corrective steps on the active set to improve convergence while avoiding additional
LMO calls. Instances of the proposed framework provide state-of-the-art convergence rates for
sharp functions over polytopes and identify the optimal face of a polytope in finite time. The
proposed quadratic corrections are very effective in practice, outperforming methods of comparable
convergence both in iteration count and runtime. This allows us to revisit and accelerate previous
algorithms, Split Conditional Gradient and Second-Order Conditional Gradient Sliding, by applying
quadratic corrections to the arising subproblems.
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Justification: All presented theoretical results are proven and the experimental results show
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made in the paper.
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to make their results reproducible or verifiable.
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might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general, releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We provide the code for reproducing the experimental results in the supple-
mental material.
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• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Details about the experimental setup are provided in the appendix.
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• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: We do not report error bars because the methods are deterministic. For exper-
iments with synthetic data, we tested the methods for different seeds, yielding consistent
results.
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• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g., negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: The computational resources needed for the experiments are provided in the
experiments section.
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• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
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• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
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Answer: [NA]
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
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being used as intended and functioning correctly, harms that could arise when the
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safety filters.
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• If assets are released, the license, copyright information, and terms of use in the
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has curated licenses for some datasets. Their licensing guide can help determine the
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19

paperswithcode.com/datasets


• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
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A Proofs for Corrective Frank-Wolfe

In this section, we provide proofs for the theoretical results on CFW stated in Section 2. Before we
present a more general version of Theorem 2 and its proof, we recall two lemmas resulting from the
sharpness of the objective function and a conversion from contraction to convergence rates.

Lemma 11. [Braun et al., 2022, Lemma 3.32] Let X be a polytope of pyramidal width δ > 0 and
let f be a (c, θ)-sharp convex function over X . Let a and v be defined as in Algorithm 1, then

1

c
(f(x)− f∗)1−θ ⩽

⟨∇f(x),a− v⟩
δ

. (10)

Lemma 12. [Braun et al., 2022, Lemma 2.21] Let {ht}t be a sequence of positive numbers and let
c0, c1, c2, α be positive numbers with c1 < 1 such that h1 ⩽ c0 and ht − ht+1 ⩾ ht min{c1, c2hα

t }
for all t ⩾ 1, then

ht ⩽

{
c0(1− c1)

t−1 if 1 ⩽ t ⩽ t0
(c1/c2)

1/α

(1+c1α(t−t0))1/α
= O(1/t1/α) if t ⩾ t0,

where

t0
def
= max

{⌊
log1−c1

(
(c1/c2)

1/α

c0

)⌋
+ 2, 1

}
.

Theorem 2. Let X be a convex feasible set with diameter D and f be a convex, L-smooth function
over X . Consider the sequence {xt}Tt=0 ⊂ X obtained by Algorithm 1. Then we have

f(xT )− f∗ ⩽
4LD2

T
. (1)

If additionally f is (c, 1
2 )-sharp and X is a polytope with pyramidal width δ, then

f(xT )− f∗ ⩽ (f(x0)− f∗) exp(−cf,XT ), (2)

where cf,X
def
= min

{
1
4 ,

δ2

16Lc2D2

}
.

Proof. Let T be the number of iterations of the algorithm, TFW the number of Frank-Wolfe steps,
Tdesc the number of descent steps, and Tdrop the number of drop steps. Frank-Wolfe steps are the
only steps that add vertices to the active set, and they do so one at a time. As a drop step reduces the
active set by at least one vertex, we have Tdrop ⩽ TFW and thus,

T = TFW + Tdrop + Tdesc ⩽ 2TFW + Tdesc ⩽ 2(TFW + Tdesc). (11)

Next, we bound the primal gap ht
def
= f(xt)− f∗ at iteration t.

First, we consider the case when a Frank-Wolfe step is taken. Using L-smoothness of f , the definition
of the FW step xt+1 = xt + γt(vt − xt), and the diameter D of the feasible region yields

ht − ht+1 = f(xt)− f(xt+1)

⩾ γt ⟨∇f(xt),xt − vt⟩ −
γ2
tL

2
∥xt − vt∥2

⩾ γt ⟨∇f(xt),xt − vt⟩ −
γ2
tLD

2

2
. (12)

As vt ∈ argmaxv∈V (X ) ⟨∇f(xt),xt − v⟩ by definition, and by convexity of f , we get

ht − ht+1 ⩾ γt ⟨∇f(xt),xt − x∗
t ⟩ −

γ2
tLD

2

2
⩾ γtht −

γ2
tLD

2

2
. (13)

Let γ̂t = ht

LD2 , which yields a lower bound on the progress made by the exact line search if γ̂t ⩽ 1.
For (13) we have then

ht − ht+1 ⩾ γ̂tht −
γ̂2
tLD

2

2
=

h2
t

2LD2
. (14)
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If γ̂t > 1, we have by definition ht ⩾ LD2. We can bound the progress of the line search using
γt = 1 in (13), which yields

ht − ht+1 ⩾ ht −
LD2

2
⩾

1

2
ht. (15)

Combining (14), (15), we have

ht+1 ⩽

{
ht − h2

t

2LD2 if γ̂t ⩽ 1
1
2ht if γ̂t > 1

. (16)

Next, we consider the case when a descent step is taken. Using the criterion for performing a
corrective step, the optimality of vt and the convexity of f , we have

ht − ht+1 = f(xt)− f(xt+1) ⩾
⟨∇f(xt),at − st⟩2

2LD2

⩾
⟨∇f(xt),xt − vt⟩2

2LD2

⩾
⟨∇f(xt),xt − x∗⟩2

2LD2

⩾
h2
t

2LD2
. (17)

Together with (16), we get

ht+1 ⩽
2LD2

TFW + Tdesc
,

which can be shown in the same way as in the proof of Corollary 4.2 in Braun et al. [2019], with
2LD2 replacing the value 4Lf . Together with (11), we get

hT ⩽
4LD2

T
,

which proves (1).

Now we prove the accelerated convergence rate (2) with the additional assumptions that f is (c, θ)-
sharp and X is a polytope. Again, we will bound the primal gap ht for different steps of the
algorithm.

First, we consider the iterations when the Frank-Wolfe step is taken. By line 6 of Algorithm 1 we
have

⟨∇f(xt),xt − vt⟩ ⩾ ⟨∇f(xt),at − st⟩ ⩾ ⟨∇f(xt),at − xt⟩ .
Adding the left-hand side to both sides yields:

2 ⟨∇f(xt),xt − vt⟩ ⩾ ⟨∇f(xt),at − vt⟩ . (18)

Similar to the proof of the sublinear rate, we consider a primal progress bound induced by smoothness,
specifically (12), and choose a specific step size, γ̃t =

⟨∇f(xt),xt−vt⟩
LD2 . For the case γ̃t < 1, we have

ht − ht+1 ⩾
⟨∇f(xt),xt − vt⟩2

2LD2
. (19)

Together with (18) and Lemma 11 we get

ht − ht+1 ⩾
⟨∇f(xt),xt − vt⟩2

2LD2

⩾
⟨∇f(xt),at − vt⟩2

8LD2

⩾
δ2

8c2LD2
h
2(1−θ)
t . (20)
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In the case γ̃t ⩾ 1 we have ⟨∇f(xt),xt − vt⟩ ⩾ LD2. Again, we can bound the progress of the
exact line search using γt = 1 in (12), which yields

ht − ht+1 ⩾ ⟨∇f(xt),xt − vt⟩ −
LD2

2

⩾
⟨∇f(xt),xt − vt⟩

2
(21)

⩾
⟨∇f(xt),xt − x∗

t ⟩
2

⩾
1

2
ht. (22)

For the descent step, we have

⟨∇f(xt),at − st⟩ ⩾ ⟨∇f(xt),xt − vt⟩ ⩾ ⟨∇f(xt), st − vt⟩ .

Adding ⟨∇f(xt),at − st⟩ to both sides yields

2 ⟨∇f(xt),at − st⟩ ⩾ ⟨∇f(xt),at − vt⟩ .

Together with the definition of a descent step, line 6 of Algorithm 1 and again Lemma 11, we get

ht − ht+1 ⩾
⟨∇f(xt),at − st⟩2

2LD2

⩾
⟨∇f(xt),at − vt⟩2

8LD2

⩾
δ2

8c2LD2
h
2(1−θ)
t . (23)

Together with (20) and (22) we have

ht − ht+1 ⩾ ht min

{
1

2
,

δ2

8c2LD2
h1−2θ
t

}
, (24)

for any iteration t that is not a drop step. For θ = 1
2 , this simplifies to

ht+1 ⩽ min

{
1

2
, 1− δ2

8c2LD2

}
ht.

By (11) and the fact that drop steps are non-increasing, i.e., ht+1 ⩽ ht, we have

hT ⩽ h0 min

{
1

2
, 1− δ2

8c2LD2

}TFW+Tdesc

⩽ h0(1− 2cf,X )
T
2

⩽ h0 exp (−cf,XT ) ,

where cf,X = min
{

1
4 ,

δ2

16c2LD2

}
.

Next, we prove that different types of steps arising in typical FW variants satisfy the requirement
from the CFW framework.

Proposition 1. Algorithm 3, Algorithm 4, and the simplex gradient descent step from Braun et al.
[2019] satisfy the criteria of Algorithm 2.

Proof. First, we consider the local pairwise step given in Algorithm 3. Let x̂ = x− γ̂(a− s) be the
point produced by a short step, i.e., γ̂ = ⟨∇f(x),a−s⟩

L∥a−s∥2 . If γ̂ ⩽ γmax, we have by smoothness of f that

f(x)− f(x̂) ⩾ γ̂⟨∇f(x),a− s⟩ − Lγ̂2

2
∥a− s∥2 =

⟨∇f(x),a− s⟩2

2L ∥a− s∥2
⩾
⟨∇f(x),a− s⟩2

2LD2
.

23



Hence, x̂ satisfies the criteria of the descent step, and thus so does x′ produced by the optimal step
size γ∗.

If γ̂ > γmax, convexity of f yields that either f(x′) ⩽ f(x) or γ∗ = γmax. In the first case, we have
a valid descent step, and in the second case, we have a drop step.

Second, we consider the fully-corrective step in Algorithm 4. We compare the update to x̂. If
γ̂ ⩽ γmax and therefore x̂ ∈ conv(S), the descent criterion is satisfied. We now analyze the case
x̂ ̸∈ conv(S). If f(x′) ⩽ f(x̂) then we have a valid descent step. However, if f(x′) > f(x̂), we
know that x′ ̸∈ relint(conv(S)). Otherwise, there is a x̃ ∈ conv(S) on the line segment between
x̂ and x′ with f(x̃) < f(x′). This contradicts the optimality of x′, thus we have x′ ∈ ∂ conv(S).
Consequently, there exists an atom u ∈ S which can be dropped without increasing the objective.

Finally, the simplex gradient descent step of BCG is a valid corrective step, as shown in Lemma 4.1
in Braun et al. [2019].

Finally, we prove the active set identification property of CFW in finite time under the assumption of
strict complementarity.
Theorem 4. Let X be a polytope and let f be a convex, L-smooth function over X . Assume that
strict complementarity holds. Consider the sequence {xt}Tt=0 generated by Algorithm 1. Then there
exists an iteration T̃ such that

xt ∈ F∗ for all t ⩾ T̃ .

Proof. Let ε > 0. For any x∗ ∈ X ∗, v ∈ V (X ) and x ∈ X with ∥x− x∗∥ ⩽ ε, L-smoothness of f
yields

⟨∇f(x),v − x⟩ = ⟨∇f(x∗),v − x⟩+ ⟨∇f(x)−∇f(x∗),v − x⟩
= ⟨∇f(x∗),v − x∗⟩+ ⟨∇f(x∗),x∗ − x⟩+ ⟨∇f(x)−∇f(x∗),v − x⟩
⩾ ⟨∇f(x∗),v − x∗⟩ − ∥∇f(x∗)∥ · ∥x∗ − x∥ − ∥∇f(x)−∇f(x∗)∥ · ∥v − x∥
⩾ ⟨∇f(x∗),v − x∗⟩ − ∥∇f(x∗)∥ · ∥x∗ − x∥ − L∥x− x∗∥ · ∥v − x∥
⩾ ⟨∇f(x∗),v − x∗⟩ − ∥∇f(x∗)∥ · ε− L · ε ·D
= ⟨∇f(x∗),v − x∗⟩ − ε · (∥∇f(x∗)∥+ LD)︸ ︷︷ ︸

def
= c

Strict complementarity with constant ρ > 0 yields now

⟨∇f(x),v − x⟩ ⩾
{
ρ− εc v ̸∈ F∗,

−εc v ∈ F∗.

For sufficiently small ε we have that ρ− εc > εc, e.g., for ε = ρ
3c . By Theorem 2, f(xT ) converges

to f∗. Since f is continuous and X ∗ is compact, it follows that dist(xt,X ∗) converges to 0. Thus,
there is a T1 such that dist(xt,X ∗) ⩽ ε for all t ⩾ T1. Therefore, there exists a x∗

t ∈ X ∗ such that
∥xt − x∗

t ∥ ⩽ ε.

Let vt,at, st be defined as in Algorithm 1. Next, we consider the cases where the current iterate xt

lies inside or outside the optimal face F∗. If xt ̸∈ F∗, then there exists a w ∈ St \F∗. Consequently,
we have

⟨∇f(xt),at − st⟩ ⩾ ⟨∇f(xt),w − xt⟩ ⩾ ρ− εc > εc ⩾ ⟨∇f(xt),xt − vt⟩ . (25)

Therefore, CFW would choose to perform a corrective step. Let now ε̃ = (ρ−εc)2

2LD2 . By Theorem 2
there exists a T2 such that f(xt)− f∗ ⩽ ε̃ for all t ⩾ T2. Next, (25) yields

f(xt)− f∗ ⩽
(ρ− εc)2

2LD2
⩽
⟨∇f(xt),at − st⟩2

2LD2

and thus the optimal primal progress is smaller than the required progress for a valid descent step in
Algorithm 2. Since we cannot perform descent steps and since drop steps are non-increasing, CFW
has to perform drop steps in every iteration t ⩾ max(T1, T2) where xt ̸∈ F∗.

Assume now that we always keep one vertex ṽ ̸∈ F∗ in the active set. Then in each iteration xt stays
outside F∗, and we would keep dropping vertices until xt = ṽ. This contradicts the convergence
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of Theorem 2. Therefore, there exists an iteration T̃ ⩾ max(T1, T2) such that ST̃ ⊆ F∗ and thus
xT̃ ∈ F∗.

We turn to the case where xt ∈ F∗. Strict complementarity and convexity yield

⟨∇f(xt),vt − xt⟩ ⩽ ⟨∇f(xt),x
∗
t − xt⟩ ⩽ 0 < ρ− εc ⩽ ⟨∇f(xt),v − xt⟩

for any v ∈ V (X ) \ F∗. Therefore, we have vt ∈ F∗ and thus xt+1 ∈ F∗ as neither FW step nor
corrective steps move the iterate xt out of F∗. Finally, induction yields xt ∈ F∗ for all t ⩾ T̃ .

B Lazified Corrective Frank-Wolfe

In this section, we will prove the convergence results of a more general version of Theorem 3 for the
Lazified Corrective Frank-Wolfe method (LCFW) proposed in Algorithm 7.

Algorithm 7 Lazified Corrective Frank-Wolfe (LCFW)

Require: convex smooth function f , starting point x0 ∈ V (X ), accuracy parameter J ⩾ 1.
1: Φ0 ← maxv∈V (X ) ⟨∇f(x0),x0 − v⟩ /2
2: S0 ← {x0}
3: for t = 0 to T − 1 do
4: at ← argmaxv∈St

⟨∇f(xt),v⟩ ▷ away vertex
5: st ← argminv∈St

⟨∇f(xt),v⟩ ▷ local FW
6: if ⟨∇f(xt),at − st⟩ ⩾ Φt then
7: xt+1, St+1 ← CorrectiveStep(St,xt,at, st)
8: Φt+1 ← Φt

9: else
10: vt ← argmaxv∈V (X ) ⟨∇f(xt),xt − v⟩ ▷ global FW
11: if ⟨∇f(xt),xt − vt⟩ ⩾ Φt/J then
12: dt ← xt − vt

13: γt ← argminγ∈[0,1] f(xt − γdt)
14: xt+1 ← xt − γtdt

15: St+1 ← St ∪ {vt}
16: Φt+1 ← Φt ▷ FW step
17: else
18: xt+1 ← xt

19: St+1 ← St

20: Φt+1 ← Φt/2 ▷ gap step
21: end if
22: end if
23: end for

Theorem 3. Let X be a convex feasible set with diameter D and f be a convex, L-smooth function
over X . Consider the sequence {xt}Tt=0 ⊂ X obtained by the Algorithm 7. Then we have

f(xT )− f∗ = O
(
1

T

)
. (3)

If additionally f is (c, 1
2 )-sharp and X is a polytope with pyramidal width δ, then

f(xT )− f∗ = O (exp(−aT )) , (4)

for some constant a > 0 independent of T .

Proof. Similar to the proof of Theorem 2, we will prove an upper bound on the total number of
necessary iterations T for achieving ε primal accuracy.

Let NFW, Ndesc, Ndrop, Ngap denote the number of FW, descent, drop, and gap steps, respectively. Let
t1, . . . , tNgap be the iterations of the gap steps. We set t0 = −1 for consistency. Then let N i

FW and
N i

desc be the number of FW and descent steps in the i-th epoch, the iterations between ti−1 and ti. To
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bound the total number of iterations T necessary to achieve ε primal accuracy, we first bound the
number of gap steps Ngap.

Let u = ti + 1 for some i ∈ {1, . . . , Ngap} be the iteration after a gap step. Note that xu = xti and
thus vu = vti . By convexity and the optimality of vu, we have

f(xu)− f∗ ⩽ ⟨∇f(xu),xu − x∗⟩ ⩽ ⟨∇f(xu),xu − vu⟩ ⩽
2Φu

J
⩽ 2Φu. (26)

By definition of Φ0, this also holds for u = 0. Furthermore, the gap step always halves the value of
Φ, so we have Φu = Φti+1 = 2−iΦ0. By bounding the right-hand side of (26) by ε, we get

Ngap ⩽

⌈
log2

2Φ0

ε

⌉
. (27)

With Ndrop ⩽ NFW we have that

T ⩽ NFW +Ndesc +Ngap +Ndrop

⩽ 2NFW +Ndesc +Ngap

⩽
Ngap∑
i=1

2N i
FW +N i

desc +Ngap. (28)

In the remainder of the proof, we find upper bounds for 2N i
FW +N i

desc by lower bounding the progress
of FW and descent steps for both cases considered for f . First, we consider the case where f is
convex and smooth.

Let t ∈ (ti, ti+1), so Φt = Φu. If we perform a FW step, we have that ⟨∇f(xt),xt − vt⟩ ⩾ Φt/J =
Φu/J . Here we can use results from the proof of Theorem 2, i.e., (19) and (21), which yield

f(xt)− f(xt+1) ⩾ min

{
⟨∇f(xt),xt − vt⟩2

2LD2
,
1

2
⟨∇f(xt),xt − vt⟩

}

⩾
Φu

2J
min

{
Φu

LD2J
, 1

}
. (29)

Next, we consider the case of a descent step, i.e., ⟨∇f(xt),at − st⟩ ⩾ Φt. Together with the
definition of the descent step, we have

f(xt)− f(xt+1) ⩾
⟨∇f(xt),at − st⟩2

2LD2
⩾

Φ2
u

2LD2
. (30)

We now use (26) as an upper bound of the primal progress in the i-th epoch, and we use (29) and (30)
to lower bound the primal progress. Let I = ⌈log2 Φ0

LD2J ⌉. For i < I we have that Φ0 ⩾ 2iLD2J

and thus Φu ⩾ LD2J . Then we get with (26), (29) and (30),

2Φu ⩾ f(xu)− f∗

⩾ f(xu)− f(xti+1
)

⩾ N i
FW

Φu

2J
+N i

desc
Φ2

u

2LD2

⩾ 2N i
FW

Φu

4J
+N i

desc
ΦuJ

2

= Φu

(
2N i

FW
1

4J
+N i

desc
J

2

)
,

and thus

2N i
FW +N i

desc ⩽ max

{
8J,

4

J

}
. (31)
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For i ⩾ I we have that Φu ⩽ LD2J and thus with (26), (29) and (30),

2Φu ⩾ f(xu)− f∗

⩾ f(xu)− f(xti+1
)

⩾ N i
FW

Φ2
u

2J2LD2
+N i

desc
Φ2

u

2LD2

= Φ2
u

(
2N i

FW
1

4LD2J2
+N i

desc
1

2LD2

)
Thus we have

2N i
FW +N i

desc ⩽
1

Φu
max

{
8LD2J2, 4LD2

}
=

2i

Φ0
max

{
8LD2J2, 4LD2

}
. (32)

We can now bound the number of total iterations using (28) and (27),

T ⩽
Ngap∑
i=1

2N i
FW +N i

desc +Ngap

⩽ I ·max

{
8J,

4

J

}
+

Ngap∑
i=I

2i

Φ0
max

{
8LD2J2, 4LD2

}
+Ngap

⩽ I ·max

{
8J,

4

J

}
+ (2Ngap+1 − 1)

1

Φ0
max

{
8LD2J2, 4LD2

}
+Ngap

⩽ I ·max

{
8J,

4

J

}
+ (2log2

2Φ0
ε +2 − 1)

1

Φ0
max

{
8LD2J2, 4LD2

}
+

⌈
log2

2Φ0

ε

⌉
⩽ I ·max

{
8J,

4

J

}
+

4

ε
max

{
8LD2J2, 4LD2

}
+

⌈
log2

2Φ0

ε

⌉
.

Finally, (26) yields

f(xT )− f∗ ⩽
ΦT

2
⩽

ε

2
= O

(
1

T

)
.

Consider now the case where f is (c, θ)-sharp and X is a polytope. Let again u = ti + 1 for some
i ∈ {1, . . . , Ngap} be the iteration after a gap step. Then we have

⟨∇f(xu),au − vu⟩ ⩽ ⟨∇f(xu),au − su⟩+ ⟨∇f(xu),xu − vu⟩ < Φu +Φu/J ⩽ 2Φu.

With Lemma 11 we have that

f(xu)− f∗ ⩽

(
c ⟨∇f(xu),au − vu⟩

δ

) 1
1−θ

⩽

(
2cΦu

δ

) 1
1−θ

. (33)

With this new upper bound on the primal gap, we can improve the bound on 2N i
FW +N i

desc for i ⩾ I .
Using (33), (29) and (30), we get(

2cΦu

δ

) 1
1−θ

⩾ f(xu)− f∗

⩾ f(xu)− f(xti+1
)

⩾ N i
FW

Φ2
u

2J2LD2
+N i

desc
Φ2

u

2LD2

⩾
Φ2

u

LD2

(
2N i

FW

4J2
+

N i
desc

2

)
.

Consequently, we have

2N i
FW +N i

desc ⩽

(
2c

δ

) 1
1−θ

LD2 max
{
4J2, 2

}
Φ

1
1−θ−2
u

⩽

(
2c

δ

) 1
1−θ

LD2 max
{
4J2, 2

}(Φ0

2i

) 1
1−θ−2

. (34)
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For θ = 1
2 this yields

Ngap∑
i=I

2N i
FW +N i

desc ⩽ Ngap
4c2

δ2
LD2 max

{
4J2, 2

}
. (35)

The bounds for the case i < I in (31) stay unchanged. Together with (27) and (28) this yields,

T ⩽
Ngap∑
i=1

2N i
FW +N i

desc +Ngap

⩽ I ·max

{
8J,

4

J

}
+ (Ngap − I) · 4c

2LD2

δ2
max

{
4J2, 2

}
+Ngap

⩽ C1Ngap ⩽ C1

⌈
log2

2Φ0

ε

⌉
,

where C1 = 1 +max
{
max

{
8J, 4

J

}
, 4c2LD2

δ2 max
{
4J2, 2

}}
. This is equivalent to

ε ⩽ 2Φ0e
1

C1 exp

(
− 1

C1
T

)
= O

(
exp

(
− 1

C1
T

))
.

Finally, with (33) we get

f(xT )− f∗ ⩽

(
c ⟨∇f(xT ),aT − vT ⟩

δ

)2

⩽

(
2cΦT

δ

)2

= O(exp(−aT )),

with a = 2
C1

.

C Quadratic Corrections

C.1 QC-MNP for convex objectives

In this section, we derive a variant of the QC-MNP method tailored for non-strongly convex objectives,
i.e., when the affine minimizer might not be unique. This is not only more efficient in practice but
also relevant for Theorem 8 to guarantee finite convergence.

For convenience, we restate the relevant linear system,

⟨AVλ+ b,v −w⟩ = 0 ∀ v ∈ S \ {w},
∑
v∈S

λv = 1. (36)

For a given solution λ, the ratio test in Algorithm 6 maximizes τ such that the new weights τλ+(1−
τ)λ(x) are non-negative. If the solution is not unique, we can choose λ that allows for the largest τ .
This will ensure that we pick an affine minimizer inside the convex hull if such exists.

Adding the non-negativity constraint and the objective to (36) yields the following non-linear program:

max
λ∈Rm,τ∈[0,1]

τ

s.t. ⟨AVλ+ b,v −w⟩ = 0 ∀ v ∈ S \ {w},
1⊤λ = 1,

τλ+ (1− τ)λ(x) ⩾ 0.

As x lies in the relative interior of conv(S), there always exists a feasible τ > 0. To obtain a linear
inequality constraint, we divide the inequality constraint by τ and set β = 1−τ

τ ,

λ+ βλ(x) ⩾ 0.
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Since maximizing τ on (0, 1] is equivalent to minimizing β on [0,∞), we obtain the following linear
program:

min
λ∈Rm,β⩾0

β (37)

s.t. ⟨AVλ+ b,v −w⟩ = 0 ∀ v ∈ S \ {w},
1⊤λ = 1,

λ+ βλ(x) ⩾ 0.

Algorithm 8 presents the alternative implementation of the QC-MNP-correction step, relying on the
newly derived LP. We use again Algorithm 3 as a fallback step if there exists no affine minimizer.

Algorithm 8 Quadratic Correction MNP

Require: S ⊂ X , x ∈ X
β, λ̃← Solve (37)
if feasible then

if β = 0 then ▷ FCFW step
x′ ←

∑
v∈S λ̃vv

S′ ← S
else ▷ MNP step

τ ← 1
β+1

x′ ←
∑

v∈S(τ λ̃v + (1− τ)λv(x))v
S′ ← {v ∈ S | λv(x

′) > 0}
end if

else ▷ Fallback step
S′,x′ ← LPS(S,x,a, s)

end if

We can now prove that Algorithm 8 always chooses an affine minimizer in conv(S) if such exists.
Lemma 13. Let S ⊂ X . If ∅ ̸= argminx∈conv(S) f(x) ⊆ argminx∈aff(S) f(x), then Algorithm 8
performs an FCFW step.

Proof. Since the linear system in (36) is a sufficient optimality condition for the affine minimizer,
we know by assumption that it has at least one solution. Furthermore, there exists a solution which
additionally satisfies λ ⩾ 0. Therefore, β = 0 and λ are optimal solutions to (37). Consequently,
Algorithm 8 performs an FCFW step.

C.2 Proofs for Quadratic Corrections

In this section, we prove the results for the quadratic corrections given in Section 2.2.
Proposition 5. Equation (6) is feasible if and only if b ⊥ span(S) ∩ ker(A). In particular, it is
feasible if A is positive definite.

Proof. Instead of (6), we consider the equivalent system (8). Since the matrix W⊤AW is symmetric,
the system is feasible if and only if

W⊤(Aw + b) ∈ im(W⊤AW) = ker(W⊤AW)⊥.

One can easily see that ker(AW) ⊆ ker(W⊤AW). Let v ∈ ker(W⊤AW), then we have

v⊤W⊤AWv = (Wv)⊤A(Wv) = 0,

and thus Wv ∈ ker(A) since A is positive semi-definite. Consequently, (8) is feasible if and only if
W⊤(Aw + b) ⊥ v for all v ∈ ker(AW). The condition simplifies as A is symmetric,

v⊤W⊤(Aw + b) = v⊤W⊤A⊤w + v⊤W⊤b = (Wv)⊤b = 0.

Therefore, (8) is feasible if and only if b ⊥ z for all z ∈ im(W) ∩ ker(A). This is equivalent to
b ⊥ span(S) ∩ ker(A).
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Proposition 6. QC-LP and QC-MNP satisfy the criteria of corrective steps in Algorithm 2.

Proof. For the QC-LP, if the LP in (7) is feasible, the solution coincides with the FCFW step. If the
LP is infeasible, we perform a local pairwise step, which satisfies the criteria of a corrective step, as
shown in Proposition 1.

For QC-MNP, if a solution of (6) exists and lies already in the |S|-simplex, the step is equivalent to
the FCFW step. Otherwise, we perform a drop step, because at least one new weight is negative. The
primal value does not increase, as f is convex and one moves towards the affine minimizer. If there
exists no affine minimizer, we perform a local pairwise step.

Proposition 7. Let X be a polytope and F∗ be the minimal face of X containing the optimal
points X ∗. If S ⊂ F∗, then argminx∈aff(S) f(x) ̸= ∅. If additionally there exists x∗ ∈ X ∗ with
x∗ ∈ conv(S), then x∗ ∈ argminx∈aff(S) f(x).

Proof. For contradiction, assume the problem minx∈aff(S) f(x) would be unbounded. Then there
exists an x̃ ∈ aff(S) such that f(x̃) < f∗. If the optimal face F∗ is a singleton, S would be also
a singleton yielding x̃ ∈ aff(S) ⊂ X which contradicts the minimality of f∗. If F∗ is at least one
dimensional, there exists an x∗ ∈ relint(F∗) due to minimality and convexity of F∗. Consequently,
there exists a λ ∈ (0, 1) with y = λx̃+ (1− λ)x∗ ∈ F∗ ⊂ X . Convexity yields then,

f(y) = f(λx̃+ (1− λ)x∗) ⩽ λf(x̃) + (1− λ)f(x∗) < f∗,

which contradicts the minimality of f∗. Consequently, the problem is bounded below by f∗. If there
exists an x∗ ∈ X ∗ ∩ conv(S), then it is also a solution to the affine problem since x∗ ∈ aff(S).

Theorem 8. Let X be a polytope and let f be a convex, quadratic function over X , i.e., f(x) =
1
2 ⟨x,Ax⟩ + ⟨b,x⟩ + c where A is a symmetric positive semidefinite matrix. Assume that strict
complementarity holds. Consider the sequence {xt}Tt=0 generated by Algorithm 1 with Algorithm 4,
Algorithm 5, or Algorithm 8. Then, there exists an iteration T̃ such that xT̃ ∈ X ∗.

Proof. By Theorem 4 we know that there exists a T1 such that St ⊂ F∗ holds for all t ⩾ T1. Let

ε = min
S⊂V (F∗)

conv(S)∩X∗=∅

dist(conv(S),X ∗).

By Theorem 2 there exists a T2 such that dist(xt,X ∗) ⩽ ε and thus dist(conv(St),X ∗) < ε holds
for all t ⩾ T2. Consequently, we have conv(St) ∩ X ∗ ̸= ∅ for all t ⩾ T2. In total, we have St ⊂ F∗

and conv(St) ∩ X ∗ ̸= ∅ for all t ⩾ T̃ = max(T1, T2).

By Proposition 7, we know there exists an x∗ ∈ argminx∈aff(St) f(x) ∩ X
∗ ⊂ conv(St) for all

t ⩾ T̃ . If CFW performs now a fully-corrective or a QC-LP step, we converge directly to an x∗ ∈ X ∗.
For QC-MNP, we need to use the implementation in Algorithm 8. Otherwise, we might pick an affine
minimizer not in X , see Lemma 13.

Finally, it remains to show that CFW performs a corrective step after at most some finite iterations after
T̃ . By Theorem 4 we know that vt ∈ F∗ for all t ⩾ T̃ . If vt ∈ St, then ⟨∇f(xt),vt⟩ = ⟨∇f(xt), st⟩
and thus

⟨∇f(xt),xt − vt⟩ ⩽ ⟨∇f(xt),at − st⟩ .

Therefore, CFW performs an FW step if vt ̸∈ St. This yields that CFW could perform at most
|V (F∗)| − |ST̃ | consecutive FW steps after T̃ , before performing a corrective step.

D Split Conditional Gradient

In this section, we consider the Split Conditional Gradient (SCG) method of Woodstock and Pokutta
[2025]. The algorithm is presented in Algorithm 9.
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Algorithm 9 Split Conditional Gradient (SCG)

Require: Convex, smooth function f , weights {wi}i∈I ⊂ (0, 1) with
∑

i∈I wi = 1, starting point
x0 ∈×i∈I

Xi

1: x̄0 ←
∑

i∈I wix0

2: for t = 0, 1, . . . do
3: Choose penalty parameter λt > 0
4: Choose step size γt ∈ (0, 1)
5: gt ← ∇f(x̄t)
6: for i ∈ I do
7: vi

t ← argminv∈H
〈
gt + λt(x

i
t − x̄t),v

〉
8: xi

t ← xi
t + γt(v

i
t − xi

t)
9: end for

10: x̄t+1 ←
∑

i∈I wix
i
t

11: end for

We prove the convergence rate of the SCG method stated in Theorem 9 in a more general setting,
i.e., for arbitrary Hilbert spaces and any finite intersection. Let H be a real Hilbert space, let
H = Hm be the product space of H. We denote the components of x ∈ H as x = (x1, . . . ,xm).
Let D = {x ∈ H | x1 = x2 = · · · = xm} denote the diagonal space of H. Furthermore, let
I = {1, . . . ,m} and let {wi}i∈I be a selection of weights such that wi > 0 for all i ∈ I and∑

i∈I wi = 1. The averaging operator is defined as A : H→ H : x 7→
∑

i∈I wix
i.

Proposition 14. [Woodstock and Pokutta, 2025, Proposition 2.13] Let f : H → R, let (Xi)i∈I

be a finite selection of non-empty, compact, and convex sets of H. For every λ ⩾ 0, set Fλ(x) =
f(Ax) + λ

2 dist2D(x). Suppose that (λn)n∈N ↗∞. Then

lim
t→∞

(
inf

x∈×i∈I Xi

Fλt
(x)

)
= inf

x∈×i∈I Xi

(
lim
t→∞

Fλt
(x)
)
= inf

x∈
⋂

i∈I Xi

f(x).

Theorem 15. Let f : H → R be convex and L-smooth and let (Xi)i∈I be a finite selection of
non-empty, compact, and convex sets of H with diameters {Ri}i∈I and

⋂
i∈I Xi ̸= ∅. For λ ⩾ 0,

set Fλ(x) = f(Ax) + λ
2 dist2D(x), x∗

t ∈ argminx∈H Fλt(x) and Ht = Fλt(xt) − Fλt(x
∗
t ). For

λt = ln(t+ 2) and the step size γt =
2√

t+2 ln(t+2)
for all t ⩾ 0, the iterates of SCG satisfy

0 ⩽ Ht ⩽
2R2(L+ 1) +

√
2cf√

t+ 2
(38)

for all t ⩾ 0, where cf
def
= maxx,y∈×i∈I Xi

f(Ax)− f(Ay) <∞ and R2 def
=
∑

i∈I wiR
2
i .

Furthermore, we get that limt→∞ Fλt
(xt) = infx∈×i∈I Xi

f(x) and limt→∞ distD(xt) = 0. In
particular, any accumulation point x̃ of the sequence {xt}t⩾0 lies in

⋂
i∈I Xi and satisfies f(Ax̃) =

infx∈×i∈I Xi
f(x).

Proof. This proof is inspired by the proof of Woodstock and Pokutta [2025]. The key difference is to
analyze the alternative auxiliary objective,

F̃λ(x) =
Fλ(x)

λ
=

f(Ax)

λ
+

1

2
dist2D(x).

We will see that one can find smaller upper bounds on the primal gap H̃t = F̃λt
(xt) − F̃λt

(x∗
t ).

However, even for λtH̃t = Ht, we achieve faster rates of convergence. Note that

x∗
t ∈ argmin

x∈×i∈I Xi

Fλt(x) = argmin
x∈×i∈I Xi

F̃λt(x),

since Fλt and F̃λt only differ in scaling. Furthermore, the function F̃λt is
(

L
λt

+ 1
)

-smooth.
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Analogous to Lemma 3.2 in Woodstock and Pokutta [2025], we first prove a bound on the primal gap
H̃t. Using smoothness, the FW update rule, the optimality of the FW vertex vt, and convexity, we get

F̃λt
(xt+1)− F̃λt

(xt)

⩽
〈
∇F̃λt

(xt) ,xt+1 − xt

〉
+

L
λt

+ 1

2
∥xt+1 − xt∥2

=γt

〈
∇F̃λt

(xt),vt − xt

〉
+

L
λt

+ 1

2
γ2
t ∥vt − xt∥2

⩽γt

〈
∇F̃λt(xt),x

∗
t − xt

〉
+

L
λt

+ 1

2
γ2
tR

2

⩽γt

(
F̃ (x∗

t )− F̃λt
(xt)

)
+ γ2

tR
2

L
λt

+ 1

2

where R2 is an upper bound on ∥x− y∥2 for all x,y ∈
⋂

i∈I Xi, see Woodstock and Pokutta [2025,
Lemma 3.1].

Adding F̃λt
(xt)− F̃λt

(x∗
t ) to both sides leads to

F̃λt(xt+1)− F̃λt(x
∗
t ) ⩽ (1− γt) (F̃λt(xt)− F̃λt(x

∗
t ))︸ ︷︷ ︸

H̃t

+γ2
tR

2
L
λt

+ 1

2
.

Together with the definition of F̃λt and the optimality of x∗
t yields

H̃t+1 = F̃λt+1 (xt+1)− F̃λt+1

(
x∗
t+1

)
= F̃λt(xt+1)− F̃λt(x

∗
t+1) +

(
1

λt+1
− 1

λt

)(
f(Axt+1)− f(Ax∗

t+1)
)

= F̃λt
(xt+1)− F̃λt

(x∗
t+1) +

(
1

λt
− 1

λt+1

)(
f(Ax∗

t+1)− f(Axt+1)
)

⩽ F̃λt(xt+1)− F̃λt(x
∗
t+1) + cf

(
1

λt
− 1

λt+1

)
⩽ F̃λt

(xt+1)− F̃λt
(x∗

t ) + cf

(
1

λt
− 1

λt+1

)
⩽ (1− γt) H̃t + γ2

tR
2

L
λt

+ 1

2
+ cf

(
1

λt
− 1

λt+1

)
, (39)

where cf = maxx,y∈×i∈I Xi
f(Ax)− f(Ay) <∞. The result in (39) is analogous to the result in

Lemma 3.2 in Woodstock and Pokutta [2025]. However, it involves a difference of inverse values of
λt, which will be the key difference here. This allows us to use a larger step size γt =

2√
t+2 ln(t+2)

for the SCG method.

For the given λt = ln(t+ 2) and by using ln(x) ⩽ x− 1, we obtain

1

λt
− 1

λt+1
⩽

λt+1 − λt

λt
2 =

ln
(

t+3
t+2

)
ln(t+ 2)2

⩽
1

(t+ 2) ln(t+ 2)2
. (40)

We can now show by induction that

0 ⩽ H̃t ⩽ G̃t
def
=

2R2(L+ 1) +
√
2cf√

t+ 2 ln(t+ 2)
. (41)
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For t = 0 we have

H̃0 = F̃λ0(x0)− F̃λ0(x
∗
0)

=
f(Ax0)− f(Ax∗

0)

λ0
+

dist2D(x0)− dist2D(x∗
0)

2

⩽
cf

ln(2)
+

R2

2

⩽
2R2(L+ 1) +

√
2cf√

2 ln(2)
= G̃0.

The induction hypothesis together with (39) and (40) yields

H̃t+1 ⩽ (1− γt)H̃t + γ2
tR

2

(
L
λt

+ 1
)

2
+ cf

(
1

λt
− 1

λt+1

)
⩽

√
t+ 2 ln(t+ 2)− 2√
t+ 2 ln(t+ 2)

G̃t +
2R2(L+ 1)

(t+ 2) ln(t+ 2)2
+

√
2cf

(t+ 2) ln(t+ 2)2

=

√
t+ 2 ln(t+ 2)− 2 + 1

(t+ 2) ln(t+ 2)2
· (2R2(L+ 1) +

√
2cf )

⩽
1√

t+ 3 ln(t+ 3)
· (2R2(L+ 1) +

√
2cf ) = G̃t+1.

To finish the induction, it is left to show that
√
t+ 2 ln(t+ 2)− 1

(t+ 2) ln(t+ 2)2
⩽

1√
t+ 3 ln(t+ 3)

.

Consider
√
t+ 2 ln(t+ 2)−

√
t+ 1 ln(t+ 1)

= ln

(
(t+ 2)

√
t+2

(t+ 1)
√
t+1

)

= ln

((
t+ 2

t+ 1

)√
t+2

· 1

(t+ 1)
√
t+2−

√
t+1

)

=
√
t+ 2 ln

(
1 +

1

t+ 1

)
− (
√
t+ 2−

√
t+ 1) ln(t+ 1)

⩽

√
t+ 2

t+ 1

def
= ϕ(t).

The function ϕ(t) is monotonically decreasing and satisfies ϕ(t) ⩽ 1 for t ⩾ 1. Thus, we have
√
t+ 2 ln(t+ 2)− 1 ⩽

√
t+ 1 ln(t+ 1), (42)

for all t ⩾ 1. One can even see that (42) holds for t = 0. It remains to show that
√
t+ 1 ln(t+ 1)

√
t+ 3 ln(t+ 3) ⩽ (t+ 2) ln(t+ 2)2.

One can easily see that
√
t+ 1

√
t+ 3 =

√
t2 + 4t+ 3 ⩽

√
t2 + 4t+ 4 = t+ 2.

Furthermore, using twice the concavity of ln yields

ln(ln(t+ 1) · ln(t+ 3)) = ln(ln(t+ 1)) + ln(ln(t+ 3))

⩽ 2 ln

(
ln(t+ 1)

2
+

ln(t+ 3)

2

)
⩽ 2 ln

(
ln

(
t+ 1

2
+

t+ 3

2

))
= 2 ln(ln(t+ 2)) = ln(ln(t+ 2)2),
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and thus

ln(t+ 1) · ln(t+ 3) ⩽ ln(t+ 2)2.

This concludes the induction. Using Ht = λtH̃t yields the proposed upper boundary

Ht = λtH̃t ⩽
2R2(L+ 1) +

√
2cf√

t+ 2
= O

(
1√
t

)
.

Together with Proposition 14 we get that limt→∞ Fλt
(xt) exists and that

lim
t→∞

Fλt
(xt) = lim

t→∞
Fλt

(x∗
t ) = inf

x∈×i∈I Xi

f(x).

As λt →∞, we have dist2D(xt)→ 0. Thus, every accumulation point x̃ lies in the diagonal space
D and therefore Ax̃ ∈

⋂
i∈I Xi. Considering a subsequence (tk)k∈N we get

inf
x∈

⋂
i∈I Xi

f(x) ⩽ f(Ax̃) = lim
k→∞

f(Axtk) ⩽ lim
k→∞

Fλtk
(xtk) = inf

x∈
⋂

i∈I Xi

f(x).

E Second-Order Conditional Gradient Sliding

In this section, we first introduce the SOCGS algorithm before proving its convergence for self-
concordant functions.

E.1 SOCGS algorithm

Introduced in Carderera and Pokutta [2020], the SOCGS algorithm minimizes a smooth strongly
convex function f with Lipschitz continuous Hessian ∇2f over a polytope X . For each iteration t,
a quadratic approximation f̂t is minimized over the polytope X using a projection-free method.
Minimizing such quadratic forms over a polytope amounts to a Projected Variable-Metric (PVM)
algorithm Nesterov [2018], Ben-Tal and Nemirovski [Spring 2023] (we state PVM in Algorithm 11).

To do so, a Hessian oracle Ω yields for each iteration t an approximation Ht of the Hessian ∇2f(xt)

at the current iterate xt. The quadratic approximation1 f̂t(x) = ⟨∇f(xt),x− xt⟩+ 1
2 ∥x− xt∥2Ht

is then built and minimized inexactly using a Corrective Frank-Wolfe algorithm. We call this an
Inexact PVM step. This step is solved up to some precision on the Frank-Wolfe gap given by the
threshold εt. This threshold involves the computation of a lower bound lb(xt) ⩽ f(xt)− f∗ on the
primal gap.

On top of the Inexact PVM step, the SOCGS algorithm also performs independent corrective steps,
as presented in Section 2. We call these steps the Outer Corrective Steps (OCS), or outer steps for
short. Hence, the SOCGS algorithm enjoys the global convergence rate of the outer steps and the
local convergence rate of the Inexact PVM steps.

Now, we present the pseudo-code of the SOCGS algorithm. The statement of Algorithm 10 is directly
adapted from Carderera and Pokutta [2020]. Compared to its original statement, we distinguish the
OCS from the Inner Corrective Steps (ICS), or inner steps for short, used inside the Inexact PVM
step.

1The norm ∥x− y∥H =
∥∥∥H1/2(x− y)

∥∥∥ is induced by a symmetric positive definite matrix H.
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Algorithm 10 Second-Order Conditional Gradient Sliding (SOCGS)

Require: Point x ∈ X
Return: Point xT ∈ X

1: x0 ← argminv∈X ⟨∇f(x),v⟩ , S0 ← {x0},λ0(x0)← 1

2: xOCS
0 ← x0, S

OCS
0 ← S0,λ

OCS
0 (x0)← 1

3: for t = 0 to T − 1 do
4: xOCS

t+1 , S
OCS
t+1 ,λ

OCS
t+1 ← OCS(∇f(xt),x

OCS
t , SOCS

t ,λOCS
t ) ▷ Outer Corrective Step

5: Ht ← Ω(xt) ▷ Call Hessian oracle
6: f̂t(x)← ⟨∇f(xt),x− xt⟩+ 1

2 ∥x− xt∥2Ht
▷ Build quadratic approximation

7: εt ←
(

lb(xt)
∥∇f(xt)∥

)4
8: x̃0

t+1 ← xt, S̃
0
t+1 ← St, λ̃

0

t+1 ← λt, h← 0

9: while maxv∈X

〈
∇f̂t(x̃h

t+1), x̃
h
t+1 − v

〉
⩾ εt do ▷ Compute Inexact PVM step

10: x̃h+1
t+1 , S̃

h+1
t+1 , λ̃

h+1

t+1 ← ICS(∇f̂t(x̃h
t+1), x̃

h
t+1, S̃

h
t+1, λ̃

h

t+1) ▷ Inner Corrective Step
11: h← h+ 1
12: end while
13: xPVM

t+1 ← x̃h
t+1, S

PVM
t+1 ← S̃h

t+1,λ
PVM
t+1 ← λ̃

h

t+1

14: if f(xPVM
t+1 ) ⩽ f(xOCS

t+1) then
15: xt+1 ← xPVM

t+1 , St+1 ← SPVM
t+1 ,λt+1 ← λPVM

t+1 ▷ Choose Inexact PVM step
16: else
17: xt+1 ← xOCS

t+1 , St+1 ← SOCS
t+1 ,λt+1 ← λOCS

t+1 ▷ Choose Outer Corrective Step
18: end if
19: end for

E.2 Convergence with generalized self-concordant functions

We first recall the definition of generalized self-concordant functions as introduced in Sun and
Tran-Dinh [2019, Definition 2]. Let f : Rn → R ∪ {+∞} be a convex function, with its effective
domain dom(f)

def
= {x ∈ Rn|f(x) < +∞}. We assume that dom(f) is an open set and that the

function f is three times continuously differentiable on dom(f) with third order derivative∇3f . The
function f is a (M,ν)-generalized self-concordant function of order ν > 0 and constant M ⩾ 0 if∣∣〈∇3f(x)vu,u

〉∣∣ ⩽ M ∥u∥2∇2f(x) ∥v∥
ν−2
∇2f(x) ∥v∥

3−ν
, ∀x ∈ dom(f),∀u,v ∈ Rn. (43)

This bound on the third derivative can be used to derive inequalities akin to generalized smoothness
and generalized strong convexity.
Proposition 16. [Sun and Tran-Dinh, 2019, Proposition 10] Given an (M,ν)-generalized self-
concordant function f , then for ν ⩾ 2, we have that:

f(y)− f(x)− ⟨∇f(x),y − x⟩ ⩽ ων(dν(x,y)) ∥y − x∥2∇2f(x) , (44)

f(y)− f(x)− ⟨∇f(x),y − x⟩ ⩾ ων(−dν(x,y)) ∥y − x∥2∇2f(x) , (45)

where (44) holds if dν(x,y) < 1 for ν > 2, and we have that,

dν(x,y)
def
=

{
M ∥y − x∥ if ν = 2

(ν2 − 1)M ∥y − x∥3−ν ∥y − x∥ν−2
∇2f(x) if ν > 2,

(46)

where:

ων(τ)
def
=


eτ−τ−1

τ2 if ν = 2
−τ−ln(1−τ)

τ2 if ν = 3
(1−τ)ln(1−τ)+τ

τ2 if ν = 4(
ν−2
4−ν

)
1
τ

[
ν−2

2(3−ν)τ

(
(1− τ)

2(3−ν)
2−ν − 1

)
− 1
]

otherwise.

(47)

Lemma 17. [Karimireddy et al., 2018, Lemma 9] Given a convex set X and H ∈ Sn++, and two
scalars α > 0, β > 0 such that αβ ⩾ 1, we have that:

min
x∈X
⟨∇f(xk),x− xk⟩+

α

2
∥x− xk∥2H ⩽

1

αβ
min
x∈X
⟨∇f(xk),x− xk⟩+

1

2β
∥x− xk∥2H .
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Lemma 18. [Carderera and Pokutta, 2020, Lemma A.6] Given two matrices P,Q ∈ Sn++, then we
have for all v ∈ Rn:

1

η
∥v∥2P ⩽ ∥v∥2Q ⩽ η ∥v∥2P , (48)

with η = max
{
λmax

(
P−1Q

)
, λmax

(
Q−1P

)}
⩾ 1.

We now present the PVM algorithm in Algorithm 11 from Carderera and Pokutta [2020] and its
convergence for generalized self-concordant functions in Theorem 19.

Algorithm 11 Projected Variable-Metric (PVM) algorithm

Require: Point x0 ∈ X , step sizes {γ0, . . . , γK}
Return: Point xK ∈ X

1: for k = 0 to K − 1 do
2: x̂← argminx∈X

(
f(xk) + ⟨∇f(xk),x− xk⟩+ 1

2 ∥x− xk∥2Hk

)
3: xk+1 ← xk + γk(x̂− xk)
4: end for

Theorem 19 (Global convergence of the Projected Variable-Metric algorithm on generalized self-con-
cordant functions.). Let X be a compact convex set of diameter D and f be a (M,ν)-generalized
self-concordant function with ν ⩾ 2 such that f is strongly convex on dom(f) ∩ X if ν = 3. Given
a starting point x0 ∈ X ∩ dom(f), the Projected Variable-Metric algorithm (Algorithm 11) with a
step size γk guarantees for all k ⩾ 0:

f(xk+1)− f(x∗) ⩽

(
1− ων(1/2)γ

2
k

ηk

)
(f(xk)− f(x∗)) ,

where the parameter ηk measures how well Hk approximates ∇2f(xk) in the sense of Lemma 18,
and γk is such that

γk ⩽ min

{
1

2ηk
, ηk

}
1

ων(
1
2 )

(49)

and additionally,

γk ⩽
1

2ηkων(MD)
if ν = 2 (50)

γk ⩽ Γ, if ν > 2 (51)

where Γ is the maximum value, such that:

∥x̄− xk∥Hk
⩽

µ3−ν
0

ηkM(2ν − 1)
(52)

where x̄ = argmin
x
⟨∇f(xk),x− xk⟩+

1

2Γ
∥x− xk∥2Hk

,

with µ0 =


1 if ν = 3

min
d∈Rn,∥d∥2=1

x∈X ,f(x)⩽f(x0)

∥d∥∇2f(x) otherwise.

Proof. The iterate xk+1 can be rewritten as:

xk+1 = argmin
x∈(1−γk)xk+γkX

⟨∇f(xk),x− xk⟩+
1

2γk
∥x− xk∥2Hk

. (53)

Using (M,ν)-generalized self-concordance of f and Proposition 16, we can write:

f(xk+1)− f(xk) ⩽ ⟨∇f(xk),xk+1 − xk⟩+ ων(dν(xk,xk+1)) ∥xk+1 − xk∥2∇2f(xk)
(54)

⩽ ⟨∇f(xk),xk+1 − xk⟩+ ηkων(dν(xk,xk+1)) ∥xk+1 − xk∥2Hk
, (55)

36



where (55) follows from the ηk approximation of the Hessian by Hk. If ν = 2, we have from (50)
that

γk ⩽
1

2ηkων(MD)
⩽

1

2ηkων(dν(xk,xk+1))
.

Note that we use the fact that ων(a) ⩽ ων(1/2) hold for all a ⩽ 1/2, which we will also use for
other ν values. If ν > 2, using the upper bound assumption on γk (51) and the associated upper
bound on the Hk-norm (52), we can ensure that:

dν(xk+1,xk) =
(ν
2
− 1
)
M ∥xk+1 − xk∥3−ν

2 ∥xk+1 − xk∥ν−2
∇f(xk)

⩽
(ν
2
− 1
)
M

1

µ3−ν
0

∥xk+1 − xk∥∇f(xk)

⩽
(ν
2
− 1
)
M

ηk

µ3−ν
0

∥xk+1 − xk∥Hk
⩽

1

2
,

where the last inequality uses the maximum distance in local norm between xk and xk+1 as a solution
to the subproblem. Note that Γ > 0 can be ensured, among other means, by the fact that ∇f(xk)
is bounded on any finite sublevel set even if the function does not possess a global finite Lipschitz
smoothness constant. These two cases ensure that 1

2γk
⩾ ηkων(dν(xk,xk+1)). Continuing the chain

of inequalities:

f(xk+1)− f(xk) ⩽ ⟨∇f(xk),xk+1 − xk⟩+ ηkων(dν(xk,xk+1)) ∥xk+1 − xk∥2Hk
(56)

⩽ ⟨∇f(xk),xk+1 − xk⟩+
1

2γk
∥xk+1 − xk∥2Hk

(57)

= min
x∈(1−γk)xk+γkX

(
⟨∇f(xk),x− xk⟩+

1

2γk
∥x− xk∥2Hk

)
, (58)

where (57) follows from the upper bound on γk from (49). (58) directly follows from the definition
of xk+1 in (53).
f(xk+1)− f(xk)

⩽ min
x∈(1−γk)xk+γkX

(
⟨∇f(xk),x− xk⟩+

1

2γk
∥x− xk∥2Hk

)
(59)

⩽
ων(−dν(xk,x

∗))γk
ηk

min
x∈(1−γk)xk+γkX

(
⟨∇f(xk),x− xk⟩+

ων(−dν(xk,x
∗))

2ηk
∥x− xk∥2Hk

)
(60)

⩽
ων(−dν(xk,x

∗))γk
ηk

min
x∈(1−γk)xk+γkX

(
⟨∇f(xk),x− xk⟩+ ων(−dν(xk,x

∗)) ∥x− xk∥2∇2f(xk)

)
(61)

⩽
ων(−dν(xk,x

∗))γ2
k

ηk

(
⟨∇f(xk),x

∗ − xk⟩+ ων(−dν(xk,x
∗))γk ∥x∗ − xk∥2∇2f(xk)

)
(62)

⩽
ων(−dν(xk,x

∗))γ2
k

ηk

(
⟨∇f(xk),x

∗ − xk⟩+ ων(−dν(xk,x
∗)) ∥x∗ − xk∥2∇2f(xk)

)
(63)

⩽
ων(1/2)γ

2
k

ηk
(f(x∗)− f(xk)) . (64)

We obtain (60) by applying Lemma 17 with α = 1/γk and β = ηk/ων(−dν(xk,x
∗)). Note that the

lemma requirements impose γk ⩽ ηk/ων(−dν(xk,x
∗)), which is ensured by (49) by monotonicity of

ων . (61) follows from the Hessian-induced norm approximation with Hk, i.e., 1/ηk ∥x− xk∥2Hk
⩽

∥x− xk∥2∇2f(xk)
following Lemma 18. (62) follows from setting in x = (1−γk)xk+γkx

∗ into (61)
(since x∗ ∈ X ). We obtain (63) by considering that γk ⩽ 1, since xk+1 is constructed as a convex
combination of x̂ and xk. Finally, (64) follows from (45) and from the fact that ων(a) ⩽ ων(1/2)
hold for all a ⩽ 1/2. We can finally rewrite the expression as:

f(xk+1)− f(x∗) ⩽

(
1− ων(1/2)γ

2
k

ηk

)
(f(xk)− f(x∗)) .
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If ηk remains bounded above and below across iterations, a fixed step size respecting the hypotheses
from the initial statement achieves linear convergence. A step size γk obtained through line search
will achieve more progress per iteration than a fixed step size respecting the provided bounds and
hence also achieves linear convergence.

Corollary 20. The SOCGS algorithm applied to a generalized self-concordant objective f of
parameters (M,ν) with ν ⩾ 2 on a polytope X achieves linear convergence when performing
Blended Pairwise Conditional Gradients or Away-Step Frank-Wolfe inner steps for the subproblems
if f is strongly convex or if it is the composition of a log-homogeneous barrier with an affine map.

Linear convergence of BPCG and AFW on strongly convex generalized self-concordant functions was
established in Carderera et al. [2024] while the case of the composition of a log-homogeneous barrier
(a special case of self-concordant functions) was tackled in Zhao [2025] for AFW and extended to
BPCG in Hendrych et al. [2023]. Linear convergence of SOCGS itself follows from observing that the
algorithm selects the best primal progress between the FW variant and the Projected Variable-Metric
step, both of which provide linear convergence. Finally, we highlight that this result also applies to
CGS by using, e.g., AFW or BPCG algorithms for the projection subproblems and starting from a first
point in dom(f). Since the algorithm provides primal progress at each iteration, convergence follows
from ηk = max{L0, 1/µ0} where L0, µ0 are local smoothness and strong convexity parameters
computed on the sublevel set of f(x0), the value of the initial point.

F Experiment details and additional computational results

In this section, we provide additional details on the experiments presented in Section 4 as well as
present additional experiments. For all problems, we use hybrid methods combining QC-MNP or
QC-LP with local pairwise steps of the BPCG algorithm. The steps are combined as follows. We
use LCFW with J = 2 and local pairwise steps as the default corrective step. Additionally, if a
given number of atoms N is added to the active set, a single QC step is performed and the counter is
reset afterwards. This hybrid approach yields a good trade-off between the computational cost of
solving the linear system or LP, respectively, and the gained acceleration by the QC methods. We
consider hybrid approaches with other FW methods in Section F.6. As baselines, we use lazified
versions of FW, AFW, PFW, and BPCG. All methods use the secant line search strategy from
Hendrych et al. [2025], yielding sufficient progress. For the actual implementation, we have used
the FrankWolfe.jl package [Besançon et al., 2022]. Furthermore, we use the implementation and
setup of Liu et al. [2025] for the entanglement detection problem.

F.1 K-Sparse regression

In the first experiment, we consider a sparse regression problem over the K-Sparse polytope, i.e.,
the intersection of an ℓ1-norm ball and an ℓ∞-norm ball, PK(τ) = B1(τK) ∩B∞(τ). The vertices
of the polytope are given by the vectors with entries in {−τ, 0, τ} with at most K non-zeros. We
consider a classical linear regression problem, i.e., solving

min
x∈PK(τ)

f(x) =

m∑
i=1

(⟨x,ai⟩ − yi)
2 = ∥Ax− y∥22

given data points {(ai, yi)}mi=1 ⊂ Rn × R. We used synthetic data for the experiment and generated
normally distributed ai and yi with n = 500 and m = 10000. In Section 4 we already presented the
results for the case K ∈ {5, 20} and τ = 1. Here we provide some more insights into the advantage
of the QC methods by analyzing the size of the active set for the more extreme cases K ∈ {3, 30}.
Again, we use a fixed interval length of N = 10 for the quadratic correction steps. The results are
shown in Figure 5. For smaller K, the necessary active set size for reaching optimality is larger.
Both QC methods benefit from avoiding running many pairwise steps like BPCG. Therefore, these
methods perform earlier FW steps and add more atoms to the active set during earlier iterations.
Consequently, both QC methods accelerate the convergence of the primal values and the FW gap.
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Figure 5: Sparse regression with K ∈ {3, 30} and τ = 1

F.2 Entanglement detection

In the second experiment, we consider bipartite entanglement detection. Solving this problem is
equivalent to projecting a given state onto the set of separable states,

SAB = conv{ρA ⊗ ρB : ρA ∈ D(A),ρB ∈ D(B)},

where ⊗ denotes the tensor product and where D(A) and D(B) are the sets of density matrices
on systems A and B respectively, i.e., (hermitian) positive semidefinite matrices with unit trace.
Consequently, the projection problem can be written as

min
ρ∈SAB

∥ρ− ρ0∥2F ,

where ∥ · ∥F is the Frobenius norm and ρ0 is the given state. In our experiments, we consider a family
of bipartite 3× 3 entangled states proposed in Horodecki [1997]. Given a parameter a ∈ [0, 1], these
states are defined by

ρa
H =

1

8a+ 1



a 0 0 0 a 0 0 0 a
0 a 0 0 0 0 0 0 0
0 0 a 0 0 0 0 0 0
0 0 0 a 0 0 0 0 0
a 0 0 0 a 0 0 0 a
0 0 0 0 0 a 0 0 0

0 0 0 0 0 0 1+a
2 0

√
1−a2

2
0 0 0 0 0 0 0 a 0

a 0 0 0 a 0
√
1−a2

2 0 1+a
2


. (65)

The positive partial transpose (PPT) criterion yields necessary and sufficient conditions for systems
of the sizes 2 × 2 and 2 × 3 to be separable; however, it is only necessary for higher-dimensional
systems [Horodecki et al., 1996]. For a ∈ [0, 1), the entangled states ρa

H are not detected by PPT
[Horodecki, 1997], making them weakly entangled and thus harder to detect, which justifies our
choice.

Liu et al. [2025] consider adding white noise to the state, i.e.,

ρ0 = vρa
H +

1− v

9
I, (66)

for a given noise level v ∈ [0, 1]. In Figure 6 we present the results for different noise levels
v ∈ {0.95, 0.97} for a fixed state with parameter a = 0.5. We used again a correction interval of
N = 1 for QC-MNP and N = 10 for QC-LP. Comparing the two plots, one can see that adding
white noise decreases the distance to SAB and therefore leads to smaller primal values. Interestingly,
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QC-LP is performing worse than BPCG for the pure state. This is because the LP solved by QC-LP
is often infeasible, leading to computational overhead without any benefit in terms of primal progress.
On the other hand, QC-MNP is reaching optimality in both cases by far the fastest. This indicates that
QC-MNP is more suited than QC-LP for non-polytope domains like the set of separable states SAB .

Figure 6: Entanglement detection for a state ρ0 given in (66) with different noise levels v ∈
{0.95, 1.0} applied on a fixed state from (65) with parameter a = 0.5

F.3 Projection onto the intersection of the Birkhoff polytope and a shifted ℓ2 ball

Experiment details The Birkhoff polytope B(n) is the set of all n× n doubly stochastic matrices,
and its vertices are permutation matrices and therefore particularly sparse. Furthermore, one can
solve linear minimization problems over the Birkhoff polytope with a complexity of O(n3) using the
Hungarian algorithm [Combettes and Pokutta, 2021].

For shifting the center of the ℓ2 ball, we first sample vertices v1, . . . ,vm of the Birkhoff polytope
by calling the LMO with uniform random directions d1, . . . ,dm. The ball is then shifted to s =

v̄ − c d̄
∥d̄∥2

where v̄ = 1
m

∑m
i=1 vi and d̄ = 1

m

∑m
i=1 di. The radius of the ball is set to r = 1, such

that the ball and the polytope intersect if and only if c ⩽ 1. Note the diameter of the Birkhoff polytope
is
√
2n and therefore much larger than the given radius of the ball. This setting can be understood as

a projection onto the Birkhoff polytope with some noise or flexibility in the projection direction.

The number of sampled vertices m controls the dimension of the face where v̄ is located, i.e., the
number of non-zero entries in v̄. In particular, the expected number of non-zero entries in v̄ is

E [∥v̄∥0] = n2

(
1−

(
1− 1

n

)m)
≈ n2

(
1− e−m/n

)
= n2 · q,

for m = −n ln(1 − q). Let B2(r, c) denote the ℓ2 ball of radius r and center c. The problem we
consider is,

min
X∈B(n)∩B2(r,s)

f(X) =
1

n2
∥X−X0∥2F ,

where X0 ∈ Rn×n is sampled with uniform distributed entries over [0, 1].

Since the SCG method alternates between updating the point on the Birkhoff polytope and the shifted
ℓ2 ball, we use a cyclic block-coordinate scheme [Lacoste-Julien et al., 2013, Beck et al., 2015] with
different update steps on the two sets. While we perform vanilla FW steps for the ℓ2 ball, we compare
different methods for updating the point on the Birkhoff polytope. Just like in the other experiments,
we compare vanilla FW steps, which are used in the original version of SCG, with BPCG and the
mentioned hybrid methods. Note, we use the new penalty schedule λt = ln(t + 2) proposed in
Theorem 9, but not the proposed monotonic step size. BPCG relies on step sizes that consider the
current FW gap or pairwise gap to perform proper update steps on the active set. The monotone step
size would lead to suboptimal updates and thus give the QC methods an advantage, as they do not
depend on any line search. Consequently, we use the new secant line search proposed by Hendrych
et al. [2025].

Additional results In this paragraph, we present additional results for related problem settings. In
particular, we decompose the above problem and solve relaxed settings, a projection just onto the
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Figure 7: Projection onto the Birkhoff polytope for n ∈ {300, 500}

Figure 8: ALM applied to the intersection of a shifted ℓ2 ball and the Birkhoff polytope for the
intersecting scenario c = 0.9 and the disjoint one with c = 1.1

Birkhoff polytope, and the intersection problem between the Birkhoff polytope and a shifted ℓ2 ball
for different intersection scenarios. Furthermore, we present how SCG with vanilla FW steps on both
sets perform for the original problem, comparing the new proposed step size schedule with the one
from [Woodstock and Pokutta, 2025].

First, we consider the problem of projecting onto the Birkhoff polytope, i.e., without the additional ℓ2
ball constraint. We ran the experiment for n ∈ {300, 500} with a time limit of 3600 seconds. For
the hybrid methods, we used a fixed interval of N = 20 for the quadratic correction. The results are
shown in Figure 7. While both QC methods outperform the baselines with respect to the FW gap in
terms of the number of iterations, the runtime is worse for both instances. This demonstrates the need
for fine-tuning the rate of the quadratic correction, especially for easier problems like projections,
where the Hessian is the identity matrix.

In the next set of experiments, we consider the problem of finding a point in the intersection of the
Birkhoff polytope and a shifted ℓ2 ball. We use the same setup for placing the ℓ2 ball as described
above. However, since we do not have an additional objective, we use the ALM method by Braun
et al. [2023] to solve the problem. We consider the cases of c ∈ {0.9, 1.1}, i.e., when the two sets
have a full-dimensional intersection and when the sets are disjoint. For all instances, we again used
q = 0.1, r = 1, n = 500, and N = 1. Additionally, we disabled the quadratic corrections until
the active set has at least 30 atoms. This helps to avoid the computational overhead of quadratic
corrections in the first iterations when ALM adds and drops atoms very quickly due to its alternating
nature. Besides BPCG and the QC methods, we also compare the vanilla FW steps from the original
version of ALM. The results of the two experiments are shown in Figure 8.

In both experiments, the two QC methods show a very similar behavior. For c = 0.9, i.e., when the
two sets have a full-dimensional intersection, both QC methods and BPCG enjoy linear convergence,
while the vanilla FW steps show sublinear convergence. However, QC-MNP and QC-LP converge
faster and achieve a smaller FW gap, in terms of the number of iterations and time. In the case of
c = 1.1, i.e., when the two sets are disjoint, all four methods show sublinear convergence. While
QC-LP and QC-MNP accelerate the convergence, especially of the FW gap, the benefit of the QC
methods is not as pronounced as in the previous experiment.
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Figure 9: Comparison of the new step size and penalty-schedule (N-FW) proposed in Theorem 9
with the original ones (O-FW) in Woodstock and Pokutta [2025]

Finally, we compare the step size and penalty schedule proposed in Theorem 9 with the ones in the
original paper [Woodstock and Pokutta, 2025]. We compare the new setting for vanilla FW steps,
which are used in the original version of SCG. For the experiment, we again used c = 0.9, q = 0.1,
and n = 300. The results are depicted in Figure 9. We use a logarithmic scale on the horizontal axis
to visualize the difference in the convergence rates more clearly. The results confirm our theoretical
results that SCG enjoys a faster convergence with the new step size and penalty schedule.

F.4 Projecting with quadratic correction in Second-Order Conditional Gradient Sliding

In the experiment of Subsection 4.4, we tested the acceleration provided by both quadratic corrections
QC-LP and QC-MNP by comparing the hybrid methods with BPCG for solving the Inexact PVM
step at Line 9 in Algorithm 10. For the outer step, we use the lazified BPCG.

Due to numerical instabilities for the PVM stop condition at Line 9 in Algorithm 10 (we were
getting threshold values εt ⩾ 0 too close to 0), we replaced the stop condition at Line 9 by a fixed
number k ∈ {50, 200} of inner steps. Tightening the lower bound estimations lb(xt) of the primal
gaps or designing stop conditions for the Inexact PVM step, which preserve the convergence rate of
SOCGS without any lower bound estimation, are left for future work.

During the initial phase of SOCGS, only the outer steps are selected. To avoid the computational
overhead of quadratic corrections, we do not perform any QC steps in the first 25 iterations of SOCGS.
This leads to identical trajectories between BPCG, QC-LP, and QC-MNP at the beginning in Figure 4.
After iteration 25 of SOCGS, both QC-LP and QC-MNP perform in each PVM step a QC step at
the first inner iteration. A second quadratic correction is performed after 30 atoms were added to
the active set S̃h+1

t+1 of the PVM step. This yields a quick adjustment to the new quadratic model
and an additional correction if a relevant amount of new vertices were added to the active set. The
experiments were run with a limit of 100 SOCGS iterations and a time limit of 2000 seconds.

We consider the same structured logistic regression problem over the ℓ1 ball as in Carderera and
Pokutta [2020]. We solve

min
x∈B1(1)

1

m

m∑
i=1

ln
(
1 + exp(−yi ⟨x, zi⟩)

)
+

1

2m
∥x∥2 .

The labels yi ∈ {−1, 1} and feature vectors zi ∈ Rn are taken from the gisette training dataset
[Guyon et al., 2007], so that n = 5000 and m = 6000. As mentioned in [Sun and Tran-Dinh, 2019,
Subsection 6.1], the function f is an example of (M, 3)-generalized self-concordant function as in
(43), where M =

√
mmax {∥zi∥ | 1 ⩽ i ⩽ m}.

The evaluation of the gradient of f ,

∇f(x) = − 1

m

m∑
i=1

yizi
1 + exp(yi ⟨x, zi⟩)

+
1

m
x ∈ Rn,

is computationally demanding, as one has to compute m inner products of size n for each gradient
evaluation. For the quadratic approximations f̂t, we use an exact Hessian approximation Ht =
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∇2f(xt) with

∇2f(x) =
1

m

m∑
i=1

ziz
T
i(

1 + exp(−yi ⟨x, zi⟩)
)(
1 + exp(yi ⟨x, zi⟩)

) + 1

m
In ∈ Rn×n,

where In ∈ Rn×n is the identity matrix. The gradients∇f̂t of the quadratic approximations f̂t are
given by∇f̂t(x) = ∇f(xt) +Ht(x− xt).

It is worth noticing that in our current implementation, we are storing the full Hessian matrices
for each PVM step. This could be avoided by computing Hessian-vector products and Hessian-
induced norms for any given x using the decomposition of the Hessian as rank-one terms given in its
expression.

Experimenting with line search after the Inexact PVM step. We experimented with adding a
secant line search [Hendrych et al., 2025] after the Inexact PVM step and before the if clause at
Line 14 in Algorithm 10. We did not see a significant change in the trajectories as plotted in Figure 4,
except for a slight computational overhead of the line search.

F.5 Tensor completion

We consider the non-negative tensor completion problem from Bugg et al. [2022], in which one
reconstructs a non-negative tensor from some entries. The problem is NP-hard, and the corresponding
LMO can be implemented as a mixed-integer linear problem, with a polyhedral feasible set. We
compare the Blended Conditional Gradient algorithm [Braun et al., 2019], which was used in the
original paper to BPCG, and the two quadratic corrections variants.

Results are presented in Figure 10 for different types of instances. All algorithms use lazification.
The BCG, BPCG and PFW methods perform well for instances with a low radius and a low number
of vertices forming the optimal solution. The QC algorithms outperform these methods for larger
settings of these parameters, and are particularly advantageous for problems in which LMO calls are
much costlier than solving any number of linear programs.

F.6 Performance profile and success rates

In this final section, we investigate how quadratic corrections can accelerate Frank-Wolfe variants
beyond BPCG. In particular, we augment three additional methods with both quadratic correction
steps (QC-LP and QC-MNP): an active-set variant of vanilla Frank-Wolfe (FW), Away Frank-Wolfe
(AFW), and Pairwise Frank-Wolfe (PFW). For clarity of presentation, we omit the prefix “QC” in
the method names; for example, Away Frank-Wolfe with QC-MNP is denoted AFW-MNP. In total,
we compare twelve methods, four baseline algorithms, and eight variants enhanced with quadratic
corrections. We consider 37 quadratic problem instances from the K-sparse regression problem, the
entanglement detection, the Birkhoff projection, and the tensor completion problem with varying
problem parameters and seeds. The experiments with SCG and SOCGS are not considered here.

First, we present a performance profile illustrating the number of problem instances solved within a
given time. All methods had a time limit of one hour and 10000 iterations, except for the entanglement
detection problem, which allowed 108 iterations. An instance is solved if either the optimality
criterion, i.e., FW gap is smaller than 10−7 (or 10−5 for the tensor completion problem), or if the
iteration or time limit is reached. The results are given in Figure 11.

The graphic demonstrates that QC-MNP improves the performance of all baseline methods. For both
small and large instances, methods with QC-MNP belong to the fastest solvers. The QC-LP variants
are not as effective as QC-MNP, but still outperform the baseline methods in most cases. This was
expected as the benefit of QC-LP is only gained when the affine minimizer lies in the convex hull of
the active set, which is not necessary for QC-MNP. In the case of PFW-LP, the benefit of QC-LP is
not as pronounced as for other methods. The additional runtime for solving the linear problem is not
compensated for by the reduced number of iterations.

Finally, we present the success rates for the aforementioned methods, i.e., the ratio of QC steps that
are fully-corrective. There are no guarantees as to when the affine minimizer lies within the convex
hull of the active sets. However, the performance of the quadratic correction steps depends heavily on
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(a) d = 10, nv = 7, ρ = 11 (b) d = 10, nv = 7, ρ = 30

(c) d = 10, nv = 40, ρ = 11 (d) d = 10, nv = 40, ρ = 30

(e) d = 12, nv = 10, ρ = 14 (f) d = 12, nv = 10, ρ = 15

Figure 10: Results on the tensor completion problem. The dimension of the tensor is d× d× d. The
parameter nv indicates how many vertices were sampled to construct the underlying ground truth,
and ρ is the radius of the tensor norm ball.
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Figure 11: Performance profile of different FW methods with quadratic corrections over a problem
set of 37 instances.

this. In cases where the affine minimizer lies outside the convex hull, QC-LP uses the local pairwise
step, yielding significantly less progress, and QC-MNP must truncate its update.

The results are given in Table 1 and Table 2. We present the shifted geometric mean of the number
of fully-corrective QC steps and the total number of QC steps for different problem instances per
experiment.

For both the K-sparse regression and the Birkhoff projection problem, the success rates are very high
for both QC methods. This result aligns with the fast convergence observed in the previous section,
where QC-LP and QC-MNP outperformed the baselines, especially in terms of iteration counts. In
the entanglement detection problem, the success rates are moderately high for QC-MNP and very low
for QC-LP, explaining why QC-LP performs so poorly, sometimes even slower than some baselines in
this problem class. In the tensor completion problem, the success rates are moderately high. However,
the overall numbers are comparably small due to the low number of total iterations.

Method FW-LP AFW-LP PFW-LP BPCG-LP

K-sparse regression 16 / 40 29 / 30 3 / 4 29 / 30
Entanglement detection 2 / 14803 2 / 544 1 / 274 2 / 473
Birkhoff projection 0 / 45 19 / 28 1 / 2 18 / 19
Tensor completion 4 / 6 3 / 5 1 / 3 3 / 4

Table 1: Shifted geometric mean of the number of successful QC-LP steps and the total number of
QC-LP steps across different problem instances.

Method FW-MNP AFW-MNP PFW-MNP BPCG-MNP

K-sparse regression 29 / 30 29 / 30 3 / 5 29 / 30
Entanglement detection 68 / 746 492 / 897 651 / 935 596 / 889
Birkhoff projection 20 / 24 21 / 28 1 / 2 18 / 19
Tensor completion 4 / 6 3 / 4 1 / 3 3 / 4

Table 2: Shifted geometric mean of the number of successful QC-MNP steps and the total number of
QC-MNP steps across different problem instances.
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